Frequent Loss of the PI6INK4a Gene Product in Human Pituitary Tumors

Michael Woloschak, Aiqin Yu, Jiaqi Xiao, and Kalmon D. Post

Departments of Medicine (M. W., A. Y., J. X.) and Neurosurgery (K. D. P.), Mount Sinai School of Medicine, New York, New York 10029

Abstract

Pituitary tumors develop at a high frequency in retinoblastoma (Rb)-knockout mice; however, defects in the Rb gene are not common in human pituitary tumors. The inverse correlation of Rb and p16 defects in certain human tumors has led us to investigate the expression of p16 in human pituitary tumors as an indirect mechanism of Rb inactivation. By Western blot analysis, the p16 gene product was undetectable in 25 human pituitary tumors, whereas high levels of p16 could be demonstrated in 10 normal human pituitary specimens under the same conditions of protein extraction and immunoblotting. Similar results were obtained at the mRNA level with low to undetectable levels of p16 mRNA in 13 of 14 pituitary tumors relative to 5 normal pituitary specimens. Single-strand conformation polymorphism analysis of p16 exons 1 and 2 revealed no mobility shifts in 25 tumors; however, a quantitative differential PCR analysis revealed diminished amplification of p16 relative to a control gene in 3 of 25 tumors, suggesting homozygous p16 gene loss. We conclude that altered expression of the p16 gene product occurs at a high frequency in human pituitary tumors. This altered expression is not associated with frequent p16 mutation or gene loss, suggesting that alternative mechanisms of gene inactivation and/or altered regulation occur in the majority of these tumors.

Introduction

In 1990, studies using X-allelic inactivation determined that human pituitary tumors are monoclonal in origin (1). Although mutations in the gsp oncogene have been reported for a subset of GH-secreting pituitary tumors (2), this subset represents only a small fraction of all pituitary tumors, and subsequent studies over the past several years have yielded limited information on the origins of the majority of human pituitary tumors. The high incidence of pituitary tumors that develop in heterozygous Rb-knockout mice has implicated the Rb gene itself is not an important target in human pituitary tumorigenesis.

Recently, several CDK inhibitors have been identified, which have important roles in controlling the cell cycle and have been found to be disrupted in a high number of human tumors (reviewed in Ref. 8). p16 is a specific inhibitor of CDK4, the CDK that phosphorylates Rb to its inactive form. p16 functions in a feedback regulatory loop with the Rb protein, and its disruption represents an important indirect mechanism of Rb inactivation (9). p16 has rapidly come under intense investigation as a tumor suppressor gene, because it has been found to be inactivated in a wide variety of human tumor-derived cell lines (10) and several specific types of primary human tumors (11, 12). This inactivation occurs by homozygous deletions and point mutations (10–12), as well as by alternative mechanisms such as gene methylation (13, 14). Interestingly, alterations of p16 and Rb appear to have an inverse correlation in certain types of tumors, such as lung carcinoma, in that wild-type p16 protein accumulates to high levels in tumor cells with Rb disruptions, whereas p16 disruptions (and undetectable p16 protein) occur in tumor cells expressing wild-type Rb (15, 16). These reports have led us to speculate on the status of p16 in human pituitary tumors.

Materials and Methods

Tumor Specimens. Specimens were collected in accordance with a protocol approved by an institutional review board. Pituitary tumor specimens were obtained from 25 patients at the time of transphenoidal resection and were snap-frozen at −70°C until the time of protein, RNA, and DNA isolation. Normal postmortem pituitary specimens were obtained from the National Hormone and Pituitary Program (Bethesda, MD). Tumors were classified according to their immunohistochemical staining for adrenocorticotrophic hormone, GH, prolactin, follicle-stimulating hormone, luteinizing hormone, and TSH-β using an avidin-biotin method. Tumors were also classified as invasive if they demonstrated invasion of the cavernous sinus, sphenoid bone, or sinus, or cranial nerves, or if they infiltrated blood vessels or venous sinuses. NCI-H69 cells, used as a positive control for p16 expression, were obtained from the American Type Culture Collection (Bethesda, MD).

