Multigenerational Effects of Dietary Fat Carcinogenesis in Mice

Bruce E. Walker and Lori A. Kurth
Anatomy Department, Michigan State University, East Lansing, Michigan 48824-1316

Abstract

The possibility of multigenerational transmission of a carcinogenic effect from exposure to a maternal diet high in fat was tested in mice. Diets with 2.6% or 29% fat (by weight) were fed to strain CD-1 mice during pregnancy. The female offspring were raised on a control diet (10% fat), mated, and continued on the control diet through pregnancy. Their female offspring were raised to terminal illness and autopsied. The total number of reproductive system tumors, pituitary tumors, and metastases was increased in the offspring with ancestral exposure to high dietary fat but to a lesser extent than had been reported previously for direct prenatal exposure to high maternal dietary fat. Because previous work has given evidence against germ cell transmission, a hypothesis based on a maternal effect was offered to explain the multigenerational carcinogenesis. These results have implications for epidemiological studies.

Introduction

The frequency of breast, corpus uteri, and ovarian cancer varies widely between countries, and these differences parallel differences in levels of dietary fat (1, 2). However, adult consumption of fat within a country does not parallel the frequency of breast cancer (3, 4). The alternative is that the sensitive period is earlier in life. Experiments on mice and rats have shown an increase in tumors among the offspring of dams on a high fat diet during pregnancy compared to offspring of dams on a low fat diet (5, 6). This result is consistent with evidence of a higher rate of breast cancer in the offspring of Japanese migrants to California compared to their parents (7). Because the rate of breast cancer can be five times as great in a country with a high fat diet compared to a country with a low fat diet, the potential for cancer reduction in the next generation by reducing fat intake during pregnancy is very great. An appropriate question concerning this potential reduction is whether there would be any multigenerational carry-over of the high fat carcinogenesis, because carry-over effects of another nutritionally related condition have already been reported in a human population (8). This issue would be important to the interpretation of epidemiological studies if populations converting from high fat to low fat diets could be found. Also, the multigenerational behavior of high fat carcinogenesis might contribute information relevant to understanding the carcinogenic mechanism, as in the case of DES3 multi

Results and Discussion

The average age at terminal illness was 22.98 ± 0.62 months, with a range of 12 to 31 months for mice with ancestral exposure to low fat. The average age for mice with ancestral exposure to high fat was 20.8 ± 0.75 months with a range of 24 to 33 months. These age distributions differed significantly (P < 0.05). The frequency of tumors in these two groups is shown in Table 1. Inclusion of these two types of tumors is justified by past evidence on the tendency for pituitary tumors to be uncommon except after prenatal exposure to high fat (5, 11). This is in contrast to past experiments with direct prenatal exposure to dietary fat in which exposure to high fat produced significantly more tumors of these organs (5, 11). If pituitary tumors and metastases are included in the tally, then there are significantly more tumors in the mice with high fat ancestry than in those with ancestral exposure to low fat (Table 1). Inclusion of these two types of tumors is justified by past evidence on the tendency for pituitary tumors to be more common after high fat exposure and for metastatic tumors to be uncommon except after prenatal exposure to high fat (5, 11).

A reasonable conclusion is that tumor frequency is substantially reduced one generation after prenatal exposure to a maternal high fat diet, but that there is some carry-over of carcinogenic effect. Thus, epidemiological studies of populations switching from high fat in the maternal diet to low fat would not be expected to show as great a difference in frequency of reproductive system tumors as is seen between countries with stable use of these types of diets. The evidence that there is a low level of carcinogenic carry-over to the generation...
without direct high fat exposure provides some evidence for the mechanism of carcinogenesis from prenatal exposure to high fat. It can be contrasted to the multigenerational effect of DES, where a significant effect on reproductive system tumors was seen both at one generation (12) and two generations (9) after cessation of high fat prenatal exposure. Because DES carcinogenicity can be transmitted by the male (13) and by blastocyst transfer (14), transplacental exposure to DES apparently affected the germ cells. In contrast, transfer of blastocysts between pregnant mice on low and high fat diets gave no indication of a germ cell effect (15). Thus, the multigenerational effect of high fat is likely to be caused by a maternal effect. A mechanism proposed to explain the carcinogenicity of dietary fat is altered sex differentiation of the brain (16). A diet high in fat increases blood levels of fatty acids, and the latter displace estrogen from steroid-binding proteins in the blood. The free estrogen is not protected from enzymatic digestion and systems dependent on estrogen, such as the developing sexually dimorphic nucleus of the fetal brain, are expected to be adversely affected (17). Consistent with this expectation, rats exposed prenatally to a high fat diet show a reduction in the size of the sexually dimorphic nucleus of the hypothalamus.4 This could potentially alter hormone balance later in life (18) and predispose to reproductive system cancer (19). In respect to multigenerational transmission of dietary fat carcinogenesis, if the prenatally exposed animal became pregnant, it might provide an abnormal hormone environment for its developing fetus. Because differentiation of the fetus’s sexually dimorphic nucleus is dependent on hormone levels (18), it might thus be altered. Conditions would then be repeated for a potentially cancer-promoting abnormality of hormone balance later in life and a predisposition to cancer of the reproductive system in these mice with only ancestral exposure to high dietary fat.

References
Multigenerational Effects of Dietary Fat Carcinogenesis in Mice

Bruce E. Walker and Lori A. Kurth


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/19/4162

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.