Growth Inhibition of Human Breast Cancer Cells by 1,25-Dihydroxyvitamin D₃ Is Accompanied by Induction of Apolipoprotein D Expression¹

Yolanda S. López-Boado, Xose S. Puente, Sonsoles Alvarez, Jorge Tolivia, Lise Binderup, and Carlos López-Otin²

ABSTRACT

We have analyzed the effect of 1,25-dihydroxyvitamin D₃ on the expression of the gene encoding apolipoprotein D (apoD), a protein component of the human plasma lipid transport system that is overproduced by a specific subset of breast carcinomas. Northern blot analysis revealed that 1,25-dihydroxyvitamin D₃ strongly up-regulated apoD mRNA levels in T-47D human breast cancer cells in a time- and dose-dependent manner. The potency of this vitamin as an inducer of apoD expression was stronger than the effect observed for such steroid hormones as androgens and progesterone, described previously as hormonal up-regulators of apoD expression in these cells. A time course study demonstrated that the induction of apoD mRNA reached a level of 5-fold over the untreated cells after 48 h of incubation in the presence of 10⁻⁶ M 1,25-dihydroxyvitamin D₃. A dose-response analysis showed that a 10⁻⁴ M concentration of this vitamin consistently induced a maximal accumulation of 7-fold over the control cells. Similar up-regulatory effects on the apoD gene expression were obtained by treatment of T-47D cells with 1,25-dihydroxyvitamin D₃ analogues, including MC 903, which is relatively devoid of hypercalcemic side effects in clinical applications. Western blot analysis revealed that the inductive effect of 1,25-dihydroxyvitamin D₃ was also reflected at the protein level as an increase of immunoreactive protein in the conditioned media of vitamin-treated cells. This increased expression of apoD was accompanied by an inhibition of cell growth and morphological changes in T-47D cells. By contrast, we did not detect any inductive effect of 1,25-dihydroxyvitamin D₃ on apoD gene expression in MDA-MB-231 cells, which are refractory to the growth-inhibitory effects of this compound. On the basis of these results, we propose 1,25-dihydroxyvitamin D₃ as an important regulator of the expression of the apoD gene in breast carcinomas. We also suggest that apoD may be of interest as a biochemical marker of the action of 1,25-dihydroxyvitamin D₃ derivatives in current studies using these compounds as inhibitors of breast cancer cell growth or as chemotherapeutic agents in the prevention of breast cancer.

INTRODUCTION

apoD³ is a component of the human plasma lipid transport system that was first isolated by McConathy and Alaupovic (1). This glycoprotein is mainly associated with high-density lipoprotein particles and consists of a single polypeptide chain of about Mᵋ 30,000, polymorphic in charge and with ability to form disulfide-linked complexes with other lipoproteins (2). Amino acid sequence analysis of apoD has revealed that this glycoprotein exhibits sequence similarity to members of the lipocalin family of proteins, the common function of which is to bind and transport small hydrophobic ligands in the plasma (3). The functional role of apoD in the metabolism of plasma lipoproteins remains unclear, but the finding of complexes with lecithin-cholesterol acyltransferase has led to the proposal that apoD may be involved in the early steps of the cholesterol transport from peripheral tissue to the liver (4). However, recent studies from different groups appear to indicate that apoD is able to bind and transport a wide variety of ligands other than cholesterol, including heme-related compounds (5), progesterone and pregnenolone (6, 7), arachidonic acid (8), or odorant substances (9), thus extending its potential functional significance to a number of different biological processes.

