Loss of H19 Imprinting in Esophageal Cancer

Kenji Hibi, Hajime Nakamura, Atsushi Hirai, Yoshihiro Fujikake, Yasushi Kasai, Seiji Akiyama, Katsuki Ito, and Hiroshi Takagi

Second Department of Surgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466, Japan

Abstract

Recent articles have reported that loss of imprinting (LOI) of the endogenous gene H19 was frequently found in lung cancer and choriocarcinoma, common adulthood cancers. Consequently, we examined the status of genomic imprinting of H19 in 29 esophageal and 48 colorectal cancer specimens, and studied its relation to the expression of H19. Of 12 esophageal cancer specimens heterozygous for the RsaI polymorphism, 6 (50%) exhibited LOI of H19, but none of the 18 colorectal cancer specimens heterozygous for the RsaI polymorphism exhibited LOI of H19. The present study suggests that LOI of H19 may play an important role in the pathogenesis of esophageal cancer. Moreover, H19 expression was frequently abundant in both cancers, and all 6 esophageal cancers carried LOI with overexpressed H19. Therefore, this overexpression of H19 seems to be an important phenomenon for the development of esophageal and colorectal cancer cells.

Introduction

Genomic imprinting is a parental origin-specific chromosomal modification that causes differential expression of maternal and paternal genes. H19 is an endogenous gene showing maternal-specific monoallelic expression on 11p15 (1). H19 is one of the most abundant mRNAs in the fetus and the placenta, and presumably acts as an RNA molecule; the H19 gene does not code for a protein (2–4). Recent articles have reported that LOI of H19 was identified to be frequent not only in childhood tumors such as Wilms' tumor and hepatoblastoma (5, 6) but also in lung cancer and choriocarcinoma, common adulthood cancers (7, 8). LOI may be an example of gene activation by overexpression of the growth promoter, in that a disturbance of lesions (10, 11). On the contrary, LOI in hepatoblastoma was not observed as heterozygotes for the RsaI polymorphism, 6 (50%) exhibited LOI of H19, but none of the 18 colorectal cancer specimens heterozygous for the RsaI polymorphism using PCR amplification of genomic DNA followed by complete digestion with 10 units RsaI and electrophoresis on a 2% agarose ethidium bromide gel. The PCR amplification consisted of 35 cycles (94°C for 1 min, 65°C for 3 min, and 72°C for 4 min) after the initial denaturation step (94°C for 5 min). The primers used were: S1 (sense), 5'-TACAACACTGCACTACCTG and AS2 (antisense), 5'-TGGAAATTGTGCAAGGCTGCT. Informative samples were further analyzed for allele-specific expression using PCR products of the first-strand cDNA, as described above. First-strand cDNA synthesis and subsequent PCR amplification were performed as described previously (12). In heterozygotes, RsaI digestion of PCR products of first-strand cDNA yielded 575-bp and 407 + 168-bp fragments, which were slightly smaller than those observed in the analysis of genomic DNAs because of the presence of an 80-bp intron. All patterns were reproducible in each repeated assay.

Northern Blot Analysis. Ten μg total RNA were electrophoresed on a 1% agarose gel containing formaldehyde and transferred to a Gene Screen (Du- pont), as described previously (13). It was then consecutively hybridized with the H19 and β-actin probes. The H19 probe was generated by reverse transcription-PCR using primers S1 and AS2, as described above. A human β-actin probe was used as an internal control (14). Using appropriate exposure of the autoradiograms, the signal intensity was determined by computer software, NIH image.

Results and Discussion

We examined the status of genomic imprinting of the H19 gene in 29 esophageal and 48 colorectal cancer specimens by reverse transcription-PCR analysis using an RsaI polymorphism in the last exon. Of 12 cases identified as heterozygotes for the RsaI polymorphism, 6 (50%) exhibited LOI of H19 (Fig. 1). In marked contrast, 0 of the 18 colorectal cancer specimens heterozygous for the RsaI polymorphism exhibited LOI of H19 (Fig. 1). We also examined whether there are changes in imprinting of IGF2, which is another imprinting gene and often coordinately regulated with H19, in these esophageal cancer specimens. No specimens exhibited LOI of IGF2 according to cancerous change. So we think that alteration of H19 is an independent phenomenon from the status of IGF2 in esophageal cancers (data not shown).

We performed Northern blot analysis to investigate the difference of the H19 expression level between normal and tumor samples. Of the 16 esophageal and 48 colorectal cancer samples, the expression of

Received 11/9/95; accepted 12/13/95.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported in part by the Ministry of Education, Science, and Culture, Japan.

1 To whom requests for reprints should be addressed.
2 The abbreviation used is: LOI, loss of imprinting.

[CANCER RESEARCH 56, 480–482. February 1, 1996]
Esophageal Cancer

<table>
<thead>
<tr>
<th>N</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>575 bp</td>
<td>407 bp</td>
</tr>
<tr>
<td>Case E10</td>
<td>Case E22</td>
</tr>
<tr>
<td>Case E23</td>
<td>Case E26</td>
</tr>
<tr>
<td>Case E27</td>
<td>Case E33</td>
</tr>
</tbody>
</table>

- Rsal (-)
- Rsal (+)

Colorectal Cancer

<table>
<thead>
<tr>
<th>N</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>575 bp</td>
<td>407 bp</td>
</tr>
<tr>
<td>Case C5</td>
<td>Case C11</td>
</tr>
<tr>
<td>Case C14</td>
<td>Case C15</td>
</tr>
<tr>
<td>Case C47</td>
<td>Case C54</td>
</tr>
</tbody>
</table>

- Rsal (-)
- Rsal (+)

Fig. 1. A representative autoradiograph showing monoallelic and biallelic expression of H19 in esophageal cancer specimens and monoallelic expression in colorectal cancer specimens heterozygous for the Rsal polymorphism. In contrast to monoallelic expression in the corresponding normal (N) esophageal samples, LOI is observed in tumor (T) RNAs of cases E22, E26, and E27. In contrast to biallelic expression of esophageal samples, colorectal samples show only monoallelic expression.

