Oxidative DNA Damage and Apoptosis Induced by Benzene Metabolites

Yusuke Hiraku and Shosuke Kawanishi

ABSTRACT

Benzene is a widely recognized human carcinogen. The mechanism of DNA damage induced by major benzene metabolites, 1,4-benzozquinone (1,4-BQ) and hydroquinone (1,4-HQ), was investigated in relation to apoptosis and carcinogenesis. Pulsed-field gel electrophoresis showed that cellular DNA strand breakage was induced by benzene metabolites. internucleosomal DNA fragmentation and morphological changes of apoptotic cells were observed at higher concentrations of benzene metabolites. Flow cytometry showed an increase of peroxides in cultured cells treated with benzene metabolites. 1,4-BQ induced these changes at a much lower concentration than 1,4-HQ. Damage to DNA fragments obtained from the c-Ha-ras-1 proto-oncogene was investigated by a DNA sequencing technique. 1,4-BQ + NADH and 1,4-HQ induced pipertime-labile sites frequently at thymine residues in the presence of Cu(I). Catalase and bathocuproine, which inhibit DNA damage, suggesting that H2O2 reacts with Cu(I) to produce active species causing DNA damage. Electron spin resonance studies showed that semiquinone radical was produced by benzene metabolites. These results suggest that these benzene metabolites cause DNA damage through H2O2 generation in cells, preceding internucleosomal DNA fragmentation leading to apoptosis. The fate of the cells to apoptosis or mutation might be dependent on the intensity of DNA damage and the ability to repair DNA.

INTRODUCTION

Benzene, widely used in chemical industry, has been shown to cause hematological disorders and carcinogenic effects in humans and animals. Exposure to benzene causes leukemia, lymphoma, and carcinomas of mammary gland and liver in humans and animals (1-5). Sister chromatid exchanges (1, 2, 6, 7) and chromosomal loss and breakage (8) were demonstrated in mice. However, benzene has not caused hematological disorders and carcinogenic effects in humans and cells in vitro and the bone marrow of mice in vivo (13). It is noteworthy that a significant correlation was observed between urinary 8-OH-dG and benzene exposure in humans (14). Thus, previous studies have suggested the participation of active oxygen species in benzene metabolite-induced DNA damage. However, the mechanism of cellular DNA damage through the generation of active oxygen species remains to be clarified.

Apoptosis contributes to the pathogenesis of a number of diseases, including cancer (15). Cell death in response to DNA damage, in most instances, has been shown to result from apoptosis (15, 16). Apoptosis is induced by many cytotoxic chemicals and ionizing radiation and characterized by morphological and biochemical changes such as chromatin condensation, nuclear fragmentation, formation of apoptotic bodies, and DNA fragmentation at internucleosomal sites.

To study the mechanism of benzene carcinogenicity, we investigated DNA damage induced by benzene metabolites 1,4-BQ and 1,4-HQ in relation to apoptosis and carcinogenesis. DNA strand breaks in human cultured cells were investigated with pulsed-field gel electrophoresis. Internucleosomal DNA fragmentation and morphological changes of apoptotic cells were examined. The cells treated with benzene metabolites were analyzed to detect intracellular generation of peroxides by flow cytometry. To investigate the mechanism of cellular DNA damage, we examined the DNA damage induced by benzene metabolites in the presence of NADH and metal ions using 32P-end-labeled DNA fragments obtained from the human c-Ha-ras-1 proto-oncogene. NADH was used because the biological importance of NADH has been described (17), and some chemicals are nonenzymatically reduced by NADH (18, 19). Free radicals derived from benzene metabolites were identified by ESR spectrometry.

