Bone Sialoprotein Peptides Are Potent Inhibitors of Breast Cancer Cell Adhesion to Bone

Gabri van der Pluijm, Hans J. M. Vloedgraven, Boris Ivanov, Frank A. Robey, Wojciech J. Grzesik, Pamela Gehron Robey, Socrates E. Papapoulos, and Clemens W. G. M. Löwik

Department of Endocrinology and Metabolic Diseases C4-89, University Hospital, 2300 RC Leiden, the Netherlands. 1G. v. d. P.. H. I. M. V., S. E. P., National institute of Dental Research, NIH, Bethesda, Maryland 20892

ABSTRACT

Bone and bone marrow are important sites of metastasis formation in breast cancer. Extracellular matrix proteins with attachment properties are generally believed to play a key role in tumorogenesis and metastasis formation. We have investigated whether mammary carcinoma cells (MDA-MB-231) can recognize constructs of the fairly bone-specific human bone sialoprotein, which encompass the RGD sequence (EPRGDNYR). Exogenously added bone sialoprotein peptides with this amino acid sequence in their backbone structure, but not the more common fibronectin-derived GRGDS peptide, strongly inhibited breast cancer cell adhesion to extracellular bone matrix at micromolar concentrations. Most cyclic derivatives with the EPRGDNYR sequence were more effective inhibitors of tumor cell adhesion to bone than their linear equivalents. Furthermore, changes in the RGD-tripeptide of the backbone structure of the constructs, removal of the NYR flanking regions, and different cyclic structure significantly decreased their inhibitory potencies. In addition, the RGE-analogue EPRGENYR was capable of inhibiting breast cancer cell adhesion to bone, albeit to a lesser extent.

We conclude, therefore, that the inhibitory potency of the bone sialoprotein-derived peptides on breast cancer cell adhesion to bone is not solely due to a properly positioned RGD-motif alone but is also determined by its flanking regions, together with the tertiary structure of the EPRGDNYR peptide. Synthetic cyclic constructs with the EPRGDNYR sequence may, therefore, be potentially useful as antiadhesive agents for cancer cells to bone in vivo.

INTRODUCTION

Breast cancer metastasizes frequently to the skeleton, leading to serious clinical complications such as bone pain, fractures, spinal cord compression, and hypercalcemia (1—4). The mechanisms underlying the apparent preference of mammary carcinoma cells for bone remain, however, poorly understood. The interactions of tumor cells with the bone microenvironment, together with the anatomical properties of the skeleton, are generally believed to be decisive during the final steps in the metastatic cascade, leading to the establishment and invasive growth of skeletal metastases (5—10).

The organic matrix of bone is composed of collagenous proteins (type I collagen fibers) representing 85—90% of total bone protein, whereas noncollagenous proteins comprise the remaining 10—15% (11—13). The list of proteins that can be isolated from mineralized bone matrix with cell attachment activity (adhesion proteins) is best headed by the proteins that contain RGD (Arg-Gly-Asp) motifs, a cell attachment recognition consensus sequence for several adhesion receptors of the integrin family (14, 15). Of the six identified RGD-containing extracellular bone matrix proteins (11, 13, 16, 17), fibronectin, type I collagen, vitronectin, thrombospondin, OPN, and BSP, only the last is almost exclusively restricted to bone tissue (18). This sialic acid-rich glycoprotein and its mRNA are found predominantly in the mature, matrix-producing osteoblasts and osteocytes (18—24). The BSP gene shows a distinct expression pattern in bone (23—25). In addition, epiphyseal cartilage cells like hypertrophic chondrocytes (18, 26) osteoclasts (18, 26, 27), and marrow stromal cells (28) also produce BSP. The human integrin-binding region of BSP has the more rare GRGD rather than the more common GRGDS/T sequence.

Several studies have shown that extracellular matrix proteins, like BSP and OPN, may be involved in the recognition and adhesion of osteoclasts and their precursors to bone matrix, a process mediated through the vitronectin (α5β3) receptor (29—35). The α5β3 receptor is believed to play a key role in osteoclast formation (36) and osteoclastic resorption (29—36).

Besides a variety of functions in normal physiology, adhesion receptors in tumor cells appear to play important roles along the metastatic cascade of events leading to the establishment of distant metastases (9, 10, 37—41). Recently, we have shown that adhesion receptors of the β1 and β3 integrin family may be functionally involved in adhesion of mammary carcinoma cells to extracellular bone matrix (constituents; Refs. 42 and 43). Individual components of extracellular bone matrix may, therefore, be involved not only in the preferred bone homing of normal cells (like osteoclast precursors and osteoprogenitors) to bone but may also provide a fertile environment for breast cancer cells.

