Cyclin-dependent Kinase Inhibitor p27 as a Mediator of the G1-S Phase Block Induced by 1,25-Dihydroxyvitamin D3 in HL60 Cells

Qing Mei Wang, Jennifer B. Jones, and George P. Studzinski

Department of Laboratory Medicine and Pathology, UMD-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103

Abstract

Progression of mammalian cells through G1 is controlled by the concerted action of protein kinases, the activities of which are modulated in both positive (cyclins) and negative (cyclin-dependent kinase inhibitors (CDIs)) manners by families of regulatory proteins. In differentiation of leukemia cells, a G1 arrest is a common, if not invariable, occurrence and takes place after the appearance of markers of monocytic differentiation in human leukemia HL60 cells treated with 1,25 dihydroxyvitamin D3 (1,25D3) at low to moderately high concentrations (F. Zhang et al., Cell Proliferation 27: 643–654, 1994). In the present study, we investigated the protein levels of several G1 regulatory proteins that are potential mediators of the 1,25D3-induced G1 block. During the first 24 h of exposure to a high concentration (4 x 10^{-7} M) of 1,25D3, no increase was noted in the immunodetectable levels of cyclins D1 or E, or CDIs p16^{ink4a}, p21^{cip1/waf1}, or p27^{kip1}, even though monocytic differentiation markers were evident, and a prolongation of G1 was noted. After 48 h of exposure 4 x 10^{-7} M to 1,25D3, a G1 to S-phase block progressively increased in parallel with the abundance of p27^{kip1} CDI. A transient increase in p21^{cip1/waf1} was noted only at 48 hr. The increase in p27^{kip1} protein level was dependent on the concentration of 1,25D3, and was accompanied by an increase in cyclin D and E proteins, which normally peak in mid-G1, and at the G1 to S-phase transition, respectively. These results indicate that p27^{kip1} protein is a strong candidate for the cell cycle regulator that blocks the entry into the S-phase in 1,25D3-treated HL60 cells.

Introduction

Currently, chemotherapy of cancer is based principally on agents that are toxic to the cells. There are indications, however, that induction of cell differentiation may supplement the use of cytotoxic drugs in several forms of neoplasia, such as the successful use of retinoic acid in the treatment of acute promyelocytic leukemia (1) or of oral leukoplakia (2). Interest is also developing in the use of deltanoids (i.e., derivatives of vitamin D3) for the chemoprevention and treatment of human malignancies (3—6). Although it is clear that progression of mammalian cells through G1 is controlled by the concerted action of protein kinases, the activities of which are modulated in both positive (cyclins) and negative (cyclin-dependent kinase inhibitors (CDIs)) manners by families of regulatory proteins. In differentiation of leukemia cells, a G1 arrest is a common, if not invariable, occurrence and takes place after the appearance of markers of monocytic differentiation in human leukemia HL60 cells treated with 1,25 dihydroxyvitamin D3 (1,25D3) at low to moderately high concentrations (F. Zhang et al., Cell Proliferation 27: 643–654, 1994). In the present study, we investigated the protein levels of several G1 regulatory proteins that are potential mediators of the 1,25D3-induced G1 block. During the first 24 h of exposure to a high concentration (4 x 10^{-7} M) of 1,25D3, no increase was noted in the immunodetectable levels of cyclins D1 or E, or CDIs p16^{ink4a}, p21^{cip1/waf1}, or p27^{kip1}, even though monocytic differentiation markers were evident, and a prolongation of G1 was noted. After 48 h of exposure 4 x 10^{-7} M to 1,25D3, a G1 to S-phase block progressively increased in parallel with the abundance of p27^{kip1} CDI. A transient increase in p21^{cip1/waf1} was noted only at 48 hr. The increase in p27^{kip1} protein level was dependent on the concentration of 1,25D3, and was accompanied by an increase in cyclin D and E proteins, which normally peak in mid-G1, and at the G1 to S-phase transition, respectively. These results indicate that p27^{kip1} protein is a strong candidate for the cell cycle regulator that blocks the entry into the S-phase in 1,25D3-treated HL60 cells.

