CWR22: The First Human Prostate Cancer Xenograft with Strongly Androgen-dependent and Relapsed Strains Both in Vivo and in Soft Agar

Moolky Nagabhushan, Casey M. Miller, Theresa P. Pretlow, Joseph M. Giaconia, Nancy L. Edgehouse, Stuart Schwartz, Hsing-Jien Kung, Ralph W. de Vere White, Paul H. Gumerlock, Martin I. Resnick, Saeid B. Amini, and Thomas G. Pretlow

ABSTRACT

Most patients’ prostate cancers respond to androgen deprivation but relapse after periods of several months to years. Only two prostate cancer xenografts, LNCaP and PC-346, have been reported to be responsive to androgen deprivation and to relapse subsequently. Both of these tumors have been cured by hormonal manipulation (2). Models for the development of experimental therapy are limited. To our knowledge, only two xenografts, LNCaP (3, 4) and PC-346 (5), have been reported previously to show initial responses to androgen withdrawal followed by resumption of growth. Both of these tumors exhibit deceleration of their rates of growth after androgen withdrawal by castration; occasionally, these tumors regress slightly after castration, usually with less than a 10% reduction in volume. Unlike most hormonally responsive prostate cancers in men, both of these tumors resume a more rapid rate of growth after 5 weeks after castration (3, 5). PSA

INTRODUCTION

In men, most prostate cancers respond to androgen withdrawal (1) but relapse after the initial response. Few, if any, prostate cancers in humans have been cured by hormonal manipulation (2). Models for the development of experimental therapy are limited. To our knowledge, only two xenografts, LNCaP (3, 4) and PC-346 (5), have been reported previously to show initial responses to androgen withdrawal followed by resumption of growth. Both of these tumors exhibit deceleration of their rates of growth after androgen withdrawal by castration; occasionally, these tumors regress slightly after castration, usually with less than a 10% reduction in volume. Unlike most hormonally responsive prostate cancers in men, both of these tumors resume a more rapid rate of growth after 5 weeks after castration (3, 5). PSA

In 1994, we (6) described CWR22, an androgen-dependent, serially transplantable xenograft derived from a primary human prostate cancer that has been used subsequently in many laboratories. After castration, CWR22 shows marked regression, not just deceleration or stabilization of growth, and may regress completely. We now describe serially transplanted CWR22R tumors, xenografts that have relapsed after androgen deprivation, usually with less than a 10% reduction in volume. Unlike most hormonally responsive prostate cancers in men, both of these tumors resume a more rapid rate of growth after 5 weeks after castration (3, 5). PSA

Cells from freshly dissociated, serially transplanted CWR22 and CWR22R that were serially transplanted from CWR22R tumors that relapsed after androgen deprivation were used in soft agar assays as described by Hamburger and Salmon (9) with the following modifications: MEM + (culture medium with supplements as described in Ref. 10) with 20% normal (Life Technologies, Grand Island, NY) or charcoal-stripped (Calico Biologicals, Inc., Reams-town, PA) calf serum was used as the solvent for the noble agar layers (Difco, Detroit, MI). Cell suspensions were filtered through a single layer of Nitex (Tetko, Inc., Briarcliff Manor, NY) with a 48-µm porosity immediately before opening of this horizontal tube, and 3.6 ml 0.33% soft agar at 44°C were added rapidly to the tube. The tube was mixed three times by inversion, and 1 ml soft agar (final concentration 0.3%) was plated on top of a previously plated 1-ml layer 0.5% agar. The cells in the several dilutions of testosterone (Sigma Chemical Co., St. Louis, MO) shown below and the control plates were cultured and counted in triplicate. The plates were incubated in a humidified chamber with 5% CO₂ in air at 37°C. After 14 days in culture, the number of clusters per plate was counted and plotted as the mean ± SD. Groups of cells greater than eight cells per group were scored (11) and termed “clusters.” In preliminary experiments, variables that might affect the soft agar assay were explored. After filtration through 48-µm mesh Nitex as described above, cells were cultured in soft agar over a wide range of concentrations. Concentrations of 0.05 and 0.025 million cells/ml gave approximately 50–100 clusters/plate in the absence of testosterone. Cultures observed at intervals of 1 week for 4 weeks gave similar numbers of clusters (more than eight cells per
group) of cells at 2 and 3 weeks with decreased numbers of clusters at 4 weeks; the sizes of the clusters did not increase after 2 weeks. Assays were performed in each experiment at both concentrations, and the concentration that gave the number of clusters closest to 100 clusters/plate was selected for evaluation. In >80% of experiments, the 0.05 million cells/ml satisfied these conditions. At this concentration, fewer than two clusters per plate were observed in the day 0 control plates in most experiments. In the early phases of this series of experiments, we occasionally saw more clusters per plate. It became apparent that experiments with more than two clusters per control plate were experiments in which longer intervals of time had elapsed between filtering the cells through 48-μm Nitex and plating the cells. When more than eight clusters per plate were observed in any control plate, the entire experiment was discarded. Viability assays showed that >99% of the clusters were viable at 2 weeks; viability was assessed with an iodonitrotetrazolium stain (Sigma Chemical Co.) as used by Rosenthal et al. (12).

