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the positive feedback loop involving Cdc2-regulatory kinases and
phosphatases, including Weel and Cdc25C, and thus they did not

distinguish whether tyrosine phosphorylation of Cdc2 was the causal

determinant of its inactivation or whether Cdc2 inactivation, brought
about by other mechanisms, led to the tyrosine phosphorylation of
Cdc2. A direct test of whether Thr'4fFyr'5 phosphorylation is impor
tant for DNA damage-induced G2 arrest has been carried out by
inducible expression of an Ala'4/Phe'5 mutant Cdc2 (Cdc2AF) in

HeLa cells (85). Expression of Cdc2AF delays but does not abolish
X-irradiation-induced G2 arrest. This indicates that Thr'4ITyr'5 phos
phorylation plays a part in the damage-induced 02 delay, but that
there are probably also other mechanisms at work.

Our results are entirely consistent with Thr14/Tyr'5 phosphorylation
playing an important role in DNA damage-induced 02 arrest. How

ever, our finding that inactivation of Cdc2 with butyrolactone-I caused

Cdc2 to be fully converted into the Thr'4ITyr'5 phosphorylated,
inactive form, indicates that the feedback loop controlling Thrt4rfyr'5
phosphorylation is very effective indeed in mammalian cells (as noted

above, this assumes that butyrolactone-I is reasonably specific for
Cdc2). In other words, any mechanism leading to the inactivation of
Cdc2 would result in its being fully phosphorylated at Thr'4/Tyr'5;
therefore, it is not possible to conclude that the primary cause of DNA

damage-induced Cdc2 inactivation is by Thr'4ffyr'5 phosphorylation
based solely on the correlation between inactivation and phosphoryl
ation. Our evidence, however, does indicates that Tl&4fFyr'5 phos

phorylation in response to DNA damage is a primary event.

What is the mechanism ofDNA damage-induced Thr'4/Tyr'5 phos
phorylation? We found that the phosphatase activity of Cdc25C, the
physiological phosphatase for phosphorylated Thr'4/Tyr'5 in Cdc2,

was modestly decreased after DNA damage. This is in agreement with

the finding that Cdc25C phosphatase activity against para-nitrophe

nylphosphate is reduced after treatment of mammalian cells with
nitrogen mustard (86). Moreover, there is evidence that Cdc25 activity

is decreased following DNA damage in fission yeast, where phospho

rylation of Cdc2 Tyr'5 has been shown to be essential for the DNA
damage response checkpoint (87), as it is in Aspergillus (88). It should

be noted, however, that the DNA damage-induced decrease in Cdc25
activity might not solely be the result of DNA damage, and it could
also be the result of the 02 cell cycle arrest, because Cdc25 is
normally more active in M phase than in G2. Additional evidence that

Cdc25 is a key target for the DNA damage checkpoint comes from
studies of Chkl, a protein kinase required for the DNA damage G2
checkpoint control that is activated upon DNA damage (15, 89). Chkl
is required for the irradiation-induced mitotic delay following macti

vation of Wee! and Mikl (87), and recent evidence indicates that

Chkl associates with and phosphorylates Cdc25 in fission yeast.6
However, it is not yet known whether this phosphorylation inactivates
Cdc25.

Although there were conflicting initial reports as to whether Weel
is required for the DNA damage response in fission yeast (90, 91),

recent studies indicate that Wed and/or Mikl and phosphorylation of
Tyrl5 in Cdc2 are essential for the DNA damage-induced 02 check
point (87). Could Wed be the target for Chkl-activated checkpoint
regulation, as one report suggests (16)? Although Chkl phosphoryl
ates Wed in vitro and induces hyperphosphorylation of Weel in vivo

(16), Chkl phosphorylation does not increase Weel in vitro activity,
and a cdc2â€”3w:iXcdc25 strain, which has wild-type Weel, is not
sensitive to Chkl overexpression or DNA damage.6 In consequence,

it seems unlikely that the DNA damage checkpoint involves modu
lation of Weel activity. We did not find any alteration in the activity

6 P. Russell, personal communication.
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DISCUSSION

DNA Damage Checkpoints. In our study, DNA damage induced
by UV and by Adriamycin were considered, for all intents and
purposes, as though they were the same. However, in asynchronously
growing cells, UV caused predominantly a G1 arrest, whereas Adria
mycin caused predominantly a G2-M arrest. It is unclear what deter
mines the different arrest points in the cell cycle caused by different
DNA-damaging agents. One difference is that UV generates a pulse of

damage, whereas Adriamycin treatment provides more continuous
DNA damage. In addition, the chemical natures of the DNA damage
induced by UV and Adriamycin are different. Similarly, nocodazole
and Taxol were used to investigate the spindle microtubule-assembly

checkpoint, although nocodazole inhibits microtubule assembly,
whereas Taxol blocks microtubule disassembly. The data presented
here were obtained with mouse Swiss 3T3 fibroblasts, but in most

cases, similar results were obtained using normal human diploid
fibroblasts (KD cells) or a chemically transformed cell line derived
from KD cells (HUT12 cells; data not shown).