The physiological deltanoid 1,25D3 induces monocytic differentiation in human acute promyelocytic cell line HL60 (8, 9) without associated toxicity and in a manner that resembles hematopoietic stem cell differentiation in that several cell divisions can take place after markers of monocytic differentiation are expressed (10, 11). Furthermore, like some normal macrophages, the quiescent, noncycling, differentiated HL60 cells can reenter the proliferative cycle under appropriate conditions (12, 13). Thus, these properties and the wide use of HL60 cells for studies of neoplastic cell growth make this system an important paradigm for mechanistic studies of differentiation therapy.

The principal block to cell cycle progression in 1,25D3-treated human cells is known to occur in G1 (14, 15). Recently, seemingly conflicting evidence was presented on the role of p21^{cip1/waf1} CDI protein in this block (16, 17). We have therefore studied the 1,25D3-HL60 cell system to determine which of the several candidate cell cycle-controlling proteins is mainly responsible for the G1 block produced by concentrations of 1,25D3, up to 4 x 10^{-7} M, the concentration used by Jiang et al. (16). The results suggest that the accumulation of the CDI protein p27^{kip1} causes the definitive G1 block and also indicate that the block occurs in late G1, most likely at the G1 to S-phase transition.

Materials and Methods

Cell Culture. Human promyelocytic leukemia HL60-G cells, a clone of early-passage HL60 cells (4), were grown in RPMI 1640 (Mediatech, Washington, DC) containing 10% complement-inactivated FCS (HyClone Laboratories, Logan, UT), 100 IU/ml penicillin and streptomycin (Mediatech), and 2 mm L-glutamine (Mediatech) at 37°C in 5% CO2. The cell numbers were counted using a Neubauer hemocytometer (Thomas Scientific Co., Swedesboro, NJ), and cell viability was determined by 0.4% trypan blue exclusion. The experiments were initiated using cultures at a density of 3 x 10^5 cells/ml of fresh medium containing the desired concentrations of 1,25D3 (Hoffmann-LaRoche, Inc., Nutley, NJ) or an equivalent volume of sterile-filtered ethanol, which was the vehicle for 1,25D3.

Determination of Differentiation Markers. The extent of monocytic differentiation induced in HL60-G cells by 1,25D3 was determined by monitoring the NSE activity and the presence of the CD14 surface marker by flow cytometry. The procedure for NSE reaction was described previously (10). To detect the expression of the CD14 cell surface marker, aliquots of 3 x 10^6 HL60 cells were harvested at various time points, centrifuged, and washed twice with 1× PBS. The cell pellet was resuspended in 100 μl of PBS and 0.2 μl of monoclonal antibody specific for CD14, My4 (Coulter Electronics, Hialeah, FL) was added, and the mixture was incubated in the dark at room temperature for 45 min. The excess antibody was washed off with 1× PBS, and the pellet was resuspended in 500 μl of 1× PBS. The cells were analyzed by Epics Profile II flow cytometer (Coulter).

Cell Cycle Distribution. To evaluate the cell cycle profile, 3 x 10^6 cells were washed twice with cold 1× PBS. The cell pellet was resuspended in 1 ml of 1× PBS, and 1 μl of RNase (Boehringer Mannheim, Indianapolis, IN) was added. After a gentle vortexing, the mixture was placed on ice for 30 min. The cells were pelleted after this incubation, washed with 1× PBS, resuspended in propidium iodide (10 μg/ml, containing 0.1 M sodium citrate and 0.1% Triton X-100), and incubated at 4°C for at least 2 h. The cells were analyzed by Epics Profile II flow cytometer (Coulter), and cell cycle parameters were obtained using the Multicycle software package (Phoenix Flow Systems, San Diego, CA).