In this study, we examined the attachment characteristics of breast cancer cells to conformationally constrained peptide analogues designed to mimic the cell attachment site of human BSP. Several constructs that encompass the BSP-derived RGD-cell attachment motif EPRGDNYR in linear and cyclical conformations were tested (44). In addition, the effects of these exogenously added BSP peptides on breast cancer cell adhesion to bone were studied in three in vitro models of extracellular bone matrix. Results presented in this paper provide evidence that several peptide analogues that are based on the (RGD-containing) cell attachment site of BSP are recognized by breast cancer cells and may be potentially useful as antiadhesive agents for cancer cells to bone.

MATERIALS AND METHODS

Breast Cancer Cell Lines. The breast cancer cell line MDA-MB-231 was purchased from the American Type Culture Collection (Rockville, MD). This estrogen receptor-negative cell line was established from a single pleural effusion obtained from a 51-year-old white woman with poorly differentiated adenocarcinoma (45). MDA-MB-231 cells injected into the left heart ventricle of nude mice have been shown to form osteolytic metastases in vivo (8, 46).

Cells were cultured in RPMI 1640 + 10% fetal bovine serum + penicillin/streptomycin (Life Technologies, Breda, the Netherlands) in a humidified 3 The abbreviations used are: OPN, osteopontin; BSP, bone sialoprotein; SFCM, serum-free conditioned medium.

1 Received 12/18/95; accepted 2/16/96.
2 To whom requests for reprints should be addressed. Phone: (31) 71-5263076; Fax: (31) 71-5248136; E-mail: pluijm@rullf2.leidenuniv.nl.

1996 American Association for Cancer Research.

Downloaded from cancerres.aacjournals.org on April 12, 2017.
incubator at 37°C at 5% CO₂ until confluency. For attachment assays, tumor cells were cultured until approximately 90% confluency and were dissociated into single-cell suspensions from the tissue culture flasks using 0.125% trypsin-0.05% EDTA in PBS for 3 min (see attachment assays).

Synthetic Peptides, Proteins, and Reagents. BSA was purchased from Miles Scientific, Inc. (Naperville, IL). SFCM was obtained from confluent normal, primary human trabecular bone cells incubated for 24 h in serum-free medium supplemented with 0.05% ITS⁺ [insulin, transferrin, and selenium (2.5 μg/ml), 0.5 mg/ml BSA, and 0.5 μg/ml linoleic acid; Collaborative Research, Inc., Bedford, MA]. SFCM contains a mixture of various extracellular bone matrix components, including BSP, and reflects the diversity and composition of extracellular bone matrix in vivo as described earlier (11, 16, 47).

The linear and cyclic peptides used in this study were synthesized using an automated solid phase peptide synthesizer as described earlier (44). We have used three linear synthetic BSP peptides (BSA-BA6, BSA-LBP, and CP-3), five cyclic BSP peptides (BSA-CNB, CNB, CCP, Ac-CNBN, and C-BC3; Fig. 1), and two unrelated peptides C-CB1 and GRGDS (Cathbiochem, La Jolla, CA). C-CB1 was reported earlier to have an antithrombotic action by interfering with the heterodimeric glycoprotein integrin receptor GPIIbIIIa (48). The GPIIbIIIa receptor, like several members of the integrin family, contains a binding site for the tripeptide Arg-Gly-Asp (RGD).

For reasons of clarity, BSA, GRADS, and GRGES were used as negative controls and did not affect adhesion of mammary carcinoma cells to the various substrates tested. For reasons of clarity, BSA, GRGES, and GRADS controls are not depicted in the figures of this report. To study the importance of the RGD adhesion recognition sequence and the relative contribution of RGD flanking regions in CNB, the tripeptide sequence was replaced by RGE, resulting in the peptide CCP.

