Evaluation of Efficient Chemoembolization Mixtures by Magnetic Resonance Imaging Therapy Monitoring: An Experimental Study on the VX2 Tumor in the Rabbit Liver

Sabine Päuser, Susanne Wagner, Matthias Lippmann, Uwe Pohlen, Regina Reszka, Karl-Jürgen Wolf, and Gerd Berger

Departments of Radiology [S. P., S. W., K-J.W.] and Surgery [M. L., U. P., G. B.], Benjamin Franklin Medical Center, Free University of Berlin, Hindenburgdamm 30, 12200, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 [R. R.], Berlin, Germany

ABSTRACT

To find effective chemoembolization mixtures, we tested combinations of carboplatin with the embolizates Spherex and Gelfoam in comparison to a therapy with NaCl-solution, a treatment with the cytostatic drug only, and a therapy with each of the embolizates alone. The experiments were carried out using as a model the VX2 tumor in the liver of male chinchilla rabbits (five for each group). Carboplatin was revealed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide test to be a potent cytostatic drug for VX2 rabbit tumor cells. We used magnetic resonance imaging to examine the tumor volume and signal intensity enhancement up to 15 min after Gd-DTPA administration within the tumor and liver before and after the different therapies. These parameters allowed us to evaluate tumor growth and vitality as well as liver injury for the different therapy types. The results found by magnetic resonance imaging corresponded very well to those obtained by histological analysis of the tumors. The chemoembolization therapies were significantly more efficient than the other therapies, as indicated by the reduction of signal intensity enhancement after contrast agent administration within the tumor and by the histologically determined necrotic fraction after therapy. In addition, we found a significant decrease of the tumor volume and no significant liver injury for a therapy with Carboplat and Gelfoam.

INTRODUCTION

The liver is the most common site of long distance metastasis after potentially curative resection of gastrointestinal carcinomas (1-4). Surgical resection of liver metastases of colorectal carcinomas is possible in only 5-20% of the cases (5-7); therefore, it is very important to make their chemotherapy as effective as possible. Three main approaches are currently under investigation to improve chemotherapy: transport by 'tumor-specific' drug carriers, locoregional injection of the cytostatic drug, and locoregional application of an embolizate together with a cytostatic drug. Chemoembolization in combination with cytostatic drugs is an established palliative therapy for liver tumors (8-10), but the search for the best embolizate-cytostatic mixture is still in progress. A favorable mixture should simultaneously achieve the following: a) short-term ischemia of the tumor; b) long contact between the tumor tissue and the cytostatic drug; and c) low injury to the liver parenchyma. The VX2 carcinoma implanted in the rabbit liver is an established model for investigation of chemoembolization therapies of hepatocellular carcinomas (11). In this study, we used Gd-DTPA-enhanced MRI to examine rabbits with the VX2 carcinoma for the therapeutic efficacy of each of the embolizates Spherex and Gelfoam combined with the chemotherapeutical agent carboplatin in comparison with Gelfoam, Spherex, and carboplatin alone.

The experimental design was as follows: a) checking the efficacy of carboplatin as a potent cytostatic drug against VX2-tumor cells by the MTT test; b) comparing the efficacy of the two chemoembolization mixtures in reducing tumor volume and vitality by dynamic Gd-DTPA-enhanced MRI therapy monitoring; and c) evaluating the lasting of signal intensity enhancement within the tumor after locoregional injection of Gd-DTPA and the respective embolizate.

MATERIALS AND METHODS

Drugs. Carboplatin (Carboplat) was purchased from Bristol-Myers Squibb (Toronto, Canada). Spherex (DSM) degradable starch microspheres with a diameter of 30-50 μm were provided by Pharmacia (Uppsala, Sweden), and Gelfoam (diameter of the particles, 90 μm) was obtained from Upjohn (Kalamazoo, MI). Gd-DTPA/dimeglumine (Magnevist) was obtained from Schering (Berlin, Germany).

Assay of Cell Proliferation. Rabbit VX2 tumor (12-14) suspension was obtained from the German Cancer Center (Heidelberg) and passaged as described earlier (15). The carcinoma cells were derived from a solid tumor (squamous cell carcinoma [16, 17]) and grown in MEM (Life Technologies, Inc., Eggenstein, Germany) supplemented with 10% fetal calf serum (Biochrom), 2 mM l-glutamine, 1% nonessential amino acids, and 1% Antibiotic-Antimycotic 1008 (Life Technologies, Inc.). Cells (5 × 10⁶) were seeded in 96-well plates and used for the MTT test after 24 hours.