The connection between apoD and breast diseases was established by our observation that apoD accumulates to extremely high concentrations (about 1000-fold higher than in plasma) in cyst fluid from women with gross cystic disease of the breast (7), a benign condition associated with an increased risk of subsequent breast cancer (10–12). These observations were further extended by the finding of a certain type of breast carcinomas that have the ability to produce and secrete this glycoprotein (13–16). Interestingly, analysis of the potential relationship between apoD levels in breast carcinomas and clinical outcome of patients has revealed that low apoD values are significantly associated with a shorter relapse-free survival and poorer survival (16). A hypothesis to explain why apoD is a marker of favorable clinical outcome in women with breast cancer is that these carcinomas possess the required degree of differentiation to synthesize this protein. In fact, apoD values are higher in well-differentiated carcinomas than in moderately or poorly differentiated tumors (16). These data, together with reports showing that apoD transcription in human fibroblasts occurs specifically in nonproliferating cultures (17), and that stimulation of apoD secretion by steroids in breast and prostate cancer cells coincides with inhibition of cell proliferation (18–21), have suggested that apoD expression is a marker of cell differentiation and growth arrest. Consistent with this proposal, we have recently shown that RA, a potent antiproliferative and differentiating agent, strongly induces the expression of apoD in breast cancer cells through a RA receptor α-dependent signaling pathway (22, 23). On this basis, and considering that 1,25-dihydroxyvitamin D₃ has been reported to have differentiating and growth-inhibitory effects on a variety of cancer cell types (24–29), we have examined the possibility that this hormone could also have a stimulatory effect on apoD gene expression in breast cancer cells. In this study, we report that 1,25-dihydroxyvitamin D₃ induces apoD expression in T-47D breast cancer cells in a time- and dose-dependent manner. Similar inductive effects were obtained by treatment of these cells with 1,25-dihydroxyvitamin D₃ analogues including KH 1060 and MC 903. In addition, we show that induction of apoD expression by 1,25-dihydroxyvitamin D₃ is accompanied by a marked inhibition of proliferation of breast cancer cells.

MATERIALS AND METHODS

Materials. All media and supplements for cell culture were obtained from Life Technologies Inc. (Gaithersburg, MD), except for FCS, which was from Boehringer Mannheim (Mannheim, Germany). All-trans-RA, the steroid hormones dihydrotestosterone, dexamethasone, and estradiol, and the fluorescent dye sulforhodamine B were from Sigma Chemical Co. 1,25-Dihydroxyvitamin D₃ and 9-cis-RA were kindly donated by Dr. M. Klaus (F. Hoffmann-La Roche, Ltd., Basel, Switzerland). The 1,25-dihydroxyvitamin D₃ analogues KH 1060 and MC 903 (calcipotriol) were synthesized in the Department of Ciencia y Tecnología and a grant from Glaxo-Wellcome, Spain. X. S. P. is a recipient of a fellowship from FICYT-Asturias (Spain).

Received 5/21/97; accepted 7/14/97.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ This work was supported by Grant SAF94—0892 from Comisión Interministerial de Ciencia y Tecnología and a grant from Glaxo-Wellcome, Spain. X. S. P. is a recipient of a fellowship from FICYT-Asturias (Spain).

² To whom requests for reprints should be addressed. Phone: 34 85 104201; Fax: 34 85 103564.

³ The abbreviations used are: apoD, apolipoprotein D; KH 1060, 20-epi-22-oxa-24α,26α,27α-tri-bromo-1,25-dihydroxyvitamin D₃; RA, retinoic acid; VDR, vitamin D₃ receptor.
Chemical Research, Leo Pharmaceutical Products (Ballerup, Denmark). [32P]dCTP (3000 Ci/mmol), the random priming labeling kit, and the nylon membranes for RNA blots were from Amersham International (Buckinghamshire, United Kingdom).

Cell Culture and Cell Growth Assessment. Human breast cancer cells T-47D and MDA-MB-231 were obtained from the American Type Culture Collection (Rockville, MD) and routinely maintained in DMEM supplemented with 10% FCS and 100 μg/ml gentamicin. Cells were subcultured weekly by incubation at 37°C for 2 min with 0.0125% trypsin in 0.02% EDTA, followed by the addition of complete medium, washing, and resuspension in fresh medium. Cell cultures were maintained at 37°C in a humidified atmosphere of 5% CO₂. In experiments to test the effect of 1,25-dihydroxyvitamin D₃ on cell number, T-47D cells were plated out in 24-well plates and allowed to adhere to substrate for 24 h in DMEM containing 10% FCS. Afterward, serum concentration was reduced to 1%, and 1,25-dihydroxyvitamin D₃ was added at different concentrations. Cells were incubated for 7 days in the presence of 1,25-dihydroxyvitamin D₃ with media changes every 2 days. At the end of the incubation period, the total number of cells was estimated by a fluorometric protein assay (30). Briefly, cells were washed once with 1× PBS and fixed and permeabilized with pure ethanol at 4°C for 1 h. Sulforhodamine B fluorescent dye was added at a final concentration of 0.4% in 1% acetic acid, and the incubation proceeded for 15 min in the dark at room temperature. Finally, plates were washed extensively with 1% acetic acid, prepared for reading by the addition of 500 μl of 10 mM Tris-HCl (pH 10.4), followed by gentle agitation for 10 min, and read in a Cytofluor 2350 system (Millipore Corp., Bedford, MA).

