Hypermutablety of UV-treated Plasmsds in Dysplastic Nevus/Familial Melanoma Cell Lines

Shin-Ichi Moriwaki,1 Robert E. Tarone, Margaret A. Tucker, Alisa M. Goldstein, and Kenneth H. Kraemer2

ABSTRACT

Members of cutaneous melanoma (CM) families with dysplastic nevi (DN) are at high risk of developing CM. Using a shuttle vector plasmid, pSP189, cell lines from three patients with CM plus DN were previously found to have elevated post-UV plasmid mutability. To investigate familial occurrence of this cellular phenotype, we examined post-UV plasmid mutability in 31 lymphoblastoid cell lines from 6 familial CM kindreds. In comparison to 16 normal control lines, we found an abnormally elevated post-UV plasmid mutability in cell lines from 13 of 13 patients with CM plus DN (P = 1.5 × 10^-8) and from 5 of 8 patients with DN only (P = 0.001). Elevated spontaneous plasmid mutation frequency (MF) was also present in cell lines from six of the CM plus DN patients (P = 0.002) and three of the DN-only patients (P = 0.028). However, cell lines from two patients with CM without DN had normal post-UV plasmid MF. Although not specific for CM patients, of 27 cell lines with elevated post-UV plasmid MF, only 8 were from donors who did not have CM + DN or DN (19 of 24 versus 8 of 28; P = 0.0003). This study indicates that post-UV plasmid hypermutability is a laboratory marker for members of melanoma-prone families and suggests that patients with familial CM have a defective mechanism for handling UV-induced DNA damage.

INTRODUCTION

Approximately 8–12% of melanoma cases occur in people with a history of CM in a blood relative (1, 2). DN are morphologically atypical moles that are more irregular and often larger than common pigmented moles and have a characteristic histological appearance with nuclear atypia and a disorderly growth pattern of melanocytes (3–5). These lesions are both markers of people with increased risk of melanoma and are precursors of melanoma. Members of CM families with DN are at extremely high risk of developing CM (relative risk elevated about 100-fold; Refs. 2 and 6). However, the mechanism of this increased melanoma risk is not understood.

Sunlight has been implicated in induction of CM and DN (7, 8), and there is clinical evidence for sun sensitivity in patients with familial CM. There have been occasional reports of hypersensitivity to killing by UV in cells from patients with familial CM and DN (9, 10), but this has not been a consistent finding (11, 12). Earlier studies have shown that several cultured cell lines from CM patients with CM and DN are hypermutable to UV (10, 11). Recently, shuttle vector plasmids have been developed that permit the assessment of the extent of induction of post-UV mutagenesis in DNA replicated in human cells (13, 14). In pilot studies, we demonstrated UV hypermutability in a shuttle vector plasmid replicated in cell lines from three patients with CM who had severe involvement with CM plus DN (15, 16). The present study was designed to investigate familial occurrence of this cellular phenotype.

Received 6/4/97; accepted 8/16/97.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Present address: Department of Dermatology, Hyogo Prefectural Amagashi Hospital, Hyogo 660, Japan.
2 To whom requests for reprints should be addressed, at Laboratory of Molecular Carcinogenesis, National Cancer Institute, Building 37, Room 3E24, Bethesda, MD 20892. Phone: (301) 496-9033; Fax: (301) 496-8419; E-mail: kraemerk@nih.gov.
3 The abbreviations used are: CM, cutaneous melanoma; DN, dysplastic nevi; MF, mutation frequency; XP, xeroderma pigmentosum.
UV HYPERMUTABILITY IN FAMILIAL MELANOMA

Table 1 Lymphoblastoid cell lines studied from melanoma-prone families

<table>
<thead>
<tr>
<th>Family no.</th>
<th>Blood-line family members</th>
<th>Spouses*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CM + DN</td>
<td>CM only</td>
</tr>
<tr>
<td>342</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>373</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>479</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>567</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>928</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1017</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>

* Spouses of blood-line family members.

