Frequent Inactivation of PTEN/MMAC1 in Primary Prostate Cancer

Paul Cairns, Kenji Okami, Sarel Halachmi, Naomi Halachmi, Manel Esteller, James G. Herman, Jin Jen, W. B. Isaacs, G. Steven Bova, and David Sidransky

Head and Neck Cancer Research, Department of Otolaryngology (P. C., K. O., S. H., N. H., J. J., D. S.), Oncology Center (M. E., J. G. H., W. B. I., D. S.), Departments of Urology (W. B. I.) and Pathology (G. S. B.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

Sporadic prostate carcinoma is the most common male cancer in the Western world, yet many of the major genetic events involved in the progression of this often fatal cancer remain to be elucidated. Numerous cytogenetic and allelotype studies have reported frequent loss of heterozygosity on chromosomal arm 10q in sporadic prostate cancer. Deletion mapping studies have unambiguously identified a region of chromosome 10q23 to be the minimal area of loss. A new tumor suppressor gene, PTEN/MMAC1, was isolated recently at this region of chromosome 10q23 and found to be inactivated by mutation in three prostate cancer cell lines. We screened 80 prostate tumors by microsatellite analysis and found chromosome 10q23 to be deleted in 23 cases. We then proceeded with sequence analysis of the entire PTEN/MMAC1 coding region and tested for homozygous deletion with new intragenic markers in these 23 cases with 10q23 loss of heterozygosity. The identification of the second mutational event in 10 (43%) tumors establishes PTEN/MMAC1 as a main inactivation target of 10q loss in sporadic prostate cancer.

Introduction

Sporadic prostate carcinoma is the most common male cancer in the Western world and the second leading cause of male cancer deaths in the United States (1). Adult sporadic cancers are known to arise through the accumulation of multiple genetic events (2). Several of these genetic events have been identified in prostate cancer, including ras oncogenic activation (3) and inactivation of the tumor suppressor genes Rb, p53, and CDKN2a (4—6). A hereditary prostate cancer gene has been localized to chromosome 1q24—25 (7), but LOH of this region is rarely implicated in sporadic prostate cancer (8). The most frequent genetic events in prostate cancer have been consistently identified as LOH of 8p, 10q, 13q, and 16q in cytogenetic, allelotype, and comparative genomic hybridization studies of sporadic prostate tumors (9—14). Deletion mapping studies have unambiguously identified a region of chromosome 10q23 to be the minimal area of loss (15—17). The target of inactivation on this chromosomal arm remains to be identified.

Recently, a tumor suppressor gene on chromosome 10q23, PTEN/MMAC1, was cloned, and somatic mutations were identified in glioma, breast, and prostate tumor cell lines (18, 19). PTEN/MMAC1 has also been identified as the gene predisposing to Cowden disease (20), an autosomal dominant cancer predisposition syndrome associated with an increased risk of breast, skin, and thyroid tumors and occasional cases of other cancers but not prostate cancer (21, 22). A high frequency (30—60%) of 10q LOH has been reported in prostate cancer (11, 12, 15—17), and LOH of 10q probably represents the most frequent genetic event after 8p LOH. A candidate gene, MXII, has been identified at distal 10q23; however, recent mapping studies have unambiguously identified the more proximal 10q23 region as the minimal region of loss (15—17). Moreover, clonal mutations of MXII have not been described in prostate tumors with loss of 10q (15, 23).

We screened 80 prostate tumors by microsatellite analysis and found chromosome 10q23 to be deleted in 23 cases. Sequence analysis of the entire PTEN/MMAC1 coding region and screening for homozygous deletion with new intragenic markers in these 23 cases with 10q23 LOH identified the second mutational event in 10 (43%) tumors establishing PTEN/MMAC1 as a main inactivation target of 10q loss in sporadic prostate cancer.

Materials and Methods

Tumor and Constitutional DNA. Prostate tumor specimens were obtained from patients undergoing radical prostatectomy and frozen immediately. Normal tissue or peripheral blood collected in EDTA was obtained from each patient as a normal control. Twenty tumors were obtained from pelvic lymph node metastases. The mean Gleason score for the 60 clinically localized tumors was 7.4 (SD 1.1) with a range of 5—9. None of the patients included in the study had been treated previously with chemotherapy or hormone therapy. Neoplastic cells were microdissected from frozen sections, and leukocytes were pellet from blood samples before extraction and purification of DNA (24).

PCR Amplification and LOH Analysis. DNA from tumor and venous blood was analyzed for LOH by amplification of microsatellite repeat-containing sequences using PCR and the conditions described previously (25). For informative cases, allelic loss was scored if the intensity of signal from one allele was significantly reduced (>30%) in the tumor DNA when compared to the normal DNA. Primer sequences for D10S581, D10S357, D10S1744, D10S1687, D10S215, D10S541, D10S583, D10S185, and D10S221 are available from Research Genetics (Huntsville, AL) or the Genome Database (Johns Hopkins University). For analysis of heterozygosity status using the intron 8 polymorphism, normal and tumor DNAs were separately amplified with exon 8 primers (20, 26), and the PCR product was digested with Hph1 according to the manufacturer’s instructions (New England Biolabs, Inc., Beverly, MA) before separation of alleles on a 1.8% agarose gel.