MATERIALS AND METHODS

Materials. Restriction enzymes (Aval and PstI) and T4 polynucleotide kinase were purchased from New England Biolabs. [y-32P]ATP (222 TBq/mm) was from DuPont New England Nuclear. 1,4-BQ was from Nacalai Tesque, Inc. (Kyoto, Japan). 1,4-HQ was from Aldrich Chemical Co. (Milwaukee, WI). Proteinase K was from Boehringer Mannheim GmbH. DCDF-DA was from Molecular Probes, Inc. Glucose oxidase was from Toyobo Co. (Osaka, Japan). DTPA and bathocuproinedisulfonic acid were from Dojin Chemical Co. (Kumamoto, Japan). SOD (3,000 units/mg from bovine erythrocytes) and catalase (45,000 units/mg from bovine liver) were from Sigma Chemical Co. Mn(III)-PP, was prepared according to Archibald and Fridovich (20).

Detection of Cellular DNA Damage by Pulsed-Field Gel Electrophoresis. HL60 cells were grown in RPMI 1640 (Life Technologies, Inc., Grand Island, NY) supplemented with 6% FCS (Whittaker Bioproducts) at 37°C. For the determination of DNA strand breaks, cells (1 × 10⁶ cells/ml) were incubated with either 1,4-BQ or 1,4-HQ in 2.5 ml of RPMI 1640 containing 6% FCS for 4 h at 37°C. After the incubation, the medium was removed, and the cells were washed twice with PBS and resuspended in 65 μl PBS. The cell suspension was solidified with agarose, followed by treatment with proteinase K according to the method described previously (21). Electrophoresis was performed in 0.5 × Tris-borate EDTA buffer (45 mm Tris, 45 mm boric acid, and 1 mm EDTA (pH 8.0)) by a CHEF-Mapper pulsed-field gel electrophoresis system (Bio-Rad) at 200 V at 14°C. Switch time was 60 s for 15 h, followed by a 90-s switch time for 9 h. DNA in the gel was visualized in ethidium bromide.

Detection of DNA Ladder Formation Induced by Benzene Metabolites. HL60 cells (1 × 10⁶ cells/ml) were incubated with either 1,4-BQ or 1,4-HQ in 2.5 ml of RPMI 1640 supplemented with 6% FCS for 4 h at 37°C. After the incubation, the medium was removed, and the cells were washed twice with PBS and resuspended in 65 μl PBS. The cells were suspended in 1 ml of cytoplasm extraction buffer (10 mm Tris (pH 7.5), 150 mm NaCl, and 5 mm MgCl₂ in 0.5% Triton X-100) and centrifuged. The pellet was treated with lysis buffer (10 mm Tris (pH 7.5), 400
mm NaCl, and 1 mM EDTA in 1% Triton X-100) for 10 min and centrifuged at 4°C. The supernatant was treated with 0.2 mg/ml RNase overnight at room temperature and subsequently treated with 0.1 mg/ml proteinase K for 2 h at 37°C. The DNA was extracted with phenol-chloroform and subsequently extracted with water-saturated ether. Then, the DNA was precipitated with ethanol for 30 min at −90°C. The pellet was dissolved in 40 μl of Tris-EDTA buffer [10 mM Tris-HCl (pH 8.0) and 1 mM EDTA]. DNA was electrophoresed on a 1.4% agarose gel containing 0.375 μg/ml ethidium bromide in 0.5 × Tris-borate EDTA buffer.

Flow Cytometric Detection of Peroxides in Cultured Cells Treated with Benzene Metabolites. HL60 cells (1 × 10⁶ cells/ml) were incubated with either 1,4-BQ or 1,4-HQ in RPMI 1640 containing 6% FCS for 3.5 h at 37°C. DCFH-DA, a sensitive fluorimetric probe of peroxides (22, 23), was dissolved in borate EDTA buffer.

Detection of DNA Damage Using c-Ha-ras-1 Fragments. DNA fragments were prepared from plasmid pbcN1, which carries a 6.6-kb BamHI chromosomal DNA segment containing human c-Ha-ras-1 proto-oncogene (24, 25). The singly labeled 98-bp fragment (AscI* 2247—PstI 2344) and 337-bp fragment (PstI 2345_Aval* 2681) were obtained according to the method described previously (24, 25). The asterisk indicates 32P-labeling, and nucleotide numbering starts with the BamHI site (26).