(Advanced Graphics Software, Inc., Carlsbad, CA). Comparisons of proportions of cell lines with elevated plasmid mutation frequencies were performed with Fisher’s exact test. Two-tailed Ps are reported throughout.

RESULTS

Post-UV Plasmid Mutation Frequency. The post-UV plasmid MF was determined for cell lines from 13 donors who had both CM and DN (Fig. 1). These donors, from all six families studied (Table 1), ranged in age from 17 to 64 years. All 13 cell lines showed elevated post-UV plasmid MF compared to the 95% prediction interval for the normal donors in the same age range (21). This difference is highly significant (P = 1.5 × 10^-6; Table 2).

Post-UV plasmid MF was determined for cell lines from two donors with CM who were not observed to have DN (Fig. 1 and Table 2). Both donors were more than 70 years old, and their cells lines showed normal post-UV plasmid MF.

Eight donors in four families had DN only (Table 1). They ranged in age from 17 to 53 years. Cell lines from all four donors with DN from family 928 showed elevated post-UV plasmid MF, as did one of two cell lines from family 479 (Fig. 1). Thus, cell lines from five of eight donors with DN only showed elevated post-UV plasmid MF (P = 0.001; Table 2).

Eight blood-line family members in three kindreds who had neither melanoma nor DN were studied. Six of these were postpubertal (ages 17–64 years) and were considered clinically unaffected, whereas two had not passed puberty (ages 16 and 8 years) and were classified as indeterminate (Table 1). Cell lines from four of the unaffected individuals and one of the indeterminate individuals had elevated post-UV plasmid MF (Table 2). The cell line with the highest post-UV plasmid MF (12.8%) came from a 40-year-old family member who had approximately 100 moles. None of his moles was considered to be dysplastic on clinical examination, and the four moles examined histologically showed no evidence of dysplasia.

Cell lines from four normal spouses of blood-line family members and from one spouse who had DN (Table 1) were examined. These donors from three kindreds ranged in age from 39 to 87 years. Post-UV plasmid MF was elevated in three of the cell lines from the normal spouses and from one spouse with DN (Table 2).

As shown in Table 2, a total of 52 cell lines was examined. Of 27 cell lines with elevated post-UV plasmid MF, 19 were from the 24 donors with CM plus DN or DN, whereas only 8 were from the 28 donors who did not have CM or DN (P = 0.0003).

Spontaneous Plasmid Mutation Frequency. Spontaneous plasmid MF was determined in the cell lines from normal donors (21). The calculated spontaneous plasmid MF at birth was 0.14% and increased to 0.21% at age 100 years. Thus, the spontaneous MF increased approximately 0.4% per year of age, although the increase was not statistically significant. Fig. 2 shows the 95% prediction interval for the spontaneous plasmid MF. All 16 normal donors tested had values within this 95% prediction interval. Six of the cell lines from donors who had CM and DN and three of the cell lines from donors who had DN only showed elevated spontaneous plasmid MF (Fig. 2 and Table 2). Six of these were from donors in family 928 (three with melanoma plus DN and three with DN only). All of the cell lines with elevated spontaneous plasmid MF also had elevated post-UV plasmid MF.

Cell lines from none of the spouses and from only one of the clinically unaffected blood-line family members showed elevated spontaneous plasmid MF (Table 2). Of 10 cell lines with elevated spontaneous plasmid MF, only 1 was from a donor who did not have CM or DN (9 of 24 versus 1 of 28; P = 0.003).

Plasmid Survival. The post-UV normalized relative plasmid survival for the 16 cell lines from normal donors was 4.7 ± 0.6%
UV HYPERMUTABILITY IN FAMILIAL MELANOMA

Table 2 Summary of plasmid MF data in lymphoblastoid cell lines from blood-line family members and controls

<table>
<thead>
<tr>
<th>Clinical diagnosis</th>
<th>Total no.</th>
<th>Elevated post-UV plasmid MF</th>
<th>Elevated spontaneous plasmid MF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>P^a</td>
</tr>
<tr>
<td>Blood-line family members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma + DN</td>
<td>13</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>Melanoma only</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DN only</td>
<td>8</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>Clinically unaffected</td>
<td>6</td>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>Clinically indeterminate</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal donors</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Normal spouses</td>
<td>4</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>DN spouse</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a Two-tailed P using Fisher's exact test comparing indicated group to normal donors.