RESULTS

PSA in the sera of mice declined much more rapidly after the resection of tumors than after the castration of mice bearing tumors (Fig. 1). The half-life of PSA after resection (Fig. 1A) appears to be less than 1 day, a value that is consistent with the values reported for a study of the LNCaP xenograft (3). Based on only five animals for which PSA values were obtained at intervals after castration and removal of sustained release testosterone pellets without resection of tumors, the half-life of the serum PSA appears to be variable over a range of approximately 3–8 days. The wide variation observed among different animals in this experiment may be related in part to the fact that PSA was elevated 1 day after castration as compared with the value obtained just before castration in some animals. In the most extreme example of this, seen in animal 2276 (Fig. 1B), the PSA was 522 ng/ml immediately before castration, 1504 ng/ml at 1 day, 558 ng/ml at 2 days, 417 ng/ml at 5 days, and 289 ng/ml at 7 days after castration. We speculate that the elevation of PSA in some animals on the day following androgen deprivation may have been related to injury of the neoplastic cells. The regression of tumors proceeded much more slowly than the decrease in PSA, i.e., the PSA usually declined by 50% in a maximum of 1 week after castration while the tumor volume usually took more than 1 month to decline by 50%; the tumor volume often continued to decline for more than 3 months before becoming stable.

The experiment in which mice have been followed for the longest period after castration was a part of a separate ongoing study. Historically, of the 151 animals that have received injections of >1000 CWR22 cells in Matrigel and observed for at least 3 months over the past 3 years, all but 5 have developed tumors. In our longest (>600 days) experiment, CWR22 cells were transplanted by the injection of 8.3 million cells in 0.05 ml Matrigel into single subscapular sites bilaterally in nine animals. By design, when the largest tumor reached 7 mm in its smallest dimension, all nine animals were castrated, and testosterone pellets were removed. The larger of the two tumors was resected from each of five of the animals 1 day after castration; from each of the remaining four animals, 4 days after castration. At the time of castration, PSA values in the blood of these mice ranged between 522 ng/ml at 2 days, 417 ng/ml at 5 days, and 289 ng/ml at 7 days after castration. We speculate that the elevation of PSA in some animals on the day following androgen deprivation may have been related to injury of the neoplastic cells. The regression of tumors proceeded much more slowly than the decrease in PSA, i.e., the PSA usually declined by 50% in a maximum of 1 week after castration while the tumor volume usually took more than 1 month to decline by 50%; the tumor volume often continued to decline for more than 3 months before becoming stable.