The standard reaction mixture in a microtube (1.5-ml Eppendorf) contained benzene metabolite, a 32P-labeled DNA fragment, and sonicated calf thymus DNA (10 μM/base) in 200 μl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 μM DTPA. After incubation at 37°C, the DNA fragments were heated at 90°C in 1 ml piperidine for 20 min where indicated and treated as described previously (24, 25).

The preferred cleavage sites were determined by direct comparison of the positions of the oligonucleotides with those produced by the chemical reactions of the Maxam-Gilbert procedure (27) using a DNA sequencing system (LKB 2010 Macrophor). A laser densitometer (LKB 2222 UltroScan XL) was used for measurement of the relative amounts of oligonucleotides from the treated DNA fragments.

RESULTS

Detection of Free Radicals Derived from Benzene Metabolites with ESR Spectroscopy. ESR spectra were recorded to detect free radicals derived from benzene metabolites. The reaction mixture containing 500 μM 1,4-BQ or 1,4-HQ in 10 mM sodium phosphate buffer (pH 7.8) was incubated for 1 min at 25°C. In certain experiments, NADH (1 mM) or CuCl₂ (20 μM) was added to the mixture. The spectra were measured at 25°C using a JES- FE-3XG spectrometer (JEOL, Tokyo, Japan) with 100-kHz field modulation. The spectra were recorded with a microwave power of 16 mW and a modulation amplitude of 1.0 G. No spin-trapping agent was used.

Detection of DNA Damage in Cultured Cells Treated with Benzene Metabolites. Fig. 1 shows DNA strand breakage in cultured cells treated with benzene metabolites, detected by pulsed-field gel electrophoresis. Weak DNA strand breakage to produce 1—2-Mb DNA fragments was induced by 1—2 μM 1,4-BQ and 10—20 μM 1,4-HQ. The apparent production of 1—2-Mb and 50-kb DNA fragments was observed at 5 μM 1,4-BQ and 50 μM 1,4-HQ. The formation of 50-kb fragments was increased at 10 μM 1,4-BQ. A 50-kb DNA fragment disappeared at 100 μM 1,4-HQ, probably due to necrosis. These results reveal that 1,4-BQ caused cellular DNA damage more efficiently than 1,4-HQ.

DNA Ladder Formation and Apoptotic Changes in Cultured Cells Treated with Benzene Metabolites. Fig. 2 shows DNA ladder formation in cells treated with benzene metabolites. The DNA ladder was slightly induced by 5 μM 1,4-BQ and 20 μM 1,4-HQ, and apparent fragmentation was induced by 10 μM 1,4-BQ and 50 μM 1,4-HQ. DNA fragments disappeared at 100 μM 1,4-HQ, probably due to necrotic changes.

Apoptotic cells, identified by chromatin condensation and nuclear fragmentation, were observed frequently in cells treated with 5 μM 1,4-BQ and 50 μM 1,4-HQ (data not shown).

Production of Intracellular Peroxides from Benzene Metabolites. Fig. 3 shows flow cytometric distribution of cells treated with benzene metabolites or glucose oxidase, an enzyme to catalyze H₂O₂.
1,4-BQ did not cause DNA damage (Fig. 4), suggesting the requirement of NADH and Cu(II) for 1,4-BQ-induced DNA damage. DNA damage was enhanced by piperidine treatment (Fig. 5A, Lanes 3 and 6), suggesting that 1,4-BQ caused not only DNA strand breakage but also base modification and/or liberation. 1,4-HQ + Cu(II) induced DNA damage (Fig. 5B), but 1,4-HQ alone did not (data not shown). 1,4-BQ and 1,4-HQ caused little or no DNA damage in the presence of other metal ions [Mn(II), Mn(III), Fe(II), and Fe(III)].