MTT Assay. The colorimetric MTT assay (Ref. 18; Sigma Chemical Co., Deisenhofen, Germany) was used to determine tumor cell growth inhibition by different amounts of carboplatin (0.1-50 μg/ml). After incubation periods of 24, 48, and 72 h, 10 μl of a 5 mg/ml stock solution of MTT were added to each well plate and incubated for 3 hours at 37°C. The supernatant was aspirated from the wells, and formazan crystals were dissolved in 100 μl DMSO (Sigma). The absorbance was directly recorded on an ELISA reader/96-multiscanner (SLT, Zepernick, Germany) at a wavelength of 540 nm. The reduction in cell number was calculated from the absorbance given in percent. Carboplatin did not show any direct MTT reduction.

% reduction in cell number =

\[
\frac{(\text{absorbance of cells + carboplatin}) - (\text{absorbance of cells without carboplatin})}{\text{absorbance of cells without carboplatin}} \times 100
\]

Animal Model. Tumors were induced by injection of 1 × 10⁷ to 5 × 10⁷ viable VX2 carcinoma cells into the left lobe of the liver of male chinchilla rabbits weighing 2800-3200 g. Anesthesia for tumor implantation and MRI was induced by injection of a mixture of 5 mg xylazine (Bayer AG, Leverkusen, Germany) and 50 mg ketamine hydrochloride (Parke-Davis, Berlin, Germany) per kg body weight. Five male chinchilla rabbits were examined for each therapy group (Table 1).

For locoregional administration, the therapy mixtures were injected through the proper hepatic artery by a catheter and implanted into the gastroduodenal artery. The animals were investigated by MRI 14 days after tumor implantation, as well as before and 7 days after therapy. After completion of the MRI experiments, the animals were sacrificed under deep anesthesia by intravenous injection of 2 ml T61. The tumor-bearing liver was dissected, and after careful removal from the liver tissue, the tumors were fixed in 5% formaldehyde solution for histological preparation.

Experiments for evaluating the dwell time of a contrast agent within the liver were performed using the...
Table 1 Drug administration in the different therapy groups

<table>
<thead>
<tr>
<th>Therapy group</th>
<th>Drug administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control group, injection of 5 ml 0.9% NaCl solution</td>
</tr>
<tr>
<td>2</td>
<td>Injection of 60 mg Spherex in 5 ml 0.9% NaCl solution</td>
</tr>
<tr>
<td>3</td>
<td>Injection of 10 mg Gelfoam in 5 ml 0.9% NaCl solution</td>
</tr>
<tr>
<td>4</td>
<td>Injection of 50 mg carboplatin in 5 ml 0.9% NaCl solution</td>
</tr>
<tr>
<td>5</td>
<td>Injection of 50 mg carboplatin and 60 mg Spherex in 5 ml 0.9% NaCl solution</td>
</tr>
<tr>
<td>6</td>
<td>Injection of 50 mg carboplatin and 10 mg Gelfoam in 5 ml NaCl solution</td>
</tr>
</tbody>
</table>

CHEMOEMBOLIZATION OF LIVER VX2 TUMOR STUDIED BY MRI

Therapy were measured by regions of interest within the whole area of the tumor, the necrotic center, the vital tumor edge, and the surrounding liver tissue. From these values, relative signal intensities (SI$_{rel}$) were calculated according to the following equation:

$$SI_{rel} = \frac{SI_{nat}}{SI_{drug/0.9\%}}$$

For volumetric analysis, the tumor area of every slice was measured and multiplied by the slice thickness. The whole tumor volume was estimated by addition of these slice volumes.

Statistical Analysis. Randomization of the tumor volumes before therapy was checked by the Kruskal-Wallis test (19). The significance of tumor growth differences after the investigation therapies in comparison to the therapy with 0.9% NaCl solution was determined by the Mann-Whitney test (19). The significance of differences in the necrosis fraction between the different therapy groups was ascertained by the Mann-Whitney test. We calculated the differences between SI enhancement before and after therapy for every time point and every animal of the experimental groups. To check the significance of distinction between the therapy groups, we used a one-way analysis of variance with the Student-Newman-Keuls test (19).

RESULTS

Assay of Cell Proliferation. The MTT colorimetric assay (20) uses the general principle involved in the detection of cell growth or cell death based on the selective ability of living cells to reduce the yellow water-soluble salt MTT to a purple-blue insoluble formazan precipitate that can be detected by spectrophotometry. The formation of formazan takes place via intact mitochondria, although other extracellular locations with dehydrogenase activity may contribute to the total formazan production (20).

Our experiments (repeated three times) demonstrated that, at a concentration of 10 µg/ml over a period of 72 hours, carboplatin caused a significantly inhibited growth (92%) of VX2-tumor cells (see Fig. 1).