Isolation of RNA and Northern Blot Analysis. Approximately 5 × 10⁵ T-47D or MDA-MB 231 breast cancer cells were plated out in 6-well plates and treated with 1,25-dihydroxyvitamin D₃, 1,25-dihydroxyvitamin D₃ analogues, retinoids, and steroid hormones at the concentrations and for the times indicated. All of these compounds were dissolved in ethanol and added to the growth medium so that the final concentration of ethanol was 0.01% in both control and treated cultures. All procedures involving the use of 1,25-dihydroxyvitamin D₃, 1,25-dihydroxyvitamin D₃ analogues, and retinoids were carried out in subdued light. Total RNA from the cells was isolated as described by Chomczynski and Sacchi (31) and separated by electrophoresis in 1.2% agarose-formaldehyde gels, followed by blotting onto Hybond nylon filters. The integrity of the RNA in the different samples was ascertained by direct visualization of the stained gel and the nylon membrane under UV light.

Filters were prehybridized at 42°C for 2 h in 50% formamide, 5X SSC (1X SSC = 150 mM NaCl, 15 mM sodium citrate, pH 7.0), 2X Denhardt’s (1X Denhardt’s = 0.02% BSA, 0.02% polyvinylpyrrolidone, and 0.02% Ficoll), 0.1% SDS, and 0.1 mg/ml denatured herring sperm DNA and then hybridized for 24 h under the same conditions, using as probes the DNA coding for apoD (3). Probes were labeled with [32P]dCTP by random priming to a specific activity of 1 x 10⁶ cpm/μg DNA. Filters were washed with 1X SSC, 0.1% SDS at 65°C for 2 h and exposed to autoradiography. Densitometry of the X-ray films was carried out with the Biolmage software (Millipore Corp.).

Western Blotting. Cell extracts from T-47D cells were separated on SDS-PAGE gels and then electrophoretically transferred to nitrocellulose membranes using a Trans-Blot apparatus (Bio-Rad) at 0.8 mA/cm² for 90 min in transfer buffer [0.01 M 3-(cyclohexylamino)propanesulfonic acid, 4 mM NaOH, and 10% methanol]. Membranes were blocked with 3% nonfat milk in 1× PBS for 1 h at room temperature and then incubated with antisera against apoD for 1 h at room temperature (dilution, 1:300). Membranes were washed in 0.1% Tween 20 in 1× PBS twice for 15 min each time and then incubated with goat anti-rabbit IgG-horseradish peroxidase conjugate (Sigma; dilution, 1:20000) for 45 min at room temperature. Finally, specific bands were visualized by enhanced chemiluminescence (ECL; Amersham).

RESULTS

Induction of apoD Gene Expression by 1,25-Dihydroxyvitamin D₃ and 1,25-Dihydroxyvitamin D₃ Analogues in Breast Cancer Cells. To evaluate the effect of 1,25-dihydroxyvitamin D₃ on the expression of the apoD gene in human breast cancer cells, estrogen receptor-positive T-47D cells, which express functional 1,25-dihydroxyvitamin D₃ receptor, were treated with 1,25-dihydroxyvitamin D₃, and the levels of apoD mRNA were analyzed by Northern blot. As shown in Fig. 1, treatment of T-47D cells for 48 h with 10⁻⁷ M 1,25-dihydroxyvitamin D₃ resulted in an accumulation of apoD mRNA of approximately 6-fold over control cells. To compare the effect of 1,25-dihydroxyvitamin D₃ on apoD gene expression with other apoD inducers, T-47D cells were also incubated in the presence of RA, which we have described previously as a very strong inducer of apoD expression in estrogen receptor-positive breast cancer cells.

