Association of Prostate Cancer with Vitamin D Receptor Gene Polymorphism

Jack A. Taylor,1 Ari Hirvonen,2 Mary Watson, Gary Pittman, James L. Mohier, and Douglas A. Bell

Epidemiology Branch [J. A. T.], Laboratory of Biochemical Risk Analysis [A. H., M. W., D. A. B.], National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, and University of North Carolina, Chapel Hill, North Carolina 27599 [G. P., J. L. M.]

Abstract

The incidence of prostate cancer in the United States is second only to skin cancers, and the disease kills almost the same number of men as breast cancer does women. Relatively few risk factors are known for prostate cancer, although several lines of evidence suggest that vitamin D may be an important determinant of prostate cancer risk. A series of common polymorphisms in the vitamin D receptor gene were recently reported to be associated with bone density and risk of osteoporosis (Morrison et al., Nature [Lond.], 367: 284—287, 1994). These genetic variants have been correlated with both circulating levels of active vitamin D hormone and in vitro measures of gene expression (Morrison et al., Nature [Lond.], 367: 284—287, 1994). We tested the hypothesis that vitamin D receptor gene polymorphisms are associated with prostate cancer risk using a case-control study of 108 men undergoing radical prostatectomy and 170 male urology clinic controls with no history of cancer. Among the white control group, 22% were homozygous for the presence of a TaqI RFLP at codon 352 (genotype t), but only 8% of cases had this genotype (P < 0.01). A similar trend was seen among the small number of blacks in this study (13% for controls, 8% for cases), although the difference was not statistically significant. Race-adjusted combined analysis suggests that men who are homozygous for the t allele (shown to correlate with higher serum levels of the active form of vitamin D) have one-third the risk of developing prostate cancer requiring prostatectomy compared to men who are heterozygotes or homozygous for the T allele (odds ratio[1], 0.34; 95% confidence interval, 0.16—0.76; P < 0.01). These results support recent ecological, population, and in vitro studies suggesting that vitamin D is an important determinant of prostate cancer risk and, if confirmed, suggest strategies for chemoprevention of this common cancer.

Introduction

Prostate cancer is a common malignancy worldwide and a dominating one in western countries (1). In the United States, it is the most commonly diagnosed tumor in men and the second most common cause of cancer death in men; the disease strikes and kills almost the same number of men as breast cancer does women (2). Until recently, however, few epidemiological studies have been conducted, and there are scant clues as to etiology and pathogenesis. There are striking differences in prostate cancer incidence rates among racial and ethnic groups, with African-American men displaying the highest incidence of prostate cancer in the world, whereas Japanese and Chinese men have the lowest rates (1).

In the United States, prostate cancer mortality rates exhibit a marked north-south gradient, with higher rates observed in the north (3, 4). This gradient correlates well with ambient levels of UV radiation, giving rise to the hypothesis that low UV exposure may be a risk factor for prostate cancer (3, 4). Most of the body’s supply of vitamin D is synthesized in the skin in response to UV radiation. Vitamin D has potent antitumor properties, and studies have suggested that vitamin D metabolites and analogues may be modifiers of the growth of various cancers (5—11). A recent report suggested a strong relationship between higher serum levels of 1,25-D, the active hormonal form of vitamin D, and decreased risk of developing prostate cancer (12). 1,25-D exerts its activities by binding the VDR (5), a nuclear hormone receptor.

Inherited polymorphisms in the 3’ UTR of the VDR gene correlate with transcriptional activity and mRNA stability in minigene reporter constructs (13). The 3’ UTR polymorphisms (Fig. 1) are in strong linkage disequilibrium with RFLPs located in intron 8 (BsmI) and exon 9 (TaqI) and result in two common haplotypes, BAt and bat (small letters denote a restriction site is present). In a study of 117 subjects, 1,25-D levels were significantly higher among individuals who were homozygous for the BAt haplotype (134 ± 42 pm) compared to individuals who were heterozygous or homozygous for bat haplotype (104 ± 30 pm and 99 ± 40 pm, respectively; P = 0.0008; Ref. 13).

We hypothesized that individuals who are homozygous for the BAt haplotype would be at decreased risk for prostate cancer. In the present study, we determined VDR TaqI genotypes in prostate cancer cases and controls, detecting significantly decreased risk associated with the t allele.