MRI Experiments to Evaluate the Efficacy of Chemoembolization. Differentiation of internal tumor structure and liver perfusion was only possible after injection of the contrast medium as shown in Fig. 2. Fig. 3 shows the time dependence of signal enhancement of the whole tumor area and over a region of interest within the liver of selected slices after injection of Gd-DTPA for the different therapy types. Calculation of the SI differences within the whole area of the tumors at the investigated time points before and 7 days after therapy.
yielded a significant distinction between the chemoembolization therapies \((P = 0.014)\) and all other groups. The reductions of SI enhancement after administration of the contrast agent after the different types of therapy are given in Table 2 and Fig. 3a. It is obvious that the mixture of carboplatin and Gelfoam is the most effective with respect to SI enhancement reduction within the tumor after therapy. There is no significant difference in the time course of SI enhancement after contrast agent injection within the liver for a therapy of carboplatin and Gelfoam in comparison with the control group and the mono-therapies as shown in Fig. 3b. In contrast, the therapy with Spherex and carboplatin caused a significant difference in SI enhancement, comparing the contrast agent dynamics before and after therapy.

Fig. 4 shows examples of typically analyzed MR images acquired before and 7 days after therapy with carboplatin (Fig. 4b), with Spherex and carboplatin (Fig. 4c), with Gelfoam and carboplatin (Fig. 4d), and without therapy (Fig. 4a). The images shown are those obtained immediately after i.v. injection of Magnevist. Nearly 100% necrosis is evident 7 days after the chemoembolization therapies. We found expansive tumor growth for the control group and tumor growth for all therapy groups except that with carboplatin and Gelfoam, in which we could measure a tumor reduction (Table 2). The tumor volumes of the animals from the different therapy groups were not significantly different before therapy; this was statistically proven by the Kruskal-Wallis test.

DISCUSSION

Because the temporal change of signal intensity in magnetic resonance images after administration of a contrast agent is related to the local capillary blood supply and the extravasation of the contrast agent into the surrounding tissue, MRI can be used for the assessment of tissue microcirculation \((21-23)\). The diffusion behavior of the contrast agent gives an indication of the necrotic fraction of the tumor. The higher the enhancement immediately after contrast agent injection and the higher the subsequent decrease of the enhanced signal intensity, the more vital the tumor. The time course of SI enhancement of the control group, which received locoregional administration of NaCl solution, characterized the normal tumor development with an increasing necrotic fraction. For the therapy with Gelfoam and carboplatin, we have found the highest difference in SI enhancement after contrast agent injection between the measurement before and after therapy, and we determined 100% necrosis histologically (Table 2).

In conclusion, dynamic Gd-DTPA-enhanced MRI therapy monitoring is well suited to noninvasively evaluate the efficacy of different chemoembolization mixtures. Furthermore, MRI is a valuable tool for determining the dwell time of a substance with the tumor caused by injection of an embolizate and a contrast agent simultaneously. Our findings indicated that chemoembolization by carboplatin with
Table 2. Comparison of results from MRI (reduction of SI enhancement after therapy and tumor growth) and histological analysis.

The P values comparing data measured in the different therapy groups and the control group (treatment with NaCl) were calculated by the Mann-Whitney test.

<table>
<thead>
<tr>
<th>Therapy group</th>
<th>Tumor volume after/tumor volume before, mean ± SD</th>
<th>P value vs. control</th>
<th>% reduction of SI enhancement within the tumor after therapy, mean value at all time points ± SD</th>
<th>Necrotic fractions in histological sections, mean ± SD</th>
<th>P value vs. control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.64 ± 2.34</td>
<td></td>
<td>11.32 ± 1.64</td>
<td>0.57 ± 0.11</td>
<td><0.05</td>
</tr>
<tr>
<td>2</td>
<td>2.52 ± 1.52</td>
<td>NS</td>
<td>12.60 ± 4.55</td>
<td>0.67 ± 0.07</td>
<td><0.05</td>
</tr>
<tr>
<td>3</td>
<td>2.90 ± 1.16</td>
<td>NS</td>
<td>13.60 ± 5.68</td>
<td>0.55 ± 0.28</td>
<td><0.05</td>
</tr>
<tr>
<td>4</td>
<td>2.81 ± 1.07</td>
<td>NS</td>
<td>20.00 ± 5.70</td>
<td>0.68 ± 0.06</td>
<td><0.05</td>
</tr>
<tr>
<td>5</td>
<td>2.37 ± 1.68</td>
<td><0.05</td>
<td>28.04 ± 3.18</td>
<td>0.94 ± 0.07</td>
<td><0.01</td>
</tr>
<tr>
<td>6</td>
<td>0.91 ± 0.54</td>
<td><0.01</td>
<td>36.29 ± 4.84</td>
<td>0.99 ± 0.02</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*NS, not significant.