After castration, five of the nine animals failed to develop recurrent tumors that could be measured with calipers; the remaining four animals developed relapsed tumors with the first evidence of elevation of blood PSA seen 92, 151 (two animals), and 221 days after castration (Fig. 2). As detailed below, some of the five mice in which relapsed tumors were not detected grossly showed evidence of the persistence of small amounts of residual tumor. To date, these nine animals have been followed for >600 days after castration or until death. Two of the nine animals, (mice 2144 and 2148) are currently alive and without recurrence of growing tumors or abnormal serum PSA. Mice 2146 and 2162 had the lowest PSA values at the time of resection and had tumor burdens estimated from external measurements of 0.95 and 0.72 ml. After resection of the larger of the two tumors in these two animals, the estimated tumor burdens were 0.29 and 0.27 ml, respectively. Both of these mice died without tumors detectable by palpation. In other mice, e.g., mouse 2272, no such elevation was observed; however, there may have been release of PSA by the tumor, since PSA consistently fell more sharply during the second day than during the first day after castration. D, mouse 2270; O, mouse 2272; O, mouse 2274; A, mouse 2276; •¿, mouse 2282. B, decline of PSA after castration of the mice and removal of sustained release testosterone pellets. In some mice, e.g., mouse 2276, PSA was sharply elevated 1 day after castration and removal of the exogenous testosterone. One might speculate that this kind of response to castration may reflect the rapid release of PSA by injured neoplastic cells. In other mice, e.g., mouse 2272, no such elevation was observed; however, there may have been release of PSA by the tumor, since PSA consistently fell more sharply during the second day than during the first day after castration. D, mouse 2270; O, mouse 2272; O, mouse 2274; A, mouse 2276; •¿, mouse 2282.
animals that have developed blood PSA levels of 0.8 ng/ml after months of normal blood PSA levels have developed recurrent tumors.

In seven of the nine animals, PSA values dropped to 0.1 or 0.2 ng/ml. The remaining two animals (mice 2152 and 2154) never developed normal PSA values after castration. In mouse 2152, PSA dropped from 114 ng/ml just prior to castration to 0.6 ng/ml at 64 days, 4.7 ng/ml at 92 days, 8.8 ng/ml at 123 days, and 73.1 ng/ml at 144 days after castration; weekly measurements with calipers first suggested relapse 119 days after castration. In mouse 2154, PSA dropped from 201 ng/ml just prior to castration to 0.4 ng/ml at 92 days and again at 123 days after castration. In the blood of this mouse, PSA values were still 0.5 ng/ml at 186 days, 1.2 ng/ml at 221 days, and 13.7 at 254 days before rising progressively to 515.3 ng/ml on the day when the mouse was euthanized, 344 days after castration; measurement with calipers showed relapse 279 days after castration.

Four of the nine animals developed recurrent tumors that could be measured with calipers and resulted in their being euthanized 144, 193, 227, and 344 days after castration. These results are particularly interesting in light of the fact that all injection sites received 8.3 million cells, i.e., 8300 times as many cells as are tumorigenic in >95% of the animals maintained with s.c. sustained release testosterone. Most animals given 1000 cells and sustained release testosterone pellets have been resected. Animals whose tumors have recurred have never shown progressive elevations of the PSA in their sera <2 months after castration. Enlargement of tumors that can be measured with calipers occurs >1 month and usually many months after the elevation of PSA is first detected.

Fig. 3 shows representative examples of the relationships between PSA in the sera of mice and the growth of tumors as measured with calipers. Mouse 2150 (Fig. 3A) was castrated on day 0; one of its two tumors was resected on day 4. The tumor that was not resected began growth as a relapsed tumor, as measured by calipers, approximately 180 days after castration; PSA indicated recurrent tumor 151 days after castration. Mouse 2274 (Fig. 3B) was allowed to develop large tumors bilaterally before castration in an attempt to develop relapsed tumor after castration. The change in PSA as a function of time after castration reversed its course 79 days after castration, indicating relapsed tumor; however, the two tumors did not appear to relapse as measured by calipers for >6 months after castration. Although CWR22R tumors derived from relapsed tumors (a) cause less elevation of PSA/g tumor in blood and (b) are more heterogeneous than CWR22R tumors with respect to the amount of PSA/g tumor in blood, the amount of PSA released into the blood by CWR22R has always been sufficient to predict the relapse of tumors at least 1 month before the relapsed growth is detectable with caliper measurements.