Preparation of Cell Extracts and Immunoblotting. Whole cell extracts were prepared by lysing 3 x 10^6 cells with extraction buffer (20 mM Tris-HCl-0.25 M sucrose-1 mM phenylmethylsulfonyl fluoride-2 mM EDTA-10 mM EGTA-10 μg/ml leupeptin-2 μg/ml aprotinin). After a brief
sonication, the extracts were ultracentrifuged for 60 min at 42,000 rpm at 4°C. In some experiments, nuclear extracts were also prepared by the procedure of Andrews and Faller (18). The protein concentration was determined by the Bio-Rad protein assay kit (Bio-Rad Laboratories, Richmond, CA). Aliquots of the supernatant were mixed with equal amount of 3X SDS sample buffer (150 mm Tris-30% glycerol-3% SDS-1.5 mg/100 ml-bromophenol blue dye-100 mm DTT) and denatured at 90-100°C for 4 min. Thirty μg of total protein from treatment and control groups were resolved on 13% SDS-PAGE gels (19) along with rainbow-colored protein molecular weight markers (Amersham, Buckinghamshire, England). Gels were transferred to Hybond nylon membranes as described (20). Upon completion of transfer, Porcine S staining was performed to verify that equal amounts of total proteins were present in all the lanes (21). The stain was then washed off, and the blots were blocked with 5% milk (Carnation nonfat dry milk; Carnation Co., Los Angeles, CA) in TBS-T for 1 h. Membranes were washed with three changes of TBS-T for 30 min and incubated with primary antibodies at a dilution of 1:100 to 1:2000 for 1 h at room temperature. After blocking with a primary antibody, the membranes were washed three times and briefly blocked in 5% milk for 10 min. The blocking buffer was then washed off, and the membranes were blotted with an appropriate horseradish peroxidase-linked secondary antibody at 1:2000 dilution for 1 h at room temperature. After final washes in TBS-T, proteins were visualized with a chemiluminescence assay system (Amerham).

Antibodies. Mouse antihuman cyclin E, mouse antihuman p21Cip1/Waf1, mouse antihuman Rb, and rat antihuman cyclin D1 antibodies were purchased from Oncogene Science (Uniondale, NY). Rabbit antihuman p16ink4a and rabbit antihuman p27Kip1 antibodies were purchased from Upstate Biotechnology (Lake Placid, NY). Anti-mouse, antirabbit, and antirat horseradish peroxidase-linked secondary antibodies were purchased from Amersham.

Results

Induction of the Monocytic Phenotype and Cell Cycle Arrest by 1,25D3. It has been shown previously that when HL60-G cells are exposed to 1,25D3 at concentrations of 1 × 10−7 m or lower, the expression of markers of monocytic differentiation can be detected before the onset of the G1 block (11). However, because the induction of CIPI/WAF1 expression in 1,25D3-treated HL60 cells was reported in cultures exposed to 4 × 10−7 m 1,25D3 (16), we asked whether the kinetics of the appearance of these parameters is accelerated at this concentration of the differentiation inducer. In this series of experiments, the expression of the CD14 surface marker of monococyte/macrophage differentiation was markedly elevated after 8 h of exposure to 4 × 10−7 m 1,25D3, and the cytoplasmic enzyme NSE became detectable at about 24 h (Table 1). A higher proportion of cells in G1, apparently at the expense of cells in S phase, was also noted at 8 h of treatment (Table 1), but this proportion of G1 cells did not increase during the first 24 h of 1,25D3 treatment. This indicates a prolongation of the traverse of G1 rather than a block at a restriction point because a block would result in an increasing proportion of cells as they reach the block during the cell cycle traverse. The prolonged G1 produces increased doubling time of 1,25D3-treated cells, but logarithmic growth continues for a variable period of time, as reported previously (4). In the present experiments, a progressively increasing percentage of cells in G1 was noted at 48 h of exposure to 4 × 10−7 m 1,25D3, accompanied by an equally marked reduction of cells in S phase, but with little change in the proportion of cells in G2-M (Table 1). This is consistent with the onset of a G1 to S-phase block at approximately 48 h.