PCR Amplification and Cycle Sequencing of PTEN/MMAC1. Fifty ng of genomic template DNA were amplified with primers for exons 1—9 of PTEN/MMAC1 at 95°C for 30 s, 50—58°C for 1 min, and 72°C for 1 min for 30—35 cycles, with a final extension step at 72°C for 5 min. The resulting PCR product was cycle sequenced according to the manufacturer’s instructions (Perkin-Elmer, Roche Molecular Systems, Inc., Branchburg, NJ) and run on a 6% acrylamide gel. The primer sequences used for amplification and sequencing of the gene were as described in Liaw et al. (20) and Wang et al. (26). Sequence changes were confirmed by reamplification and resequencing of tumor DNA and corresponding normal DNA.

Isolation of Microsatellite Markers. The human genomic BAC clones 265 and 60 containing the PTEN/MMAC1 gene were subcloned into Bluescript and plated. Colonies were lifted onto nylon membranes and screened with the microsatellite repeat oligomer, (GT)10. Two of the microsatellite blocks isolated were found to be polymorphic and have been designated D10S2491 and D10S2492. The primer sequences used for PCR amplification are as follows: D10S2491 F, 5’-GTAGATAGAGTACCTGACTC-3’; D10S2491 R, 5’-TTATAAGGACTGAGTGAGGGA-3’; D10S2492 F, 5’-GAGTTGAAGCTGGTAAAC-3’; and D10S2492 R, 5’-TGTTTCTCTTACTACCTAT-4997
D10S2492 was used only on cases noninformative for D10S2491. GTGA-3'. Both markers have alleles in the size range of 130–150 bp and amplify well at an annealing temperature of 55°C. D10S2491 was informative in 82% of cases and D10S2492 in 20% of cases. Microsatellite marker D10S2492 was used only on cases noninformative for D10S2491.

FISH Procedure. Frozen tissue was sectioned onto slides and dried. Slides were dehydrated in an ethanol series, denatured in formamide, dehydrated in an ice-cold ethanol series, and air dried. DIGoxigenin-labeled PTEN/MMAC1 BAC probe and biotin-labeled chromosome 10 centromere α satellite probe (Oncor, Gaithersburg MD) were hybridized to the slides overnight at 37°C. Slides were washed and detected with rhodamine-anti-digoxigenin and FITC-avidin and counterstained with 4',6-diamidino-2-phenylindole. Nuclei were analyzed, and images were captured by an Oncor Image analyzing system (27). Over 200 nuclei were counted without prior knowledge of the mapping data. The copy number of each probe was determined as the predominant number of signal(s) per nuclei (chromosome mode) for neoplastic and normal cells. Two signals were observed for the chromosome 10 centromere probe, 10 α satellite, in 69% of normal lymphocytes and 55% of neoplastic cells. No signal for the PTEN/MMAC1 BAC probe was observed in 86% of neoplastic cells.

Methylation Analysis. One hundred ng of primary tumor DNA was denatured by NaOH and modified by sodium bisulfite. DNA samples were then purified using Wizard DNA purification resin (Promega Corp., Madison, WI), again treated with NaOH, precipitated with ethanol, and resuspended in water. PCR was performed separately with methylation-specific primers and nonmethylation-specific primers for each tumor sample (28). Controls without DNA and positive controls for unmethylated and methylated reactions were performed for each set of PCR. PCR reactions were analyzed on nondenaturing 6% polyacrylamide gels, stained with ethidium bromide, and visualized under UV illumination.

Results and Discussion

To determine the frequency of LOH of chromosome 10q and to identify tumors for eventual sequence analysis, we screened 80 prostate tumors with a panel of microsatellite markers (Fig. 1a) spanning the region of interest on chromosome 10q. We found LOH in 26 (32%) tumors at two or more markers on 10q. We observed 13 cases of LOH at all informative markers spanning 10q, indicative of loss of the whole chromosome arm (monosomy). Five tumors retained proximal 10q but showed LOH for the rest of the q arm including PTEN/MMAC1. Five tumors showed localized LOH indicative of small deletions around PTEN/MMAC1 at 10q23. In total, 23 of 26 tumors had LOH through PTEN/MMAC1 (2 cases of proximal 10q LOH and 1 case of distal LOH excluded PTEN/MMAC1).