Protein Preparation. Tissues were lysed in a lysis buffer that contained 150 mM NaCl, 25 mM Tris (pH 7.5), 0.02% sodium azide, 1% NP40, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 100 μg/ml phenylmethylsulfonyl fluoride, and 10 μg/ml pepstatin A. An equal volume of 2X SDS loading buffer [100 mM Tris (pH 6.8), 200 mM DTT, 4% SDS, 0.2% bromphenol blue, and 20% glycerol] was added, and the samples were boiled for 10 min. Protein was quantitated by a modified Lowry method.

Western Blots. One hundred μg total protein were loaded onto SDS-polyacrylamide gels and electrophoresed. Proteins were transferred to nitrocellulose membranes (Schleicher & Schuell, Keene, NH) by electrophoresis. Membranes were blocked for 60 min in 5% dry milk, probed for 1 h with primary antihuman p16 antibody (15126E or l325lA; PharMingen, Inc., San Diego, CA), and then probed with sheep antimouse secondary antibody. The antibody reaction was revealed by chemiluminescence detection, according to the manufacturer’s recommendations (Amersham, Arlington Heights, IL). After exposure, the blots were stripped and reprobed with anti-β-actin antibody (Ab-1; Oncogene Science, Manhasset, NY) to confirm protein integrity and equal loading.

Preparation of Total RNA. Tissues were homogenized in a lysis buffer containing 0.3 M sucrose, 10 mM Tris, 1.5 mM MgCl2, 0.5% NP40, and 0.25% sodium deoxycholate and then layered onto a cushion buffer containing 0.4 M sucrose, 10 mM Tris, and 1.5 mM MgCl2. The lysed cells were centrifuged...
through the gradient at a speed of 3000 rpm for 10 min. The cytoplasmic fraction was removed and treated with 120 μg proteinase K in 1% SDS, 10 mm Tris, and 5 mm EDTA for 1 h. The cytoplasmic RNA was treated with 10 units of RNase-free DNase I for 15 min at 37°C. After phenol-chloroform extraction, the RNA was precipitated with 100% ethanol. Quantitation of total RNA was performed by spectrophotometry using absorbance at 260 nm.

RT-PCR. Ten to 15 μg total RNA isolated from pituitary tumors and normal pituitary specimens were subjected to RT using oligodeoxynucleotidyl acid, followed by PCR amplification using the p16 primer and GAPDH primer sets listed in Table 1. Thirty to 40 cycles of the reaction were performed at 94, 55, and 72°C for 1, 2, and 3 min, respectively in a Power Block thermal cycler (Ericomb, San Diego, CA). Quantitation was performed by PCR incorporation of [32P]dCTP as well as blotting of PCR products and hybridization to cDNA probes, followed by phosphorimager analysis. For each sample, values were expressed as the signal ratio p16:GAPDH.

Genomic DNA Preparation. Genomic DNA was prepared by incubating tissue fragments in 500 μl isolation solution containing 0.1 M NaCl, 0.001 M Tris, 0.001 M EDTA, 0.5% SDS, and 0.2 mg/ml proteinase K for 4 h at 37°C, followed by phenol-chloroform extraction and ethanol precipitation. The DNA pellet was reconstituted in 1× TE (10 mm Tris (pH 8.0) and 1 mm EDTA) and quantitated using absorbance at 260 nm.

SSCP Analyses. Primers used for SSCP are listed in Table 1. DNA prepared from LD600 cells, containing a known p16 mutation (17), was used as a control. Normal and tumor DNA samples were subjected to PCR containing 10 pmol/μl of each respective primer, 10 mm each of four deoxynucleotides, 50–200 ng genomic DNA, 5 units Taq Polymerase (Promega Corp., Madison, WI), 5 μl 10× Taq buffer, and 1 μl [32P]dCTP (3000 Ci/mmol, 10 mCi/ml; DuPont New England Nuclear, Boston, MA). Twenty-five to 30 cycles of the reaction were performed using similar conditions as described above. Two μl reaction mixture were mixed with 18 μl denaturing buffer (20 mmol EDTA, 0.05% bromphenol blue, 0.05% xylene cyanol, and 95% formamide) and heated to 95°C for 3 min. One to 2 μl/lane were applied to a 6% polyacrylamide sequencing gel containing 90 mmol Tris-buffered EDTA, 4 mmol EDTA, and 10% glycerol. Electrophoresis was performed at 30 W for 17 h. The gel was dried and exposed to X-ray film at −70°C for 12 h.