Materials and Methods

A total of 108 consecutive prostatectomy cases (96 white and 12 black) collected at University of North Carolina hospitals were used as the prostate case group. A total of 170 noncancer patients (162 white and 8 black) were enrolled from the Urology Clinics at Duke University Medical Center and the University of North Carolina hospitals. Noncancer control patients were male urology clinic patients, the majority of whom presented with benign prostatic hypertrophy or impotence, who had no history of any cancer other than non-melanoma skin cancer. Blood samples were obtained from both cases and controls, and DNA was extracted using standard methods.

VDR TaqI genotype was determined by a PCR-based method described by Riggs et al. (14). Briefly, a 740-bp fragment was generated using PCR primers (5’-cag agc atg gac agg gag can and 5’ gca act ccc cat ggc tga ggt ctc) located within intron 8 and exon 9. The PCR fragment was subjected to TaqI digestion and then separated on 3% Nusieve 3:1 agarose gels (FMC Bioproducts, Rockland, ME; Fig. 2).

Codon 352 in exon 9 is polymorphic, existing as either ATC or ATT, both of which code for isoleucine, and the C>T change is associated with the loss of a TaqI restriction site. The resulting alleles are designated t (TaqI site present) or T (TaqI site absent), and three possible genotypes result: TT, Tt, and tt. Three banding patterns are observed after digestion of the 740-bp amplification fragment, depending upon genotype (Fig. 2): (a) homozygous absence of the TaqI polymorphism (TT) results in two fragments of 493 bp and 245 bp; (b) homozygous presence of the tt (TaqI polymorphism results in three

Received 6/26/96; accepted 7/31/96.
1 To whom requests for reprints should be addressed, at Mail Drop A3-05, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709.
2 Present address: Laboratory of Cellular and Molecular Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland. A. H. was supported in part by the Finnish Academy of Sciences, the Finnish Cancer Society, and the Finnish Work Environmental Fund.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

3 The abbreviations used are: 1,25-D, 1,25-dihydroxy vitamin D; VDR, vitamin D receptor; UTR, untranslated region; OR, odds ratio; CI, confidence interval; RR, relative risk.
Minigene reporter constructs of the two VDR 3' UTRs, which encompass changes at more than 12 different sites in a 3.2-kb region, suggest that the haplotype corresponding to the t allele has about 140% of the transcriptional activity and mRNA stability of that corresponding to the T allele (13). Despite these findings, it is unclear how higher VDR expression is causally related to circulating ligand (1,25-D) levels, although there may be feedback pathways that link the expression of the receptor to the formation of the active hormone 1,25-D from the inactive precursor. Which of the multiple polymorphisms is actually responsible for altering functional activity has yet to be described. This is particularly important because the linkage disequilibrium between the RFLPs (in intron 8 and exon 9) and the multiple, and presumably functional, changes in the UTR may not exist in all ethnic groups. We had too few blacks in our sample to effectively test this association.

Although too few black prostate cancer patients (n = 12) and noncancer clinic controls were available to allow meaningful analysis of risk, the lower frequency of the tt VDR genotype reported among blacks (17, 18) is consistent with higher prostate cancer rates among blacks compared with whites (1). If the risk associated with VDR genotypes is similar in blacks and whites and the same linkage disequilibrium exists, then VDR genotype frequency differences may explain part of the difference in prostate cancer incidence observed between these groups.

Combined with the published data linking prostate cancer risk with low sunlight exposure (3, 4) and low 1,25-D levels (12), observations that 1,25-D inhibits proliferation and promotes differentiation in prostate cells in culture (8), and recent data that a vitamin D analogue can prevent prostate cancer in an experimental rat model (11), our findings support the hypothesis that vitamin D plays an important role in prostate cancer risk.
prostate cancer. If these findings can be verified, VDR genotype represents an important determinant of prostate cancer risk. Although direct chemoprevention with 1,25-D may not be practical because of adverse effects on calcium homeostasis, other vitamin D congeners may prove useful for primary prevention of this common cancer.

Acknowledgments

We gratefully acknowledge the help of P. Blanton and L. Lansdell in data and sample gathering and analysis. We thank Y. Sharief, C. Robertson, and D. Paulson for providing some samples used in this study and G. Cooper for helpful discussions on the manuscript.

References

Association of Prostate Cancer with Vitamin D Receptor Gene Polymorphism

Jack A. Taylor, Ari Hirvonen, Mary Watson, et al.


Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/56/18/4108

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.