Cell Attachment Assays: Proteins Coated onto Plastic

Cell attachment assays were performed in bacteriological 96-well plates dotted with glycoproteins, as described previously (16). In brief, 10 μl of SFCM or peptide construct in PBS containing 1 mM Ca²⁺ was applied, resulting in a protein-coated area ("dot") of 0.12 cm². After 16 h at 4°C, the fluid was removed, and 100 μl of 60% methanol was added to each well for 2 h at 4°C. The methanol fixation was found to improve the stability and durability of the protein-coated area without altering the biological activity of the substrate (16). The methanol was removed, and wells were washed for 30 min at 4°C with washing buffer [50 mM Tris-HCl (pH 7.8), 110 mM NaCl, 5 mM CaCl₂, 0.1 mM phenylmethylsulfonyl fluoride, 1% BSA, and 0.1 μM sodium azide] to block unbound sites on the plastic. After removal of the washing buffer, the wells were washed three times with serum-free medium (RPMI 1640) supplemented with glutamine and 0.05% ITS⁺.

Cells were precultured in RPMI 1640 (+ HEPES) + 10% fetal bovine serum + penicillin/streptomycin in a humidified incubator at 37°C at 5% CO₂ until 90% confluency. For attachment assays, tumor cells were dissociated from the flasks using 0.125% trypsin-0.05% EDTA solution in PBS (pH 7.2) for 3 min. Cells were washed and resuspended in serum-free medium (RPMI 1640 containing 0.5% ITS⁺) and seeded at a density of 10,000/cm² (2800 cells/150 μl) on the peptide-coated 96 wells. The 96-well dishes were incubated at 37°C at 5% CO₂ for a maximum of 3 h. Each well was washed three times with serum-free medium, and attached cells were fixed for 20 min with 80% methanol at 4°C and stained with AmidoBlack. Two nonoverlapping microscopic fields within each protein-coated area were counted. Each group was performed in 4-fold, and experiments were repeated three times.

The adhesion of mammary carcinoma cells to constructs coated onto plastic was determined at various concentrations. Coating efficiencies to bacteriological plastic differed between the tested constructs. Significantly detectable coating was obtained only with BSP-derived peptides conjugated to BSA (maximal coating efficiencies about 65% at 1 μM RGD content), whereas coating efficiencies of other peptides were low (<10%) or nondetectable at various concentrations tested (0.01–10 μM). At concentrations higher than 1 μM, the absolute amount of peptide bound to BSA-CNB, BSA-BA6, and BSA-LBP) remained constant (results not shown).

Adhesion of Breast Cancer Cells to Bovine Cortical Bone Slices

Bovine cortical bone slices were a kind gift from Dr. Tiina Laitala (University of Oulu, Oulu, Finland). Tissue culture plates (24 wells) were coated with 500 μl of 1% agarose in PBS (pH 7.2) to prevent non-specific adhesion to the tissue culture plastic. After the agarose cooled down and became solid, a drop of melted agarose was added to each well on the agarose layer, and the bone slices were placed on top of this drop, resulting in a bone slice fixed to the agarose underlay. Subsequently, the wells were washed twice with 1 ml of serum-free culture medium and preincubated for 30 min. Tumor cells were seeded on top of these slices at a density of 100,000 cells/slice and incubated for 3 h. After incubation, the bone slices were removed from the wells and washed three times in PBS and fixed for 30 min with 500 μl 3% paraformaldehyde in PBS containing 2% sucrose. Bone slices were stained for 8 min with 1% toluidine blue in 1% sodium borate and, after fixation, were washed three times with PBS and mounted on glass coverslips with Histomount (National Diagnostics-Brunschwig Chemie, Amsterdam, the Netherlands). Stained bone slices were kept dark before histological examination. Cells located within two nonoverlapping microscopic fields were counted at the center of each bone slice. Each experimental group was performed in 4-fold, and experiments were repeated at least three times.

Adhesion of Breast Cancer Cells to Frozen Sections of Developing Trabecular Bone

Two-day-old neonatal mice (Swiss Albino) were killed, and their tails were dissected, stretched in Tissue Tek (Miles Scientific, Naperville, IL), frozen in liquid N₂ for at least 10 min, and stored at −80°C. Five-μm sections were cut at −20°C using a cryostat (Microm HM 500 M) and subsequently transferred to 3-aminopropyltriethoxysilane (Sigma Chemical Co, St. Louis, MO)-coated glass coverslips and stored at −80°C until use.