In other experiments, small numbers of animals with large tumor burdens and serum PSA between 369 and 1142 ng/ml have been castrated, and their sustained release testosterone pellets have been resected. Animals whose tumors have recurred have never shown progressive elevations of the PSA in their sera <2 months after castration. Enlargement of tumors that can be measured with calipers occurs >1 month and usually many months after the elevation of PSA is first detected.
In experiments designed to test the hormonal dependence of CWR22, three female mice and three male mice were given injections of the same suspension of minced tumor in 0.5 ml Matrigel. All three male mice were euthanized 6 weeks later because of large tumors. All three female mice were euthanized 4 months after injection without any evidence of tumor. In another experiment, two female mice and two male mice were given injections of 1.1 million CWR22 cells in Matrigel. The male mice were euthanized 6 and 9 weeks after transplantation with large tumors. Both female mice were euthanized 6 months after they received these cells but failed to develop tumors. In contrast to CWR22, CWR22R grows in female mice.

We have passaged relapsed tumors serially from five different mice. The relapsed tumors, CWR22R, have varied widely in their rates of growth; however, in general, CWR22R tumors have grown more slowly than CWR22. CWR22R tumors generally reach sizes that require that the animal be euthanized 6–12 weeks after transplantation. Some of the five strains of relapsed tumors reach similar sizes as early as 9 weeks; most require 3–7 months after transplantation. The basis for their slower growth and the marked differences among different relapsed tumors and their progeny is not yet known.

CWR22 and CWR22R differed in their responses to stimulation with testosterone in soft agar (Fig. 4). Cluster formation by CWR22 was increased in the presence of testosterone in a dose-related fashion up to an optimal concentration in the range of 25–35 \(\text{nM} \) testosterone. The dose-response curves were parallel in normal calf serum and in charcoal-stripped calf serum with the formation of more clusters in the normal serum than in charcoal-stripped serum. In both kinds of sera, cluster formation was increased 2–3-fold in the presence of testosterone. The response of CWR22R to testosterone was less consistent than that of CWR22. The experiments with CWR22R (Fig. 4) were carried out with different CWR22R tumors that arose as separate events in different animals over different intervals of time. In some experiments, small increases in cluster formation were observed in the presence of doses of testosterone that were optimal for CWR22. In other instances, cluster formation of CWR22R appeared to decrease slightly in the presence of testosterone. The only generalization about cells from all CWR22R tumors that seems very important in the light of the available data is that CWR22R cells responded much less vigorously than did CWR22 cells to testosterone in soft agar.

DISCUSSION

CWR22R enhances the value of CWR22 as a relatively unique model of human prostate cancer. The availability of CWR22 and CWR22R as serially transplanted xenografts provides prostate cancer researchers, for the first time, a xenograft derived from a primary prostate cancer that regresses markedly after androgen deprivation and relapses as new tumor growth in approximately one quarter to one half of the mice usually 3–10 months after castration, and 1–5 months after serial measurements of PSA in the tail vein blood has heralded the impending relapse. Even very large CWR22 tumors shrink by >50% after tumor-bearing mice are castrated, and tumors of <1 g at the time of castration usually regress to <3 mm in diameter even when they are fated to recur. Both LNCaP (3, 4) and PC-346 (5) are reported to be androgen responsive; however, they regress only slightly, if at all, and only for 3 to 5 weeks after tumor-bearing mice are castrated (3, 5). The decrease in PSA in the blood of castrated mice bearing CWR22 is much greater than has been reported for other prostate cancer xenografts that relapse following regression. PSA provides a very sensitive indication of the growth of CWR22 (6) that is independent of other indicators of tumor growth such as size as measured with calipers.

CWR22R and the relapsed CWR22R provide investigators with an approach to the investigation of prostate cancer that is relatively unique. Differences between CWR22 and the two other prostate cancer xenografts for which relapsed and hormonally responsive variants are available include the marked physical regression of CWR22 that is measurable with calipers for months after castration and the marked drop in PSA in the peripheral blood of animals bearing CWR22 after castration.

Note Added in Proof

The two animals still alive and without evidence of tumor >600 days after castration (Fig. 2) were given sustained release testosterone s.c. 603 and 609 days after castration. One died without tumor 3 weeks later; the other was euthanized with tumor 7 weeks later.
REFERENCES

Cancer Research

CWR22: The First Human Prostate Cancer Xenograft with Strongly Androgen-dependent and Relapsed Strains Both \textit{in Vivo} and in Soft Agar

Moolky Nagabhushan, Casey M. Miller, Theresa P. Pretlow, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/13/3042

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.