![Fig. 1](cancerres.aacrjournals.org) Effect of 1,25-dihydroxyvitamin D₃ and other hormonal regulators on apoD mRNA levels in T-47D human breast cancer cells. In A, RNA blot analysis was performed using 10 μg of total RNA from T-47D cells incubated for 48 h in the presence of 10⁻⁷ M 1,25-dihydroxyvitamin D₃, all-trans-RA, 9-cis-RA, estradiol, dihydrotestosterone (DHT), and dexamethasone (DEX). RNA was electrophoretically fractionated on a 1.2% denaturing agarose gel and transferred to a nylon membrane. The filters were hybridized with a [32P]labeled apoD probe under stringent conditions. Filters were subsequently hybridized to a human actin probe to ascertain the differences in RNA loading among the different samples. In B, suitably exposed autoradiograms were scanned by using a densitometer, and the signals obtained for apoD were corrected to the signals obtained for actin in the corresponding samples. The results are expressed as relative to the corresponding apoD mRNA levels in control cells.
(22, 23) and the steroid hormones dihydrotestosterone and dexamethasone, well known up-regulators of apoD expression in breast and prostate cancer cells (18–21). According to the results shown in Fig. 1, the potency of 1,25-dihydroxyvitamin D$_3$ as a stimulus for the expression of the apoD gene is intermediate between a maximal induction triggered by the same concentration of all-trans-RA or 9-cis-RA (about 14- and 12-fold, respectively) and the up-regulation observed for the steroid hormones dihydrotestosterone and dexamethasone (about 3-fold in each case; Fig. 1B). However, treatment of T-47D cells with other sex steroids such as estradiol or progesterone (Fig. 1 and data not shown) did not have any effect on apoD gene expression. Similarly, treatment of estrogen receptor-negative breast cancer cells (MDA-MB-231) with 1,25-dihydroxyvitamin D$_3$ did not have any up-regulatory effect on apoD mRNA levels (data not shown). This observation agrees very well with our previous observations showing that apoD mRNA is induced by RA only in estrogen receptor-positive breast cancer cells (22, 23).

To further analyze this stimulatory effect of 1,25-dihydroxyvitamin D$_3$ on apoD expression in breast cancer cells, we also examined by Northern blot the dose-dependence and the time course of the 1,25-dihydroxyvitamin D$_3$-induced enhancement of apoD mRNA levels. As shown in Fig. 2A, treatment of T-47D cells for 48 h with concentrations of 1,25-dihydroxyvitamin D$_3$ ranging from 10^{-6} to 10^{-8} M resulted in the accumulation of apoD mRNA. A maximal induction of approximately 7-fold over the control cells was obtained when cells were incubated in the presence of 10^{-8} M 1,25-dihydroxyvitamin D$_3$ (Fig. 2B), whereas concentrations lower than 10^{-8} M did not produce significant accumulations of apoD mRNA. This represents a narrow range of 1,25-dihydroxyvitamin D$_3$ concentration for the up-regulation of the apoD gene, compared to other stimuli capable of stimulating apoD expression, such as retinoid derivatives, androgens, or glucocorticoids (18–22). The time course of the induction of the expression of the apoD gene by 1,25-dihydroxyvitamin D$_3$ is shown in Fig. 3A. There was a constant increase with time in the steady-state levels of apoD mRNA in T-47D cells treated with 10^{-7} M 1,25-dihydroxyvitamin D$_3$; the maximal effect was reached after 48 h of exposure. Densitometric analysis of the X-ray films revealed that the magnitude of the 1,25-dihydroxyvitamin D$_3$ induction of apoD mRNA was 5- and 4-fold after 48 and 72 h of treatment, respectively (Fig. 3B).

We next examined the possibility that 1,25-dihydroxyvitamin D$_3$ analogues could also stimulate the expression of apoD in breast cancer cells. To this purpose, T-47D cells were incubated for 48 h in the presence of 10^{-7} M concentrations of analogues with normal C20 stereochemistry (MC 903) or with altered C20 stereochemistry (KH 1060), and total cellular RNAs were purified and analyzed by Northern blot. As shown in Fig. 4, treatment of the T-47D cells with these compounds induced an expression of the apoD gene comparable to that observed with 1,25-dihydroxyvitamin D$_3$.