Differential PCR Analysis. The ability to amplify p16 exon 2 was compared with the ability to amplify a region of the human β-actin gene. PCR was performed using 100 ng genomic DNA, primers listed in Table 1, and similar conditions as described above. PCR products were analyzed by electrophoresis through 1% agarose, followed by blotting to nylon membranes and hybridization to 32P-labeled β-actin and p16 DNA probes, labeled by random priming. Quantitation was performed by phosphorimager analysis of the dried membranes. Positive samples were repeated three times.

Results

Twenty-five human pituitary tumors were examined by Western blot analysis. All tumor samples were found to express undetectable levels of the p16 protein relative to high levels detected in protein samples prepared from normal human pituitary specimens and control NCI-H67 cells under the same conditions of protein extraction and immunoblotting (illustrated in Fig. 1). Probing with anti-β-actin antibody was performed in all cases to control for protein loading and integrity. These results were confirmed in more than 10 Western blots using 25 pituitary tumor specimens, 10 normal pituitary specimens, and 2 different antihuman p16 antibodies. The conditions of the antibody incubations were varied (including antibody concentrations and lengths of incubation), as were the methods of protein preparation and quantities of total protein loaded per lane (up to 200 μg/lane). Of the 25 tumors, 14 were considered nonfunctioning and did not stain by immunohistochemistry; 3 stained for adrenocorticotrophic hormone; 3 stained for prolactin; 2 stained for GH; 1 stained for TSH-β; and 2 stained for follicle-stimulating hormone β, luteinizing hormone β, and TSH-β. Twelve were considered macroadenomas, and 5 were classified as invasive based on criteria described in "Materials and Methods." There were no notable differences in any of these tumors with respect to levels of p16 protein detected.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>p16X</td>
<td>ATGAGCCTTCTCGCCGTCCTAC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>p16Y</td>
<td>AGACCCCTCTTTCCCTCCCTCA</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>GAPDH1</td>
<td>CCACCAAGCTATTCCAGCAT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>GAPDH2</td>
<td>TCTAGACGCAGTCAGCTCCACC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>p16α1</td>
<td>GAAAGAAGGAGGGGCCCTG</td>
<td>SSCP</td>
</tr>
<tr>
<td>p16β1</td>
<td>GCCTCTCTGCTTGCTCTCCCTC</td>
<td>SSCP</td>
</tr>
<tr>
<td>p16α2</td>
<td>CAATTCCTGTTCCCTGCTGAG</td>
<td>SSCP</td>
</tr>
<tr>
<td>p16β2</td>
<td>CTGCAGATCATCAGTCCTCAC</td>
<td>SSCP</td>
</tr>
<tr>
<td>p16Xα2</td>
<td>TCTGCACATTCTGTCTCTCC</td>
<td>Differential PCR</td>
</tr>
<tr>
<td>p16Xβ2</td>
<td>CTGCAGATCATCAGTCCTCAC</td>
<td>Differential PCR</td>
</tr>
<tr>
<td>β-actin1</td>
<td>GACGAGCGCCAGGCAAGGAGA</td>
<td>Differential PCR</td>
</tr>
<tr>
<td>β-actin2</td>
<td>AGCTACATGCGTGGGAGTTG</td>
<td>Differential PCR</td>
</tr>
</tbody>
</table>

To further investigate this alteration in p16 expression in these tumors, RNA was prepared from 14 pituitary tumors and 5 normal pituitary specimens and subjected to quantitative RT-PCR analysis in three separate experiments to determine the relative levels of p16 mRNA in these samples. Fig. 2A illustrates an analysis in which equal amounts of total RNA prepared from pituitary tumors (Lanes T1-T4) and normal pituitary samples (Lane N1) were subjected to RT using oligodeoxynucleotidyl acid, PCR using p16-specific primers, and blotting and hybridization to a p16 cDNA probe. In all experiments, p16 mRNA levels were normalized to the level of GAPDH mRNA detected in each sample by the same method. Shown in Fig. 2B, p16 mRNA was undetectable in six pituitary tumors, whereas in seven other tumors, levels ranged from 0.07 to 0.35 of the levels detected in normal pituitary specimens. In one nonfunctioning macroadenoma, the level of p16 mRNA was comparable to levels detected in the normal pituitary, although p16 protein was undetectable in this tumor.