Prior to adhesion experiments, the frozen sections were air dried at room temperature for 30 min. Around each tissue section, a (hydrophobic) line was drawn with a DAKO pen (DAKO A/S, Glostrup, Denmark) to avoid spreading peptide adhesion to the plastic.
of the cell suspension over the entire glass coverslip area. Subsequently, Tissue Tek was removed by incubating the sections for 5 min in a large volume of PBS. The sections were incubated at 4°C with 100 μl of PBS + 2% w/v BSA-fraction V for 2 h to avoid nonspecific binding. Eighty thousand breast cancer cells in 80 μl serum-free medium (RPMI 1640 + ITS™) were added per section in the presence or absence of 2 μM synthetic peptides (Fig. 1) and incubated for 1 h at 37°C in a humidified incubator (5% CO2). After incubation, the sections were washed three times with PBS (to remove nonadherent cells), and attached cells were fixed in 4% paraformaldehyde for 30 min. Subsequently, the sections were washed with PBS and stained with hematoxylin for 1 min. The hematoxylin was removed, and the stained sections were washed in running tap water for 5 min. The sections were mounted in Histomount (National Diagnostics-Brunschwig Chemie) and covered with coverslips.

Cell numbers were determined by counting nonoverlapping microscopic fields for each central section of vertebra at an original ×200 magnification. The mean value of two microscopic fields within one vertebral section was determined within each section (n = 5). The central sections of the tail were made from the same animal and used for control and experimental groups. Each experiment was repeated at least three times (n = 3).

Inhibition of Breast Cancer Cell Adhesion to Extracellular Bone Matrix by Synthetic Peptides. Breast cancer cell attachment to bone matrix was determined in the continuous presence of synthetic peptides at various concentrations, and IC50 were calculated.

Statistics. Significances between experimental groups within each experiment were determined using a factorial one-way analysis of variance, followed by a Fisher’s PLSD test.

RESULTS

Adhesion of Breast Cancer Cells to Varying Concentrations of Coated BSP Peptide Conjugates. MDA-MB-231 cells were monitored for their ability to adhere to different concentrations of synthetic BSP peptides conjugated to BSA that were coated onto bacteriological plastic (96-well plates). Peptide structures are based on the RGD-dependent cell attachment site of human bone sialoprotein. Mammary carcinoma cells bound to immobilized BSP peptides and subsequently spread in a dose-dependent manner (Fig. 2). Maximal cellular adhesion of mammary carcinoma cells was obtained at peptide concentrations of 1 μM and higher (Fig. 2). However, differences were found in the ability of MDA-MB-231 cells to adhere to the various peptides. BSA-CNB promoted cellular adhesion most strongly, followed by BSA-LBP and BSA-BA6 respectively. Fig. 3 depicts the morphological appearance of MDA-MB-231 cells following adhesion to SFCM of normal human trabecular bone cells (Fig. 3A, positive control) and BSA-CNB (Fig. 3B) when coated onto plastic.

Effects of Exogenously Added Peptides on Attachment of Breast Cancer Cells to Extracellular Bone Matrix. Three in vitro attachment assays were used to investigate whether exogenously added BSP peptides can modulate the adhesion of breast cancer cells to extracellular bone matrix. MDA-MB-231 cells adhered strongly to immobilized SFCM of normal human trabecular bone cells. Exogenously added GRGDS peptide, at concentrations up to 300 μM (IC50 = 400 μM; Table 1), did not significantly affect the attachment of MDA-MB-231 cells to SFCM.

In contrast to GRGDS, seven of eight tested synthetic BSP-peptides significantly inhibited adhesion to various degrees (Table 1). This is further illustrated in Fig. 4 with equimolar concentrations of the tested peptides (2 μM). At this concentration, the cyclic peptides BSA-CNB and CNB were more potent inhibitors of adhesion (± 80% inhibition) than the linear peptides BSA-LBP or BSA-BA6 with similar or shortened amino acid sequences (50 and 30%, respectively). Furthermore, blocking of the NH2 terminus by the addition of an acetyl (Ac) group decreased the inhibitory potency of CNB.