Effect of Cycloheximide and Actinomycin D on apoD mRNA Induction by 1,25-Dihydroxyvitamin D$_3$. As a preliminary step to investigate the mechanism of activation of the expression of the apoD gene by 1,25-dihydroxyvitamin D$_3$, we performed cell culture experiments in the presence of the protein synthesis inhibitor cycloheximide. As shown in Fig. 5, incubation of T-47D cells with cycloheximide (10 µg/ml, added 45 min before 1,25-dihydroxyvitamin D$_3$) extensively prevented the 1,25-dihydroxyvitamin D$_3$-induced accumulation of apoD mRNA. By contrast, and confirming previous observations (22), the induction of apoD mRNA by RA does not depend on new protein synthesis (Fig. 5). In an attempt to examine whether the stimulatory effect of 1,25-dihydroxyvitamin D$_3$ on apoD mRNA was due to an increase of the apoD mRNA half-life, T-47D cells were preincubated with 1,25-dihydroxyvitamin D$_3$ and then transferred to a medium containing actinomycin D, in the presence or absence of 1,25-dihydroxyvitamin D$_3$. Finally, total cellular RNAs were isolated at different times and analyzed by Northern blot. As shown in Fig. 6, there were not significant differences in the amount of apoD mRNA in the presence of different concentrations of 1,25-dihydroxyvitamin D$_3$, and total RNA was analyzed by Northern blot, as described in the legend to Fig. 1. Filters were hybridized consecutively with labeled probes for apoD and actin. In B, autoradiograms were scanned by densitometry, and the values of apoD mRNA in each sample were corrected for differences of total RNA/lane. The results are expressed as relative to the values of control cells.
apoD INDUCTION BY 1,25-DIHYDROXYVITAMIN D₃

growth inhibition, with an 80% decrease in cell number after 7 days, whereas concentrations of 1,25-dihydroxyvitamin D₃ lower than 10⁻⁹ M did not have a significant effect on cell proliferation. Similar results were obtained in previous studies directed to analyze the effect of 1,25-dihydroxyvitamin D₃ on proliferation of these breast cancer cells (32). Furthermore, we performed assays aimed to detect the putative

Enhancement of apoD Levels by Vitamin D₃ in T-47D Breast Cancer Cells. To evaluate the possibility that the stimulatory effect of 1,25-dihydroxyvitamin D₃ on apoD mRNA levels in breast cancer cells was also reflected at the protein level, we performed Western blot analysis of cell extracts from T-47D cells treated with 10⁻⁶ M 1,25-dihydroxyvitamin D₃ for 48 h. As illustrated in Fig. 7, the presence of an immunoreactive band of the expected molecular size (approximately M₉ 24,000) could be clearly detected in 1,25-dihydroxyvitamin D₃-treated T-47D cell extracts, compared to control cells. Also in agreement with the above-described mRNA analysis, the observed increase in apoD protein levels was time and dose dependent (data not shown).

Correlation between Growth Inhibition and apoD Expression Induced by 1,25-Dihydroxyvitamin D₃ in Breast Cancer Cells. Finally, in this work we have studied whether the inductive effect of 1,25-dihydroxyvitamin D₃ on apoD gene expression was correlated with variations in the proliferation rate of T-47D breast cancer cells or in their status of differentiation. As shown in Fig. 8, treatment of T-47D cells in exponential growth phase with 1,25-dihydroxyvitamin D₃ resulted in a decrease in cell number that was concentration dependent. Thus, incubation of T-47D cells in the presence of a 10⁻⁶ M concentration of 1,25-dihydroxyvitamin D₃ caused a maximal

Fig. 3. Time course of the effect of 1,25-dihydroxyvitamin D₃ on apoD mRNA levels. In A, T-47D cells were cultured in the presence of 10⁻⁶ M 1,25-dihydroxyvitamin D₃ for the indicated times, and total RNA from each culture was isolated and analyzed as described in the legend to Fig. 1B. The hybridization signals were quantified by densitometry and correlated with the amount of total RNA as determined from the hybridization signal obtained with the actin probe. Values are represented as corrected by the control values for each time point.

Fig. 4. Effect of 1,25-dihydroxyvitamin D₃ analogues on apoD mRNA levels. RNA blot analysis was performed using 10 μg of total RNA from T-47D cells incubated for 48 h in the presence of 10⁻⁷ M 1,25-dihydroxyvitamin D₃, KH 1060, and MC 903, and total RNA was analyzed by Northern blot as described in the legend to Fig. 1. Filters were hybridized consecutively with labeled probes for apoD and actin.