Effects of Scavengers and Bathocuproine on DNA Damage by Benzene Metabolites. The effects of scavengers and bathocuproine, a Cu(I)-specific chelator, on DNA damage by 1,4-BQ and 1,4-HQ were investigated (28). OH scavengers ethanol, mannitol, and sodium formate only weakly inhibited DNA damage induced by 1,4-BQ in the presence of NADH and Cu(II) (Fig. 6, Lanes 2–4). Catalase (Lane 5) did not inhibit DNA damage under these conditions.

Damage to 32P-labeled DNA Fragments Induced by Benzene Metabolites in the Presence of NADH and Cu(II). Fig. 4 shows the autoradiogram of 32P-labeled DNA fragments incubated with 1,4-BQ in the presence of NADH and Cu(II). The reaction mixture contained the 32P-5'-end-labeled 337-bp DNA fragment, 10 μM 1,4-BQ, 250 μM NADH, and 20 μM CuCl2 in 200 μl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 μM DTPA. The mixture was incubated for the indicated durations at 37°C. DNA fragments were treated with 1 μl piperidine for 20 min at 90°C and then electrophoresed on an 8% polyacrylamide/8 M urea gel. The autoradiogram was obtained by exposing X-ray film to the gel.

Fig. 4. Autoradiogram of 32P-labeled DNA fragments incubated with 1,4-BQ in the presence of NADH and Cu(II). The reaction mixture contained the 32P-5'-end-labeled 337-bp DNA fragment, 10 μM 1,4-BQ, 250 μM NADH, and 20 μM CuCl2 in 200 μl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 μM DTPA. The mixture was incubated for the indicated durations at 37°C. DNA fragments were treated with 1 μl piperidine for 20 min at 90°C and then electrophoresed on an 8% polyacrylamide/8 M urea gel. The autoradiogram was obtained by exposing X-ray film to the gel.

Fig. 5. Effects of concentration on DNA damage by 1,4-BQ and 1,4-HQ. The reaction mixture contained the 32P-5'-end-labeled 337-bp DNA fragment, 50 μM 1,4-BQ, 250 μM NADH, and 20 μM CuCl2 in 200 μl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 μM DTPA. The mixture was incubated for 20 min at 37°C. DNA fragments were treated with 1 μl piperidine for 20 min at 90°C and then electrophoresed on an 8% polyacrylamide/8 M urea gel. The autoradiogram was obtained by exposing X-ray film to the gel.

Fig. 3. Flow cytometric fluorescence distributions of cultured cells treated with benzene metabolites. HL60 cells were treated with either 1,4-BQ or 1,4-HQ for 3.5 h at 37°C, and 5 μM DCFH-DA were added to the medium, followed by incubation for 30 min at 37°C. The cells were analyzed with a flow cytometer (FACScan). A, control. B, cells treated with 0.0005 units/ml glucose oxidase. C, cells treated with 1 μM 1,4-BQ. D, cells treated with 10 μM 1,4-HQ. Abscissa, relative fluorescence intensity; ordinate, cell number. Distributions of the fluorescence intensity of the control are also shown in B, C, and D.

Fig. 6. Effect of scavengers and bathocuproine on DNA damage by 1,4-BQ and 1,4-HQ. The reaction mixture contained the 32P-5'-end-labeled 337-bp DNA fragment, 10 μM 1,4-BQ, 250 μM NADH, and 20 μM CuCl2 in 200 μl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 μM DTPA. The mixture was incubated for 20 min at 90°C and then electrophoresed on an 8% polyacrylamide/8 M urea gel. The autoradiogram was obtained by exposing X-ray film to the gel.

Generation from glucose, and subsequently treated with DCFH-DA, a probe to detect intracellular production of peroxides (22, 23). The cells treated with glucose oxidase were used as positive control and showed a significant increase in fluorescence intensity. Treatment with 1 μM 1,4-BQ and 10 μM 1,4-HQ showed increases in fluorescence intensity (Fig. 3), suggesting that intracellular production of H2O2 and other peroxides was increased by benzene metabolites.