Levels of Immunodetectable CDI Proteins. Several inhibitors of cyclin-dependent kinases have been described that regulate the G1 traverse and the transition into the S phase, as reviewed recently (22, 23). Of these, the mRNA steady-state levels of p21Cip1/Waf1 have been reported to increase within a few hours after the addition of 4 × 10−7 m 1,25D3 to HL60 cells (16). We therefore determined the levels of the p21Cip1/Waf1 protein in HL60 cells exposed to this concentration of 1,25D3 but did not observe immunodetectable protein levels during the first 24 h of 1,25D3 exposure (data not shown). Fig. 1 shows that at 48 h after addition of 1,25D3, p21Cip1/Waf1 was detected, but the induction appeared to be transient, and of lesser intensity than that elicited by 12-o-tetradecanoylphorbol-13-acetate, as reported recently (17). The immunodetectable p16ink4a protein levels were also in low abundance in untreated cells and did not appear to be induced by 1,25D3 (data not shown). In contrast, the levels of p27Kip1 were clearly increased at 48 h, and the increase continued until at least 96 h, at which time the increase was quite marked (Fig. 2). This coincided with the appearance of the G1 block.

Dose Dependence of 1,25D3 Induction of Differentiation Markers. We also examined the effect of 1,25D3 at two lower concentrations on the protein levels of p27Kip1: the G1 cyclin, the activity of which it controls (i.e., cyclins D1 and E); and on the phosphorylation level of pRb because pRb is one of the target proteins of the G1 cyclin-dependent kinase-cyclin complexes (24). The lowest concentration of 1,25D3 used, 10−8 m, had a small but significant (P < 0.05) effect on the differentiation (CD14 = 21.2% at 96 h) and on the cell cycle progression of HL60 cells (G1 = 65.9%, S phase = 24.1% at 96 h). Similarly, this concentration of 1,25D3 elevated the levels of p27Kip1 and of cyclins D1 or E (Fig. 3 A—C) only slightly, whereas the highly phosphorylated form of pRb, typical of the G1 phase (25), appeared essentially unchanged (Fig. 3D and data not shown). However, when the concentration of 1,25D3 was raised to 10−7 m, the levels of p27Kip1, cyclin D1, and cyclin E proteins were markedly increased (Fig. 3 A—C), and only the hypophosphorylated form of pRb was observed (Fig. 3D).

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>12</th>
<th>24</th>
<th>24</th>
<th>48</th>
<th>48</th>
<th>96</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14</td>
<td>1.5 (1.0)</td>
<td>5.4 (3.2)</td>
<td>2.7 (1.3)</td>
<td>42.2 (3.6)</td>
<td>4.7 (2.6)</td>
<td>58.8 (5.1)</td>
<td>1.9 (0.9)</td>
<td>79.2 (3.2)</td>
<td>4.3 (2.1)</td>
<td>88.4 (7.1)</td>
<td>0.7 (0.5)</td>
</tr>
<tr>
<td>NSE</td>
<td>3.2 (0.5)</td>
<td>4.2 (0.5)</td>
<td>4.5 (1.1)</td>
<td>4.8 (1.2)</td>
<td>0.6 (0.1)</td>
<td>2.2 (0.7)</td>
<td>2.2 (0.1)</td>
<td>3.0 (0.3)</td>
<td>5.0 (2.1)</td>
<td>79.8 (9.7)</td>
<td>4.4 (1.3)</td>
</tr>
<tr>
<td>G1</td>
<td>40.5 (3.1)</td>
<td>39.9 (0.7)</td>
<td>42.6 (2.1)</td>
<td>51.3 (6.1)</td>
<td>40.4 (3.1)</td>
<td>51.6 (2.7)</td>
<td>43.4 (3.9)</td>
<td>51.2 (1.6)</td>
<td>45.5 (1.6)</td>
<td>64.2 (1.8)</td>
<td>48.7 (1.4)</td>
</tr>
<tr>
<td>G2-M</td>
<td>11.7 (1.3)</td>
<td>12.5 (2.1)</td>
<td>11.1 (0.4)</td>
<td>9.4 (1.6)</td>
<td>11.8 (2.8)</td>
<td>11.9 (0.9)</td>
<td>11.0 (2.6)</td>
<td>9.5 (2.6)</td>
<td>7.8 (1.0)</td>
<td>7.3 (1.7)</td>
<td>10.7 (0.9)</td>
</tr>
</tbody>
</table>