The strikingly reduced levels of p16 protein and mRNA detected in human pituitary tumors led us to investigate these tumors for primary defects in the p16 gene. p16 gene defects reported in human tumors include point and missense mutations as well as homozygous deletions (10–12). The human p16 gene structure comprises three exons, with exons 1 and 2 constituting 97% of the coding region (9). To identify p16 gene mutations in these tumors, SSCP analyses of exons 1 and 2 were performed for 25 pituitary tumors. Fig. 3A illustrates an exon 1 SSCP analysis of several pituitary tumor DNA samples (Lanes T1-T8). In this figure, each sample was loaded in two adjacent lanes for more accurate identification of a mobility shift relative to normal DNA (Lane N1). Twenty-five pituitary tumors were examined by SSCP analysis for exon 1 and 2 mutations, and no mobility shifts were detected in any of these samples.

For certain tumor samples, the ability to amplify p16 bands was noted to be diminished using quantities of genomic DNA less than 200 ng in the PCR reaction (Fig. 3A, Lane T1). To investigate the possibility of homozygous deletions in these specimens, a quantitative differential PCR analysis was performed in which the ability to amplify a region of p16 exon 2 was compared quantitatively with the ability to amplify a region of the β-actin gene for normal and tumor DNA samples. This method has been successfully used to estimate the frequencies of homozygous p16 deletions in DNA derived from tumor cell lines and primary human tumors (18, 19). Fig. 3B shows an example of this analysis, in which 100 ng genomic DNA from tumor specimens (Lanes T1-T4) and a normal DNA sample (Lane N) were used to amplify regions of the p16 and β-actin genes. PCR products were blotted and hybridized to p16 and β-actin CDNA probes, and bands were quantitated by phosphorimager analysis. The same normal samples were used as standards for comparison on each gel to control for differences in the amounts of probe used, efficiency of cross-linking, and other possible variables inherent to these experiments. Intensity ratios were calculated as the ratio of p16 tumor sample:p16 normal standard divided by the ratio of β-actin tumor sample:β-actin normal standard.
We have studied human pituitary tumors for defects in p16 expression as an indirect mechanism of Rb inactivation in these tumors. The high frequency of pituitary tumors that develop in Rb-deficient mice, the lack of Rb abnormalities in human pituitary tumors, and several reports demonstrating an inverse correlation of Rb and p16 defects in human tumors led us to this investigation. Of 25 human pituitary tumors examined by Western blotting, none were found to express high levels of the p16 protein, whereas p16 expression could be readily demonstrated in several normal human pituitary specimens in the same experiments. Similar findings were observed at the mRNA level in nearly all of the pituitary tumors examined. In contrast to these results, we previously reported that these pituitary tumors express high levels of the Rb protein and lack mutations in the “pocket” region of the Rb gene (7), underscoring an inverse correlation of p16 and Rb expression in these tumors. This inverse correlation was first reported in a large study of lung carcinoma cell lines by Otterson et al. (15), who demonstrated p16 protein only in tumors with absent or mutant Rb. More recently, this correlation was reported by Aagaard et al. (16) in a number of cell lines derived from a variety of different human tumors. The mutually exclusive appearance of p16 and Rb alterations in human tumors highly implies that both of these proteins function in the same cell cycle regulatory pathway, and that loss of either achieves the same biological effect on cell cycle control.