Because the initial reports of PTEN/MMAC1 mutation also described frequent homozygous deletion of the gene in tumor cell lines (18, 19), we searched for these homozygous deletions in primary tumors. To reliably detect homozygous deletion in primary tumors, we preferred to assess apparent retention of heterozygosity at the gene of interest in tumors with LOH of flanking markers (6). The apparent retention of heterozygosity is due to amplification of DNA from normal cells contaminating the tumor specimen and correlates with homozygous deletion assessment by Southern and FISH analysis (6). We screened the prostate tumors with the closest mapped flanking markers to PTEN/MMAC1 (D10S215 and D10S541); however, in one of the initial reports, approximately one-half of the homozygous deletions did not extend to these flanking markers (18). We, therefore, obtained two overlapping human BAC clones that together contained the entire genomic PTEN/MMAC1 gene (18) and screened for microsatellite blocks with a GT oligomer. We isolated several microsatellite blocks, two of which were found to be polymorphic. We then screened the prostate tumors using the new markers (D10S2491 and D10S2492), which map within PTEN/MMAC1, and a single bp polymorphism in intron 8 (26) to detect homozygous deletion in the 23 tumors with 10q LOH.

We found six cases of homozygous deletion of PTEN/MMAC1 in these 23 primary prostate tumors (26%), as indicated by apparent retention of heterozygosity (Fig. 1a). The homozygous deletions were small, <2 cM of a chromosome that is 181.7 cM in size (29), and...
tumor contained a 4-bp deletion at the donor splice site of intron 3, and the fourth tumor demonstrated a 9-bp deletion in exon 8. All four mutations are predicted to result in a truncated protein.

Tumor suppressor genes in general, and CDK2 in particular, can be inactivated by epigenetic methylation of the promoter, resulting in complete blocking of transcription (31). We also investigated promoter methylation as a possible inactivation mechanism of the retained allele of PTEN/MMAC1 in all the tumors with 10q LOH but without homozygous deletion or point mutation. However, using methylation-specific PCR (28) with appropriate controls, we found no evidence of PTEN/MMAC1 promoter methylation (Fig. 3).

According to Knudson’s two-hit hypothesis (32), tumor suppressor gene function is lost by independent inactivation events of both parental alleles. We detected the second inactivation event at PTEN/MMAC1 in 10 of 23 (43%) prostate tumors with LOH of 10q23. This result is still likely to be an underestimation, because we did not search for sequence mutations in the promoter or regulatory regions, did not sequence tumors without LOH (potentially harboring point mutations of both alleles), and almost certainly missed some small homozygous deletions. We have shown previously at the CDK2 tumor suppressor locus on chromosome 9p21 that the frequency of homozygous deletion increases when markers near or within the gene are used because homozygous deletions are nested in size around the target gene (6). A nonpolymorphic marker, such as W9 (18), can be used to detect homozygous deletion by the simple presence or absence of signal in tumor cell lines that are composed of neoplastic cells only. In primary tumor specimens, normal cells complicate or render impossible this method of detecting homozygous deletions. The newly cloned markers D10S2491 and D10S2492 will thus be invaluable in assessing the true rate of homozygous deletions in many tumor types. As shown here, apparent retention of these markers correlates with homozygous deletion by FISH analysis (Fig. 1b).

Previous reports suggested that mutation of PTEN/MMAC1 is a late genetic event associated with advanced cancers (18, 19). For prostate cancer, we observed LOH of 10q in 11/60 clinically localized tumors and 12/20 pelvic node metastases. Seven of the 10 tumors with homozygous deletion or point mutation were found in neoplasms with pelvic lymph node metastases. Thus, as in other cancer types, prostate tumors of high grade and stage are more likely to harbor 10q loss and PTEN/MMAC1 mutations. The frequent detection of the second mutational event clearly establishes PTEN/MMAC1 as the main inactivation target of 10q deletion in sporadic prostate cancer. The majority of prostate cancer families do not show linkage to chromosome 1q24–25 (8), and it will be interesting to assess linkage to PTEN/MMAC1 in these families. The identification of PTEN/MMAC1 as a frequent target in sporadic prostate cancer highlights the gene for novel diagnostic and therapeutic approaches and represents a significant advance in our knowledge of the molecular biology of prostate cancer.

Fig. 2. Sequence mutations of PTEN/MMAC1 in primary prostate tumors. a: Lanes 1, 2, and 4, tumor DNAs with wild-type sequence. Lane 3 is tumor DNA from patient 273 showing a 5-bp deletion at nucleotides 761–765 in exon 7, resulting in a frameshift (arrow). b: Lanes 1, 2, and 4, tumor DNAs with wild-type sequence. Lane 3 is tumor DNA from patient 155 showing a nonsense change of T to A (antisense strand is shown) at nucleotide 564 in exon 6 (TAT-TAA, tyr-stop; arrow). Diminution of the substituted base is clearly visible. The mutations were confirmed by tumor and corresponding normal DNA reamplification and resequencing.

Fig. 3. Methylation-specific PCR of PTEN/MMAC1 in primary prostate tumors. Left. PBR322 MspI-digested DNA. Primary prostate tumors (1–6) showing a PCR product in the unmethylated DNA lane (U) and no product from the methylated DNA lane (M). In vitro methylated DNA as a positive control for methylation (IV) and normal lymphocyte DNA (NL) as a negative control for methylation and a water control for the PCR reaction are also shown.
References

Frequent Inactivation of PTEN/MMAC1 in Primary Prostate Cancer

Paul Cairns, Kenji Okami, Sarel Halachmi, et al.

Cancer Res 1997;57:4997-5000.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/22/4997

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.