*b P undefined.

** Post-UV plasmid mutation frequency data from Ref. 21.

* Spouses of blood-line family members.

(mean ± SE). There was no evidence of a change in plasmid survival with age. The 95% prediction interval ranged from 0 to 10.8%. The post-UV relative plasmid survival was within the 95% prediction interval for all 16 normal control cell lines (data not shown).

As in the studies with the replicating shuttle vector plasmid (15, 16) or with a nonreplicating plasmid (23), post-UV relative plasmid survival was not lower than normal with cell lines from patients with CM or DN (data not shown). The post-UV relative plasmid survival was elevated with cell lines from two patients with CM from family 479 (35-year-old woman with CM plus DN, 19%; 74-year-old man with CM only, 20%) and with one cell line from a patient with DN only in family 928 (17-year-old woman, 10.8%). Cell lines from two clinically unaffected blood-line family members also showed elevated post-UV plasmid survival (17-year-old man in family 1017, 22.5%; 28-year-old woman in family 928, 11.7%). The post-UV relative plasmid survival was within the 95% prediction interval for all of the other cell lines examined. The proportion of cell lines from blood-line family members with elevated post-UV relative plasmid survival was not significantly different from the normal controls (5 of 31 versus 0 of 16; $P = 0.15$).

DISCUSSION

Shuttle Vectors and DNA Repair. Shuttle vectors have been used to measure the ability of cells to repair damaged DNA. This host cell reactivation assay is dependent on cellular systems to repair the damage in plasmid DNA. Plasmids have been developed to measure DNA repair, UV hypersensitivity, and UV mutagenesis in human cells (13, 14, 24). Use of plasmids that are damaged in vitro ensures that the DNA damage is the same in all cells and permits a rapid assessment of survival and mutagenesis. Abnormalities have been reported in cells from patients with XP (24-29), Cockayne syndrome (30), and trichothiodystrophy (31, 32) and in apparently normal individuals with nonmelanoma skin cancer (33). Earlier studies reported normal post-UV plasmid reactivation (23) and increased plasmid mutability in lymphoblastoid cell lines from three patients with CM plus DN (15, 16). The present study examines whether this plasmid post-UV hypermutability phenotype is present in cell lines from members of melanoma-prone families with different degrees of clinical involvement, including less severely affected family members and normal controls.

XP and Familial CM. We used XP as a model for human melanoma susceptibility with post-UV hypermutability (34). XP patients have increased melanoma frequency, multiple pigmented lesions, and clinical sun sensitivity (34, 35). The diagnosis of XP is based on clinical features plus the laboratory detection of abnormalities, including cellular and plasmid UV hypersensitivity, hypermutability, and defective DNA repair. The "variant" form of XP is characterized by the clinical features of XP, including melanoma, along with normal or nearly normal post-UV cell survival, elevated cellular and plasmid post-UV MF, and normal unscheduled DNA synthesis (27, 36). Many of the clinical and laboratory features present in XP variants are found in familial CM. Familial CM patients have increased melanoma frequency, multiple pigmented lesions (which are usually different histologically from those in XP), and sun sensitivity. Like XP variant patients, unscheduled DNA synthesis is normal in familial CM. However, unlike the XP variant, there is no abnormality in postreplication...
This cell line also showed elevated post-UV plasmid MF. Thus the melanoma patient who had a translocation of chromosome 9 (38, 39) and neity (19, 20, 41, 42, 45). Post-UV plasmid MF was elevated in cell lines from all 13 individuals with CM plus DN in the 6 families studied (Table 2) and was also seen in cell lines from the 5 of 8 family members with DN alone, a melanoma risk factor. Post-UV plasmid hypermutability thus appears to be more closely associated with CM plus DN than with CM alone because cell lines from 2 individuals with CM without DN had normal post-UV plasmid MF (13 of 13 versus 0 of 2, P = 0.01; Table 2). However, these two patients were both in their 8th decade (Fig. 1) and might have had DN earlier in life.