Damage to 32P-labeled DNA Fragments Induced by Benzene Metabolites in the Presence of NADH and Cu(II). Fig. 4 shows the autoradiogram of DNA damage induced by 1,4-BQ. 1,4-BQ caused DNA damage in the presence of both NADH and Cu(II). The intensity of DNA damage increased with time (Fig. 4) and the concentration of benzene metabolites (Fig. 5A). In the absence of NADH and/or Cu(II),
Site Specificity of DNA Damage by Benzene Metabolites. Fig. 7 shows the patterns of DNA strand breaks induced by benzene metabolites in the presence of Cu(II). The relative intensity of DNA cleavage obtained by scanning autoradiogram with laser densitometer is shown in Fig. 8. 1,4-BQ induced piperidine-labile sites frequently at thymine residues adjacent to guanine residues, especially in the 5'-GTC-3' sequence in the presence of NADH and Cu(II) (Fig. 8), although there remains a possibility that certain base damage might be over- or underrepresented, depending on its sensitivity to piperidine. 1,4-HQ showed similar patterns of DNA cleavage sites (Fig. 7).

Production of Free Radicals from Benzene Metabolites. Fig. 9 shows ESR spectra of radicals generated by benzene metabolites. 1,4-BQ + NADH shows the formation of a 1:4:6:4:1 quintet spectrum with \(a_H = 2.3 \, \text{G} \), reasonably assigned to the semiquinone radical (28). 1,4-BQ alone and 1,4-BQ + Cu(II) did not produce the signal. 1,4-HQ alone produced the signal of the semiquinone radical, and addition of Cu(II) increased the signal. These results suggest that the semiquinone radical is generated by NADH-mediated 1,4-BQ reduction and 1,4-HQ autoxidation.

DISCUSSION

In the present study, DNA damage induced by benzene metabolites was examined in relation to apoptosis and carcinogenesis. Pulsed-field gel electrophoresis showed that benzene metabolites induced cellular DNA strand breakage. Production of 1–2-Mb DNA fragments was observed at 1–2 \(\mu \text{M} \) 1,4-BQ and 10–20 \(\mu \text{M} \) 1,4-HQ. Moreover, 5–10 \(\mu \text{M} \) 1,4-BQ and 50 \(\mu \text{M} \) 1,4-HQ produced 50-kb DNA fragments. DNA ladder and apoptotic changes were observed at 5 \(\mu \text{M} \) 1,4-BQ and 50 \(\mu \text{M} \) 1,4-HQ. Flow cytometry showed an increase in the generation of peroxides in cells treated with 1 \(\mu \text{M} \) 1,4-BQ and 10 \(\mu \text{M} \) 1,4-HQ. These results suggest that benzene metabolites generate intracellular peroxides, mainly \(\text{H}_2\text{O}_2 \), causing the DNA strand break to produce 1–2-Mb DNA fragments and subsequently 50-kb fragments, preceding endonuclease-catalyzed internucleosomal DNA fragmentation and resulting in apoptosis. Furthermore, it is suggested that lower concentrations of benzene metabolites induce carcinogenesis rather than apoptosis through DNA damage. The fates of the cells exposed to benzene metabolites—mutation or apoptosis—depend on their concentrations and the intensity of DNA damage (Fig. 10).