We have investigated a number of pituitary tumors for evidence of p16 gene defects. In these studies, p16 mutations in exons 1 and 2 were not detected in 25 human pituitary tumors. Although exons 1 and 2 constitute 97% of the coding region, our experiments would not have detected p16 mutations if they occurred in exon 3 or in noncoding regions such as the promoter. Another important mechanism of p16 gene inactivation is homozygous deletion. To estimate the frequency of this abnormality in pituitary tumors, we have used a quantitative differential PCR analysis, a technique that has been increasingly used for this determination. Recent experiments by Walker et al. (19) have demonstrated that the use of the limiting intensity ratio of 0.44 is more accurate in estimating homozygous gene loss than the arbitrary ratio of 0.2 previously used as the cutoff. Using this technique, 3 of 25 pituitary tumors were found to have intensity ratios indicative of homozygous p16 gene loss. Interestingly, the three pituitary tumor specimens with this abnormality were macroadenomas, which perhaps contained lower relative amounts of normal pituitary margin tissue than those found in microadenoma samples. Our results may underestimate the occurrence of p16 gene deletions in human pituitary tumors, because contamination from normal DNA may be a confounding factor in cases of microadenomas. To our knowledge, the frequency of LOH on chromosome 9p21 has never been reported for human pituitary tumors but clearly warrants investigation.

The general frequency of p16 gene defects has been speculated to be lower in primary tumors than in cultured tumor cells (17), although recently, this view has been challenged (21). Despite the low fre-

Fig. 1. Protein samples prepared from 25 human pituitary tumors and 10 normal pituitary specimens were examined in more than 10 Western blots using two different antihuman p16 antibodies. In all cases, p16 protein was undetectable in pituitary tumors (lanes labeled T), whereas high levels of p16 were detected in normal pituitary samples (lanes labeled N) and control NCI-H69 cells (Lane C). Probing with anti-β-actin antibody was performed in all cases to control for protein loading and integrity.

Fig. 2. By RT-PCR analysis, levels of p16 mRNA were undetectable or reduced in 13 of 14 pituitary tumor samples relative to 5 normal pituitary samples. A, equal amounts of RNA prepared from pituitary tumors (Lanes T1-T4) and normal pituitary samples (Lanes N1 and N2) were subjected to RT-PCR, followed by Southern blotting of PCR products and hybridization to p16 and GAPDH cDNA probes. B, p16 mRNA levels were quantitated and expressed as ratios relative to respective levels of GAPDH mRNA in these samples.
Quantitative differential PCR analysis was performed and demonstrated diminished amplification of pl6 relative to β-actin in 3 of 25 tumors (Lane T3), suggesting homozygous fragments amplified from normal (Lane NI) and pituitary tumor DNA samples (Lanes T1-T8). Each sample is loaded in two adjacent lanes. Analysis of 25 human pituitary tumors. This alteration was particularly striking for colon carcinomas, in which the rate of LOH on chromosome 9p21 is low, as is the frequency of homozygous pl6 deletion. Similarly, Gonzalez-Zulueta et al. (14) described the high rate of methylation of pl6 at 5'-CpG islands in transitional cell carcinoma of the bladder, in which pl6 mutations and homozygous deletions are also rare. Interestingly, a number of putative genes, such as the prolactin gene, are known to be regulated by methylation at sites in their 5' regions (22), and the possibility of transcriptional silencing of pl6 in these tumors by gene methylation certainly requires investigation. Alternatively, the loss of pl6 expression in human pituitary tumors may suggest a defect in regulation by another component in this cell cycle control pathway. An epigenetic event affecting such a component could then represent the fundamental lesion inactivating this pathway in these tumors. Clearly, further work is necessary to uncover the mechanisms underlying altered pl6 expression in pituitary tumors and to define the effects of this alteration on cell cycle control that result in tumorigenesis.

Acknowledgments

We thank Drs. David Beach for the human p16 CDNA, Peter Jones for LD600 cells, and Stuart Aaronson, James L. Roberts, and Terry Davies for critical reviews of the manuscript.

References

Frequent Loss of the $P16^{INK4a}$ Gene Product in Human Pituitary Tumors

Michael Woloschak, Aiqin Yu, Jiaqi Xiao, et al.

Cancer Res 1996;56:2493-2496.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/11/2493

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.