Fig. 5. Effect of cycloheximide on apoD mRNA induction by 1,25-dihydroxyvitamin D₃. T-47D cells were cultured for 48 h in the presence of 10⁻⁶ M 1,25-dihydroxyvitamin D₃. 10⁻⁶ M all-trans-RA, and 10 μg/ml cycloheximide (CHX), and total RNAs were analyzed as Northern blot as described in the legend to Fig. 1. Filters were hybridized with actin probe to ascertain equal RNA loading among the different samples.
appearance of a more differentiated phenotype in T-47D cells treated with 1,25-dihydroxyvitamin D$_3$. We have shown previously that RA-treated T-47D cells are able to synthesize lipid and protein components characteristic of differentiated breast epithelial cells (22). However, and despite the fact that there was an appreciable change in morphology (Fig. 9), 1,25-dihydroxyvitamin D$_3$-treated T-47D cells did not produce significant amounts of lipids or milk protein components compared to control cells (data not shown).

DISCUSSION

The present data show that the expression of apoD, a member of the lipocalin family of proteins that is overproduced by a subtype of breast carcinomas, is strongly induced by 1,25-dihydroxyvitamin D$_3$ and 1,25-dihydroxyvitamin D$_3$ analogues in T-47D breast cancer cells. The induction of the apoD gene is both time and dose dependant, but within the range of physiological concentrations of 1,25-dihydroxyvitamin D$_3$ (24, 25). In addition, this up-regulation of apoD mRNA levels could be inhibited by cycloheximide, suggesting that new protein synthesis is necessary for the induction of the apoD gene expression. The increase by 1,25-dihydroxyvitamin D$_3$ in the steady-

Fig. 6. Effect of 1,25-dihyroxyvitamin D$_3$ on apoD mRNA stability. T-47D cells were treated for 48 h with 10^{-8} M 1,25-dihydroxyvitamin D$_3$ and extensively washed with fresh culture medium. Transcription was then blocked by the addition of actinomycin D (5 μg/ml), and apoD mRNA expression was studied after various times in the presence or absence of 1,25-dihydroxyvitamin D$_3$. Northern blotting was performed using 10 μg of total RNA, as described in the legend to Fig. 1. The filters were hybridized consecutively with the apoD and the actin probes.

Fig. 7. Immunoblot analysis of apoD in T-47D cells treated with 1,25-dihydroxyvitamin D$_3$. T-47D cells were incubated for 48 h in the presence of 10^{-7} M 1,25-dihydroxyvitamin D$_3$ in DMEM supplemented with 1% FCS, and cell extracts were prepared for protein analysis. Aliquots containing 20 μg of protein were fractionated by SDS-PAGE and transferred to nitrocellulose membranes. Immunoblots were treated with antiserum against apoD (1:500) and subsequently developed.

The present data show that the expression of apoD, a member of the lipocalin family of proteins that is overproduced by a subtype of breast carcinomas, is strongly induced by 1,25-dihydroxyvitamin D$_3$ and 1,25-dihydroxyvitamin D$_3$ analogues in T-47D breast cancer cells. The induction of the apoD gene is both time and dose dependant, but within the range of physiological concentrations of 1,25-dihydroxyvitamin D$_3$ (24, 25). In addition, this up-regulation of apoD mRNA levels could be inhibited by cycloheximide, suggesting that new protein synthesis is necessary for the induction of the apoD gene expression. The increase by 1,25-dihydroxyvitamin D$_3$ in the steady-

Fig. 8. Effect of 1,25-dihydroxyvitamin D$_3$ on cell proliferation in T-47D human breast cancer cells. Twenty-four h after plating, human breast cancer cells were incubated for 7 days in the presence of different concentrations of 1,25-dihydroxyvitamin D$_3$. 1,25-Dihydroxyvitamin D$_3$ was added to the growth medium in alcohol solutions so that the final concentration of ethanol was 0.1% in both control and treated cultures, and media were changed every 2 days. At the end of the incubation period, cell number was determined with a fluorometric protein assay as described under "Materials and Methods." The data are expressed as the mean of quadruplicate wells in two independent experiments; bars, SD. AU, arbitrary units.