To clarify the mechanism of cellular DNA damage induced by benzene metabolites, we investigated the damage to DNA fragments obtained from the c-Ha-ras-1 proto-oncogene. 1,4-BQ required both NADH and Cu(II) for DNA damage, whereas 1,4-HQ required only Cu(II). The inhibitory effects of catalase and bathocuproine on DNA damage indicate the involvement of \(\text{H}_2\text{O}_2 \) and Cu(I). Low concentrations of SOD enhanced DNA damage, especially by 1,4-HQ + Cu(II). This effect can be explained by SOD-accelerated oxidation of 1,4-HQ (29). Because typical -OH scavengers showed only weak inhibitory effects on DNA damage, active species other than \(-\text{OH}\) might have played an important role. Cu(II)-mediated DNA damage by 1,4-BQ + NADH was frequently induced at thymine residues adjacent to guanine residues, especially in the 5'-GTC-3' sequence. The pattern of DNA cleavage induced by 1,4-HQ resembled that induced by 1,4-BQ. Relevantly, several papers showed that the reaction of \(\text{H}_2\text{O}_2 \) with Cu(II) causes DNA damage with a site-specificity for thymine residues (28, 30–32). This supports the involvement of active oxygen species generated from \(\text{H}_2\text{O}_2 \) and Cu(II) other than \(-\text{OH}\), which causes DNA cleavage at any nucleotide with little site-specificity (33, 34).

A possible mechanism of DNA damage induced by benzene metabolites in the presence of NADH and Cu(II) is proposed as shown in Fig. 10. NADH-mediated reduction of 1,4-BQ and autoxidation of 1,4-HQ produce the semiquinone radical. The formation of the semiquinone radical was confirmed by a quintet ESR spectrum with...
DNA DAMAGE AND APOPTOSIS BY BENZENE METABOLITES

Fig. 8. Site-specificity of DNA cleavage induced by 1,4-BQ in the presence of NADH and Cu(II). The reaction mixture contained the 32P-5'-end labeled 337-bp fragment (PstI 2345–Aval* 2681; A) or the 98-bp fragment (Aval* 2247–PstI 2344; B), 10 µm/base of sonicated calf thymus DNA, 20 µM 1,4-BQ, 250 µM NADH, and 20 µM CuCl$_2$ in 200 µl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 mM DTPA. The mixture was incubated for 20 min at 37°C. DNA fragments were treated with 1 M piperidine for 20 min at 90°C and then electrophoresed on an 8% polyacrylamide/8 M urea gel. The autoradiogram was obtained by exposing X-ray film to the gel. The relative amounts of DNA fragments were measured by scanning the autoradiogram with a laser densitometer (LKB 2222 UltroScan XL). Abscissa, nucleotide number of human c-Ha-ras-1 proto-oncogene starting with the BamHI site (26).

Fig. 7. Autoradiogram showing site-specificity of DNA cleavage by benzene metabolites + Cu(II). The reaction mixture contained the 32P-5'-end-labeled 337-bp fragment (PstI 2345–Aval* 2681), 10 µm/base of sonicated calf thymus DNA, either 20 µM 1,4-BQ + 250 µM NADH or 20 µM 1,4-HQ, and 20 µM CuCl$_2$ in 200 µl of 10 mM sodium phosphate buffer (pH 7.8) containing 5 mM DTPA. The mixture was incubated for 20 min at 37°C. DNA fragments were treated with 1 M piperidine for 20 min at 90°C and analyzed by the method described in the legend to Fig. 4. Lanes G + A and T + C, patterns obtained for the same fragment cleaved by the methods of Maxam and Gilbert (27). Control did not contain benzene metabolite, NADH, and CuCl$_2$.

$a_t = 2.3 \text{ G}^{(28)}$. However, the semiquinone radical is not a main active species causing DNA damage because Cu(I) was required for DNA damage, whereas the semiquinone radical was formed by 1,4-BQ + NADH in the absence of copper. It is speculated that the NAD radical was formed by the reaction of NADH with 1,4-BQ. Recently, it was reported that the NAD radical was detected using ESR and mass spectrometry (18). The reactions of semiquinone and NAD radicals with O$_2$ yield O$_2^{2-}$, which is dismutated to generate H$_2$O$_2$. Cu(II) is reduced to Cu(I) by the reaction with O$_2^{2-}$, and H$_2$O$_2$ reacts with Cu(I) to form the active species causing DNA damage. Thus, the NADH-dependent redox cycle of 1,4-BQ generates active oxygen species and mediates DNA damage.