H19 higher than that in corresponding normal tissues was observed in 12 (75%) esophageal and 31 (65%) colorectal cancer samples (expression relative to corresponding normal tissues, >1.5), while no cancer samples showed expressions lower than that in paired normal tissues (Fig. 2). We observed that H19 expression was frequently abundant in both cancers, and all six esophageal cancers carried LOI with overexpressed H19 (expression relative to corresponding normal tissues, >1.9). LOI and the relative H19 expression level in esophageal cancers are summarized in Table 1.

We found that LOI of H19 was associated with one half of our esophageal cancer specimens. In esophageal cancer, LOI of H19 seems to be more frequent than Wilms’ tumor (29%) (5) and lung cancer (38%) (7), but as frequent as primary choriocarcinoma (50%) (8). The present study suggests that LOI of H19 may play an important role in the pathogenesis of esophageal cancer. On the other hand, no LOI of H19 has been found in colorectal cancer, which is the same digestive tract cancer as esophageal cancer; consequently, we think LOI of H19 may be a specific link with esophageal cancer. In contrast to this high frequency of LOI, none of the esophageal cancer specimens exhibited LOH. Moreover, frequent occurrence of LOI of H19 was associated with the overexpression in esophageal cancer which was similar to lung cancer (7). These results are in direct contradiction to a tumor suppressor gene role involved in the pathogenesis of this common cancer in adults (15). Therefore, as Kondo et al. (7) suggested, H19 might have differential roles, depending on the tissue type as well as the developmental stage, and changes in the stringent regulation of H19 due to LOI may confer an unexpected growth advantage rather than growth retardation on esophageal cancer cells. In this regard, it is interesting to note that the esophagus and lung are derived from the same embryological origin, the foregut, and colon is from the midgut and hindgut. Indeed, there are also some common genetic alterations between esophageal and lung cancers such as LOH on chromosome 3p (16, 17).

Both esophageal and colorectal cancers frequently exhibit overexpressions of H19, in spite of whether LOI exists or not. Therefore, there is not a statistically significant difference for the H19 expression level between the cases showing LOI of H19 and the cases that do not (P = 0.18, Fisher’s exact test), although all six esophageal cancers with LOI overexpressed H19. So we think, since the rapidly growing fetus needs abundant H19 mRNAs, this overexpression of H19 is an important phenomenon for the development of esophageal and colorectal cancer cells, and LOI may be one important process which produces an overexpression of H19. In the future, if H19 expression is examined by in situ hybridization, H19 expression may be used as a tumor marker in esophageal and colorectal cancers similar to that in bladder cancer (18).

Although the precise mechanism of LOI of H19 on gene expression remains to be proven, it was confirmed that LOI of H19 is an
organ-specific genetic change, and that H19 overexpression may play an important role in the progression of esophageal and colorectal cancers. Additional studies, such as those used for assessing the expression level of H19 in precancerous regions, are required to gain an insight into neoplastic processes in the esophagus and colon.

Acknowledgments

We thank the Okazaki Municipal Hospital for gifts of surgical materials and also Dr. Takashi Takahashi of Aichi Cancer Center (Nagoya, Japan) for his helpful advice. The technical assistance of M. Taguchi is also greatly appreciated.

References

Table 1 LOI and relative expression level of H19 in esophageal cancer

<table>
<thead>
<tr>
<th>Case</th>
<th>LOI</th>
<th>Expression ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>+</td>
<td>1.9</td>
</tr>
<tr>
<td>E10</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>E20</td>
<td>+</td>
<td>6.0</td>
</tr>
<tr>
<td>E21</td>
<td>+</td>
<td>3.8</td>
</tr>
<tr>
<td>E22</td>
<td>+</td>
<td>3.6</td>
</tr>
<tr>
<td>E23</td>
<td>-</td>
<td>4.2</td>
</tr>
<tr>
<td>E26</td>
<td>+</td>
<td>2.8</td>
</tr>
<tr>
<td>E27</td>
<td>+</td>
<td>10.5</td>
</tr>
<tr>
<td>E30</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>E32</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>E33</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>E34</td>
<td>-</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Expression of the H19 gene was analyzed by Northern blot analysis. The level of expression was determined by computer software, NIH image, with an adjustment for the amount of RNA loaded in each lane using the β-actin gene as an internal control. Expression ratio indicates H19 expression level of tumor compared to corresponding normal tissues.

LOI of H19 gene was analyzed by Northern blot analysis. The level of expression was determined by computer software, NIH image, with an adjustment for the amount of RNA loaded in each lane using the β-actin gene as an internal control. Expression ratio indicates H19 expression level of tumor compared to corresponding normal tissues.

- ND, not determined.

Fig. 2. Northern blot analysis of the H19 gene in esophageal cancers. All cases except case E30 express H19 transcripts at levels higher than those of corresponding normal tissues. Note that all cases that carried LOI (E21, E22, E26, and E27) showed overexpression of H19.
Loss of *H19* Imprinting in Esophageal Cancer

Kenji Hibi, Hajime Nakamura, Atsushi Hirai, et al.

Cancer Res 1996;56:480-482.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/3/480

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.