Fig. 4. MRI images acquired immediately after i.v. injection of 0.17 mmol/kg body weight Magnevist before (left) and 7 days after (right) the following types of therapy: no therapy (a); carboplatin (b); Spherex and carboplatin (c); and Gel foam and carboplatin (d).
Spherex or Gelfoam considerably increased the efficacy of a chemo-
therapy of the VX2 tumor; the combination of Gelfoam and carbo-
platin was significantly more effective (on the P < 0.01 level) in
reducing tumor growth and decreasing tumor vitality.

ACKNOWLEDGMENTS

We thank Drs. Ulrich Mansmann and Matthias Taupitz for their assistance
in the statistical analysis of data.

REFERENCES

1. Adson, M. A. Resection of liver metastases: when it is worthwhile? World J. Surg.,

2. Benmark, S., and Hafström, L. The natural history of primary and secondary
malignant tumors of the liver. The prognoses for patients with hepatic metastases
from colonic and rectal carcinoma by laparotomy. Cancer (Phila.), 23:198–202,
1970.

3. Steele, G., and Thomas, P. Biologic perspectives and new treatment approaches for
hepatic metastases of colorectal carcinoma. In: B. Lewin (ed.), Gastrointestinal
Cancer: Current Approaches to Diagnosis and Treatment, pp. 211–224. University of

4. Bengtsson, G., Varlsson, G., Hafström, L., and Jonsson, P. E Natural history of
patients with untreated liver metastases from colorectal cancer. Am. J. Surg., 141:

5. Beppu, T., Ohara, C., Yamaguchi, Y., Yamaoka, T., Katafuchi, S., Ike, S., Kudo, S.,
Masuda, Y., Fukushima, S., Nakano, M., and Ogawa, M. A new chemoembolization
therapy for unresectable hepatocellular carcinoma using aclarubicin microspheres in

embolisation nicht resektabler hepatozellulärer Karzinome. ROFO Fortschr. Geb.

8. Chua, V. P., and Wallace, S. Hepatic artery embolization in the treatment of hepatic

Peripheral hepatic artery embolization of primary and secondary hepatic neoplasms.

11. Nishioka, Y., Kyotani, S., Okamura, M., Ohtsuki, S., Yamamoto, Y., Kawashima,
Y., Tanada, S., and Nakamura, T. A study of embolizing materials for chemoemboliza-
tion therapy of hepatocellular carcinoma: effects of particle size and dose on
chitin-containing cis-diaminedichloroplatinum (II) albumin microsphere antitumor
1994.

12. Inagaki, T., Tashiro, S., and Miyazaki, Y. Anticancer effects of local administration of
mitomycin C via hepatic artery or portal vein on implantation and growth of VX2

13. Kidd, J. G., and Rous, P. A transplantable rabbit carcinoma originating in a virus-
induced papilloma and containing the virus in masked or altered form. J. Exp. Med.,
178: 813–837, 1940.

carcinoma derived from virus-induced papillomas. II. Loss by the VX2 carcinoma
of the power to immunize hosts against the papilloma virus. J. Exp. Med., 90: 401–424,
1952.

15. Wagner, S. Benign lymph node hyperplasia and lymph node metastases in rabbits.
Animal models for magnetic resonance lymphography. Invest. Radiol., 29: 364–371,
1994.

16. Freshley, R. I. Disaggregation of the tissue and primary culture. In: R. I. Freshney

17. Davidson, T., Wallace, J., and Carmichael, P. The rabbit as an experimental model for
regional chemotherapy. 1. Intra-arterial hindlimb infusion. Lab. Anim., 20: 343–346,
1986.

Cancer: Current Approaches to Diagnosis and Treatment, pp. 211–224. University of

20. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application

embolisation nicht resektabler hepatozellulärer Karzinome. ROFO Fortschr. Geb.

22. Rosen, B. R., Belliveau, J. W., and Chien, D. Perfusion imaging by nuclear magnetic

23. Petersson, H., Ackerman, N., Kauda, J., Gooze, R. E., Manesco, A. A., Scott, K. N.,
Hackett, R. H., Hager, D. A., and Cabrallero, S. Gadolinium-DTPA enhancement of
experimental soft tissue carcinoma and hemorrhage in magnetic resonance imaging.

24. Wagner, S. Benign lymph node hyperplasia and lymph node metastases in rabbits.
Animal models for magnetic resonance lymphography. Invest. Radiol., 29: 364–371,
1994.

25. Freshley, R. I. Disaggregation of the tissue and primary culture. In: R. I. Freshney
Evaluation of Efficient Chemoembolization Mixtures by Magnetic Resonance Imaging Therapy Monitoring: An Experimental Study on the VX2 Tumor in the Rabbit Liver

Sabine Päuser, Susanne Wagner, Matthias Lippmann, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/8/1863

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.