Post-UV plasmid hypermutability was also found in cell lines from four of six clinically normal blood relatives (Table 2). These six individuals were in families 479, 928, and 1017, but they did not have the p16 germ-line mutations that were found in their relatives with melanoma (19). One of these clinically normal family members had more than 100 nevi, a recognized melanoma risk factor (37), and his father was the spouse with DN and elevated post-UV plasmid MF (Table 2). The detection of post-UV plasmid hypermutability in cell lines from one of two indetermined blood relatives may indicate an increased melanoma risk in that individual. The finding of post-UV plasmid hypermutability in cell lines from 3 of 4 normal spouses but in 0 of 16 normal controls (P = 0.003) is unexplained. Perhaps acquired factors may also affect post-UV plasmid hypermutability.

Post-UV plasmid hypermutability is not specific to familial CM. As indicated above, previous studies of cell lines from patients with XP in complementation groups A (25), C (29), D (26), F (28), and variant (27), as well as from a patient with Cockayne syndrome (30), also showed elevated post-UV plasmid hypermutability.

Melanoma Gene. There is evidence for genes for melanoma susceptibility on chromosomes 9p21 (p16; Refs. 19, 38, and 39), 12q13 (CDK4; Refs. 20 and 40), and 1p36 (41–44). Previous analyses of some of the kindreds that we examined showed significant evidence of linkage to chromosomes 1p, 12q, and 9p as well as genetic heterogeneity (19, 20, 41, 42, 45). Post-UV plasmid MF was elevated in cell lines from individuals with CM plus DN in all six kindreds that we studied. We also examined a lymphoblastoid cell line from a sporadic melanoma patient who had a translocation of chromosome 9 (38, 39). This cell line also showed elevated post-UV plasmid MF. Thus the elevated post-UV plasmid MF appears to be associated with CM patients who have abnormalities on different chromosomes.

Hypermutability: Mechanism. Our studies indicate that cells from patients with familial CM have normal post-UV plasmid survival with increased plasmid post-UV mutability. These observations suggest that the cells have a defective mechanism for handling DNA damage. Cells from patients with XP complementation groups A–G have post-UV plasmid hypermutability with decreased post-UV plasmid survival associated with defects in DNA excision repair (34), whereas XP variant cells have a similar phenotype to the familial CM cells in association with defects in postreplication repair (34). Cockayne syndrome cells with elevated post-UV plasmid mutability (30) have decreased post-UV plasmid survival and normal excision repair of the bulk DNA but a defect in repair of actively transcribing genes. Neither these defects or other mechanisms have been identified in cells from patients with familial CM (9–12). Studies with Escherichia coli have demonstrated that defects in polymerase III (46) or RecA (47–49) may lead to post-UV hypermutability with normal cell survival. Abnormalities in CDC7, a protein kinase involved in cell cycle regulation, have been associated with cellular hypermutability and normal post-UV cell survival in yeast (50). The melanoma susceptibility genes p16 and CDK4 are also involved with cell cycle regulation (19, 20). A related protein kinase involved in cell division control, CDC2L1 (p58; Ref. 51), is located on chromosome 1p36 near a gene for melanoma susceptibility. Abnormalities in recovery of the integrity of chromosomes of cultured cells exposed to x-irradiation in the G2 phase of the cell cycle have been reported in cells from patients with a large number of cancer-prone disorders, including familial CM and XP (52, 53). This study suggests that patients with familial CM have a defective mechanism for handling UV-induced DNA damage.

REFERENCES

4 S-I. Moriwaki, A. Bale, and K. H. Kraemer, unpublished data.

Downloaded from cancerres.aacjournals.org on April 14, 2017. © 1997 American Association for Cancer Research.

Hypermutability of UV-treated Plasmids in Dysplastic Nevus/Familial Melanoma Cell Lines

Shin-Ichi Moriwaki, Robert E. Tarone, Margaret A. Tucker, et al.