state level of apoD mRNA was also reflected at the protein level as an increase of immunoreactive apoD in the 1,25-dihydroxyvitamin D$_3$-treated breast cancer cells. On the basis of these results, 1,25-dihydroxyvitamin D$_3$ should be included among the stimuli previously considered as the major causative agents of apoD-increased expression in breast cancer cells, such as retinoids, androgens, and glucocorticoids (18–23). A comparison of the relative strength of these compounds suggests that 1,25-dihydroxyvitamin D$_3$ may be considered as an apoD gene inducer of intermediate potency, because the magnitude of this effect is higher than that resulting from treatment of human breast cancer cells with androgens and glucocorticoids but lower than the effects observed for retinoids (22, 23). Altogether, the data currently available on apoD regulation in breast cancer cells suggest that a complex interaction may exist in breast tumors between steroid hormones, retinoids, 1,25-dihydroxyvitamin D$_3$, and their receptors to modulate apoD expression, thus resulting in the highly heterogeneous pattern of expression of apoD in breast tumor specimens (16, 33).

In this work, we have also found that this increased expression of the apoD gene in T-47D cells in response to 1,25-dihydroxyvitamin D$_3$ treatment is accompanied by an inhibition of cell proliferation as well as by a marked change in the morphology of the cells. These results agree well with previous data from different groups showing that the biologically active 1,25-dihydroxyvitamin D metabolite, 1,25-dihydroxyvitamin D$_3$, is an important modulator of cellular proliferation and differentiation for many normal and malignant cell types, including breast cancer cells (24–29). However, we did not observe any induction of apoD in response to 1,25-dihydroxyvitamin D$_3$ treatment in estrogen receptor-negative MDA-MB-231 cells, which are not sensitive to the antiproliferative effects of 1,25-dihydroxyvitamin D$_3$ (34). These observations, together with previous findings showing that apoD induction by RA is also concomitant with cell growth inhibition and differentiation in estrogen receptor-positive breast cancer cells (22, 23), give additional support...
growth arrest, and differentiation of breast cancer cells are not a specific response to 1,25-dihydroxyvitamin D₃ and can be extended to structurally diverse 1,25-dihydroxyvitamin D₃ analogues. This observation may be of interest if we consider that some of these derivatives possess potent effects as regulators of growth and differentiation of breast cancer cells but have a decreased risk of inducing calcemic side effects, which is currently a major limitation for the clinical usefulness of 1,25-dihydroxyvitamin D₃.

At present, the molecular mechanisms responsible for the marked up-regulatory effect of 1,25-dihydroxyvitamin D₃ and its synthetic analogues on apoD mRNA in T-47D cells are unknown. However, it is tempting to speculate that they are mediated by the nuclear VDR, which is a member of the steroid-thyroid hormone receptor superfamily (39). In support of this hypothesis, VDR is expressed at significant levels in T-47D breast cancer cells, whereas it is virtually undetectable in MDA-MB-231 cells (34), in which no effect on apoD expression is observed after 1,25-dihydroxyvitamin D₃ treatment. Furthermore, the presence of high affinity intracellular VDRs has been clearly demonstrated in a significant percentage of human breast carcinomas (40, 41). Upon binding to its ligand, VDR could regulate the transcription of the apoD gene through binding to specific regulatory elements present in its promoter region. However, it is well established that besides genomic effects, 1,25-dihydroxyvitamin D₃ is also responsible for changes in signal transduction pathways, including regulation of intracellular calcium concentrations, protein kinase C activity, or formation of cyclic nucleotides (25). These nongenomic changes could also have an effect on the observed induction of apoD expression in breast cancer cells. Structural and functional characterization of the promoter region of the apoD gene, now in progress, will be very useful to further clarify the precise role of 1,25-dihydroxyvitamin D₃ and their derivatives in the induction of this gene in breast cancer cells. Finally, the identification of biochemical markers like apoD that are modulated by vitamin D derivatives and whose expression correlates with the cessation of proliferation and the induction of differentiation of breast cancer cells could be of interest in the context of present studies on the value of these compounds as new chemotherapeutic agents in the prevention of breast cancer.

ACKNOWLEDGMENTS

We thank Dr. M. Klaus for kindly providing us with retinoids and 1,25-dihydroxyvitamin D₃, and Drs. G. Velasco, M. Balbín, and J. A. Uría for helpful comments on the manuscript.

REFERENCES

Growth Inhibition of Human Breast Cancer Cells by 1,25-Dihydroxyvitamin D₃ Is Accompanied by Induction of Apolipoprotein D Expression

Yolanda S. López-Boado, Xose S. Puente, Sonsoles Alvarez, et al.

Cancer Res 1997;57:4091-4097.