Table 1 Kinetics of the induction of differentiation markers and of the cell cycle prolongation and block by 1,25D3

Fig. 1. Immunoblot analysis of p21Cip1/Waf1 protein abundance in HL60-G cells treated with 1,25D3 or TPA for the indicated times in hours. M, size marker proteins, the size of which is shown in thousands; C, untreated cells exposed to ethanol vehicle; D, cells treated with 4 × 10−7 m 1,25D3 for the times shown; T, cells treated with 30 μM TPA for 19 h.

Downloaded from cancerres.aacrjournals.org on January 27, 2018. © 1996 American Association for Cancer Research.
Discussion

The G$_1$ block in HL60 cells exposed to high concentrations of 1,25D$_3$ becomes pronounced at 48 h and is essentially maximal 96 h after the addition of this steroid hormone (Table 1). At this time, a marked increase in the cellular content of p27$^{	ext{Kip1}}$ is also observed (Fig. 2), supporting the hypothesis that the CDI p27$^{	ext{Kip1}}$ protein is one of the principal mediators of the antiproliferative action of 1,25D$_3$ on HL60 cells.

Recent publications have linked the up-regulation of the Cipi/Wafi gene to HL60 cell differentiation (16, 17, 26). A marked rise in p21$^{	ext{Cip1/Waf1}}$ mRNA levels was reported to take place as an immediate early response to multiple differentiation-inducing agents, including a high concentration (4 × 10$^{-7}$ M) of 1,25D$_3$ (16, 26). However, another group using an even higher concentration of 1,25D$_3$ (1.25 × 10$^{-5}$ M), failed to detect induction of p21$^{	ext{Cip1/Waf1}}$ at either the protein or the mRNA level (17). Although different methodologies cannot be excluded as the reason for these conflicting results, HL60 cells are subject to development of new characteristics in long-term culture (e.g. Refs. 4, 27), so different laboratories often have different sublines. In our experiments, the induction of p27$^{	ext{Kip1}}$, but not of p21$^{	ext{Cip1/Waf1}}$, correlates with the onset of the definitive G$_1$ to S-phase block.

The data also show that the cellular content of cyclins D1 and E is increased, although the cells cease to traverse G$_1$ (Fig. 3). This strengthens the notion that 1,25D$_3$ exerts its antiproliferative effect not by forcing cell quiescence in G$_0$ but by the activation of CDIs, principally p27$^{	ext{Kip1}}$ aided by p21$^{	ext{Cip1/Waf1}}$ and perhaps other kinase inhibitors, which poised the cell in late G$_1$. This may account for the reversibility of 1,25D$_3$-induced differentiation (12, 13). The upstream events that up-regulate the KIP1 gene or unmask the preexisting
Acknowledgments

We thank Dr. Milan Uskokovic (Hoffmann-LaRoche) for the gift of 1,25D3, Howard Wajchman for help with tissue culture, and Fan Zhang for assistance in computations.

References

intracellular p27Kip1 protein present an interesting area for future investigation.
Cyclin-dependent Kinase Inhibitor p27 as a Mediator of the G₁-S Phase Block Induced by 1,25-Dihydroxyvitamin D₃ in HL60 Cells

Qing Mei Wang, Jennifer B. Jones and George P. Studzinski

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/2/264

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/56/2/264. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.