The biological importance of NADH as a nuclear reductant has
02 O2'—@ H2O2

DNA DAMAGE AND APOPTOSIS BY BENZENE METABOLITES

been described (17). The possibility that some chemicals are nonenzymatically reduced by NADH in vivo has been shown (18, 19). NADH can be a source of endogenous reductant, resulting in oxidative DNA damage. The present study showed that 1,4-BQ induced a cellular DNA strand break and apoptotic changes at a much lower concentration than 1,4-HQ, indicating that 1,4-BQ has greater potential to cause cellular DNA damage and apoptosis. The NADH-dependent redox cycle is considered to be important to explain the higher potentiality of 1,4-BQ because 100–200 μM of NAD(P)H are contained in certain tissues (35) and NAD(P)H may play very important roles as a reductant.

Copper occurs in the mammalian cell nucleus and may contribute to high-order chromatin structures (36). Copper ions bind to nonhistone proteins and caused much stronger ascorbate-mediated DNA damage than iron (37). Copper-mediated production of active oxygen species and DNA damage are reported (12, 38, 39). Therefore, the copper-dependent DNA damage by benzene metabolites is of interest in connection with these observations.

Many studies have shown cytotoxicity and genotoxicity of benzene (1–7). The generation of active oxygen species from benzene metabolites has been discussed in relation to benzene carcinogenicity. Our previous reports showed that benzene metabolites 1,2,4-benzenetriol and 1,4-HQ caused DNA damage mediated by active oxygen species (11), and 1,2,4-benzenetriol produced 8-OH-dG in the presence of metal ions (12). The hypothesis we proposed that benzene metabolites produce active oxygen species to cause DNA damage has been supported by the following reports: (a) DNA damage mediated by active oxygen species was caused by 1,4-HQ in the presence of Cu(II) (28); (b) benzene metabolites produced 8-OH-dG in vitro and in vivo (13); (c) a significant correlation between benzene exposure and urinary 8-OH-dG was observed in humans (14); and (d) benzene administration produced active oxygen species in the bone marrow of rats (40). Therefore, the importance of active

Fig. 9. ESR spectra of radicals generated from benzene metabolites. The reaction mixture, which contained 500 μM benzene metabolite and 5 μM DTPA in 10 mM phosphate buffer (pH 7.8), was kept for 1 min at 25°C, and the spectrum was measured. Where indicated, NADH (1 mM) or CuCl2 (20 μM) was added to the mixture. No spin-trapping agent was added.

Fig. 10. Proposed mechanism of DNA damage, apoptosis, and carcinogenesis induced by benzene metabolites in the presence of NADH and Cu(II).
oxygen species for DNA damage and carcinogenesis induced by benzene metabolites has been confirmed.

The relationship among DNA damage, apoptosis, and carcinogenesis attracts our interests. DNA damage induces the production of p53 protein, the activation of protease, and the subsequent activation of endonucleases to catalyze DNA fragmentation at internucleosomal sites, leading to apoptosis (15). The present study suggested that benzene metabolites generated active oxygen species to induce a cellular strand break preceding apoptosis. This proposed two fates of the cells with DNA damage; one is apoptosis, and the other is mutation leading to carcinogenesis. The cells that incur strong DNA damage and undergo apoptosis are no longer candidates for producing cancer cells. When weak DNA damage was induced, the cellular response allows repair of the damage. However, if the damage failed to be repaired, mutagenic lesions could be propagated and might lead to carcinogenesis. The fates of the cells might be dependent on the intensity of the DNA damage and the ability to repair DNA.

REFERENCES

Oxidative DNA Damage and Apoptosis Induced by Benzene Metabolites

Yusuke Hiraku and Shosuke Kawanishi

Cancer Res 1996;56:5172-5178.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/22/5172

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.