A change in tertiary structure by modification of the ring size, leading to the smaller cyclic C-BC3 peptide with identical EPRGD (CCP) significantly decreased the inhibitory potency of CNB (Fig. 4; Table 1). Furthermore, replacement of the RGD tripeptide by RGE (CCP) significantly decreased the inhibitory potency of CNB (Fig. 4; Table 1).
TABLE I Half-maximal inhibitory concentrations (IC_{50}) of exogenously added peptides, constructs, and proteins during adhesion of MDA-MB-231 cells to SFCM of normal human trabecular bone cells

<table>
<thead>
<tr>
<th>Peptide</th>
<th>IC_{50} (µM) for cellular adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGD control peptide</td>
<td>400</td>
</tr>
<tr>
<td>GRGDSP</td>
<td></td>
</tr>
<tr>
<td>Negative controls</td>
<td></td>
</tr>
<tr>
<td>BSA-V</td>
<td>>500</td>
</tr>
<tr>
<td>GRADS</td>
<td>>500</td>
</tr>
<tr>
<td>GRGES</td>
<td>>500</td>
</tr>
<tr>
<td>Linear peptides/constructs</td>
<td></td>
</tr>
<tr>
<td>BSA-BA6</td>
<td>2–20</td>
</tr>
<tr>
<td>BSA-LBP</td>
<td>2–20</td>
</tr>
<tr>
<td>CP3</td>
<td>400</td>
</tr>
<tr>
<td>Cyclic peptides/constructs</td>
<td></td>
</tr>
<tr>
<td>BSA-CNB</td>
<td>0.002–0.02</td>
</tr>
<tr>
<td>CNB</td>
<td>0.02–0.2</td>
</tr>
<tr>
<td>Ac-CNB</td>
<td>2</td>
</tr>
<tr>
<td>CCP</td>
<td>2–20</td>
</tr>
<tr>
<td>C-BC3</td>
<td>>500</td>
</tr>
<tr>
<td>C-CB1</td>
<td>>500</td>
</tr>
</tbody>
</table>

Table 1. Half-maximal inhibitory concentrations (IC_{50}) of exogenously added peptides, constructs, and proteins during adhesion of MDA-MB-231 cells to SFCM of normal human trabecular bone cells

Table 1). However, this RGE analogue of CNB was still capable of inhibiting breast cancer cell adhesion to bone, albeit to a lesser extent.

Removal of the NYR flanking sequence of the peptide BSA-LBP, resulting in BSA-BA6, significantly decreased its inhibitory potency on breast cancer cell attachment. In addition, a different (smaller) EPRGDNYR ring structure, resulting in C-BC3, also decreased the inhibitory potency of the cyclic CNB peptide (Fig. 4; Table 1). Cyclizing the RGD motif with non-BSP-specific flanking regions was ineffective (C-CB1; Fig. 4; Table 1).

Similarly, as shown in Fig. 5, breast cancer cell adhesion to bovine cortical bone slices was significantly inhibited by the tested cyclic and linear BSP-peptides (BSA-CNB, CNB, BSA-LBP, and BSA-BA6) but not with GRGDSP or negative control peptides (GRADS, GRGES, and BSA; data not shown). In this assay as well, the cyclic BSP-peptides (BSA-CNB and CNB) were more effective inhibitors than the linear ones (BSA-LBP and BSA-BA).

In line with the results obtained in the above described in vitro adhesion assays, exogenously added BSP-peptides were capable of inhibiting breast cancer cell attachment to cryostat sections of trabecular bone (2-day-old neonatal mouse tail vertebrae; Fig. 6).

The susceptibility of tumor cells to various BSP-peptides increased during maturation of trabecular bone (Fig. 6), resulting in a significant decrease in attachment of the breast cancer cells to the mature remodeled bone (the proximal tail vertebrae 1–11; Fig. 6).

Figs. 7–9 depict the inhibitory effects of exogenously added CNB during attachment of MDA-MB-231 cells to various SFCM (Fig. 7), cortical bone slices (Fig. 8), and vertebrae (Fig. 9). The micrographs show that both adhesion of MDA-MB-231 cells to extracellular bone matrix and subsequent spreading are strongly decreased.

DISCUSSION

Several extracellular matrix proteins with cell attachment properties have been isolated from skeletal tissue (11, 13, 16–22, 49–51). These include fibronectin, type I collagen, vitronectin, thrombospondin, OPN, and BSP. Bone adhesion proteins are either produced by bone cells and/or derived from extraskeletal sources and are involved in a variety of functions, such as cellular differentiation and proliferation of bone cells, their migration, and attachment (11–13, 16–19, 23–25, 30, 31, 51).

The bone glycoproteins BSP and OPN are differentially expressed during maturation of bone, especially at the onset of calcification (11, 16, 18–25, 31, 49, 52). Furthermore, cells in bone (osteoclasts, osteoblasts, osteocytes, and other stromal cells) can recognize these extracellular molecules or synthetic peptide sequences that encompass the RGD sequence (16, 29, 31–36, 53–55). Evidence is mounting that osteoclasts that highly express the vitronectin receptorα_{v}β_{3}use this integrin to adhere to these extracellular bone matrix proteins like BSP, and it has been suggested that that this adhesion receptor is a prerequisite for osteoclastic bone resorption and osteoclast development (29–36).
In analogy to osteoclasts, it has been shown that invasive mammary carcinomas express the \(\alpha_\beta_3 \) receptor (37, 39, 40, 42, 43), and it was reported recently that breast cancer cells show a selective increase in \(\beta_3 \) integrins in skeletal metastases (56). Furthermore, recent evidence suggests that highly invasive primary breast carcinomas can express high levels of BSP when compared to noninvasive breast cancers and normal breast tissue (57). We have also shown recently that various mammary carcinoma cell lines have high affinities for the BSP molecule in vitro (42). We hypothesized, therefore, that mammary carcinoma cells use mechanism(s) of bone recognition that are comparable to those used by normal cells in bone.

In this study, we describe interactions of breast cancer cells with synthetic BSP peptides. Our data show that mammary carcinoma cells (MDA-MB-231) recognize various immobilized (and solubilized) synthetic BSP sequences, which include the RGD motif and its flanking regions. Furthermore, adhesion of breast cancer cells to extracellular matrix of bone was significantly inhibited by nearly all peptides containing (parts of) the EPRGDNYR sequence (BSA-CN8, CN8 > Ac-CN8, BSA-LBP > BSA-BA6 > C-BC3). The cyclic peptides BSA-CN8, CN8, and Ac-CN8 were generally more potent inhibitors than linear peptides with similar or shortened amino acid sequences (BSA-BA6 and BSA-LBP). This strongly suggests that tertiary structures of the peptides are important for their ability to interfere with tumor cell adhesion to bone matrix. Our observations are in line with earlier publications using different RGD-containing cyclic and linear peptides and other cell types. Several RGD-containing cyclic (and linear) peptides have proven to be strong and selective inhibitors of cellular adhesion in vitro (15, 58) and metastasis formation in vivo (59) under different experimental conditions. Furthermore, it was shown recently that human trabecular bone cells adhere and spread on immobilized constructs containing the EPRGDNYR motif of BSP (44), which is in agreement with our data on breast cancer cells.

The inhibitory effects of the tested BSP-peptide analogues on tumor

cell adhesion to bone, together with the lack of an effect of the synthetic non-BSP-derived RGD-peptides GRGDS and C-CB1 (up to 100-fold higher concentrations) indicate that the RGD sequence by itself is not the sole prerequisite for blocking breast cancer cell adhesion to bone matrix under these experimental conditions. Modification of the NH$_2$- and COOH-terminal ends of the EPRGDNRYR sequence (see Ac-CNB versus CNB and BSA-BA6 versus BSA-LBP) negatively affected the inhibitory potency of the peptides. This suggests that the presence of the NH$_2$-terminal cationic and COOH-terminal anionic groups can modify the functional response mediated by its receptor(s), as has been reported earlier for osteoclasts (60).

Furthermore, our data support the notion that RGD flanking regions of BSP (EP-RGD-NYR), which differ from the more common RGD recognition sequence of fibronectin (G-RGD-SPC), may additionally determine the inhibitory potency of the peptides on breast cancer cell adhesion to bone matrix. Therefore, proper positioning of the RGD motif within the framework of its BSP-flanking regions strongly enhances the inhibitory potency of the synthetic peptides on breast cancer cell adhesion to bone matrix.

In conclusion, we have demonstrated that breast cancer cells recognize synthetic peptides encompassing the RGD motif of human BSP in various conformations. Attachment of cancer cells to three in vitro models for extracellular matrix of bone (serum-conditioned medium of bone cells, cortical bone slices, and frozen sections of trabecular bone) was effectively inhibited by exogenously added BSP peptides. This inhibition is most likely mediated through adhesion receptors of the integrin family that recognize RGD motifs and/or its flanking regions. Clearly, further studies are warranted to establish the relevance of these observations.
tions in the development and treatment of metastatic bone disease in vivo.

REFERENCES

Bone Sialoprotein Peptides Are Potent Inhibitors of Breast Cancer Cell Adhesion to Bone

Gabri van der Pluijm, Hans J. M. Vloedgraven, Boris Ivanov, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/56/8/1948

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.