When normal human diploid fibroblasts are treated with DNA
damaging agents, p53 is activated, and p53 protein levels are in

creased; p53 in turn induces the expression of p2lÂ°@'1/Waft, which
could inhibit cyclin-CDK complexes. Although@ can bind
a wide variety of cyclin-CDK complexes in vitro, it appears that in

vivo@ is responsible for the inhibition of cyclin A-Cdk2,
cyclin E-Cdk2, and partially for inhibition of cyclin D-Cdk4/6 but not

for inhibition of cyclin AIB-Cdc2 (48). p53 is inactivated in more than
50% of all human tumors, and the consequent lack of p21@@â€•t1-
mediated CDK inhibition in such cells after DNA damage is likely to
contribute to the increased risk of mutagenesis. It is unclear, however,
whether p53 is involved in the mechanism that inactivates mitotic
cyclin-Cdc2 complexes after DNA damage. The function of p53 has
been implicated in G2 arrest (69â€”72), and p53 has also been shown to

be important for the mitotic checkpoint (40), possibly due to a defect
in centrosome replication (73). We also found that embryonic fibro
blasts from p53@'@ mice did not arrest well in G2-M in response to
treatment with Adriamycin.5 Inactivation of cyclin D-Cdk4 after DNA
damage is probably achieved by a combination of CDK inhibitors,
including@ and phosphorylation of Tyrl7 in Cdk4 (48,
74). We found that cyclin Dl is the least stable of the cyclins after UV
treatment. At a slightly higher dose of UV irradiation than used here,

cyclin Dl is destroyed, whereas other cyclin-CDK complexes remain

intact; p27'@@ that is released from the cyclin Dl-Cdk4 complexes
after cyclin Dl is destroyed is transiently redistributed to cyclin
A/E-Cdk2 complexes, which may in part be responsible for the rapid
inhibition of Cdk2 kinase activity before p2lCiPl/WafI mssynthesized
(5!).

Although there is an increase in p2lCiPl/Wafl binding to cyclin
B-Cdc2 following DNA damage, only a very small portion of the total
cyclin B-Cdc2 is associated with @21C@@@i(48). There is also one
report that p16INK4Alevels are increased after UV irradiation of HeLa
cells; this correlates with the G2 delay, and, through an unknown

mechanism, may even be responsible for the G2 delay (75). Exposure
of HeLa cells to DNA-damaging agents like etoposide or nitrogen
mustard also causes a delay in the expression of cyclin B 1 mRNA
(76), and cyclin B! mRNA and protein levels are reduced in
y-irradiated HeLa cells because of increased mRNA turnover (77, 78).
However, we found that the level of cyclin B 1 protein was the same
in UV-irradiated as in control Swiss 3T3 cells.

In agreement with previous studies, we found that inactivation of
Cdc2 after DNA damage is correlated with its tyrosine phosphoryla
tion (79â€”84). However, these previous studies did not take into
account the fact that Thr'4tTyr'5 phosphorylation of Cdc2 occurs via
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of WeelHu in vitro after DNA damage in mammalian cells, consistent
with the fission yeast data. We have not checked whether Myt!
activity is changed in cells with DNA damage, although it has been
shown that Mytl, like Wee!, is not activated by unreplicated DNA in
Xenopus egg extracts (20).

In the absence of any evidence that a Thr'4fTyr'5 kinase is up
regulated by DNA damage, it is reasonable to hypothesize that DNA
damage decreases Cdc25C activity, leading to increased Thr'4fFyr'5
phosphorylation. This effect may be accentuated by the fact that as
Cdc2 activity decreases, less Cdc25C is activated. The change in
Cdc25C phosphatase activity measured in vitro was relatively small,
and it is not clear whether this could account for the increase in Cdc2
Thr'4/Tyr'5 phosphorylation in vivo. It may be that the in vitro assay
we used is not sufficiently sensitive; alternatively, other factors may

be involved in the regulation of Cdc2 kinase activity after DNA
damage. With regard to the mechanism of DNA damaged-induced
Cdc25C inactivation, we did not observe any change in the kinase
activity of Plkl toward GST-Cdc25C, suggesting that other regulators

of Cdc25C may be the target of the DNA damage checkpoint (and
possibly for caffeine). In this connection, the recently identified
mammalian Chk! homologue is activated in response to DNA damage
downstream of the ATM protein,7 and, like its yeast counterpart,
mammalian Chkl might act to down-regulate Cdc25C.

A useful comparison can be drawn between the cell cycle check
point activated by DNA damage and that activated by incomplete
DNA replication. In fission yeast, it is known that the unreplicated
DNA and DNA damage checkpoint control pathways are related but
distinct, with Chkl being unique to the DNA damage control pathway
(92). Phosphorylation of Cdc2 Tyr'5 is required for the checkpoint
that couples completion of DNA replication with entry into mitosis in

fission yeast (93) and Aspergillus (94). In fission yeast, Wee!IMik!
and Cdc25 regulate Tyr'5 phosphorylation and are the key players in
this checkpoint; combined loss of Wee! and Mik! or overexpression

of Cdc25 overcomes this checkpoint (7, 95, 96). Inactive Cdc25

accumulates to a very high level in fission yeast cells arrested in S
phase, and Cdc2 activity is low in cells arrested in S phase by the
cdc22 mutation (97). However, when cells are arrested in S phase with
hydroxyurea, Cdc2 activity remains high (98). In contrast, in budding
yeast, the phosphorylation ofCdc28 Tyr'9 (equivalent to Cdc2 Tyrl5)

is not required for the DNA replication checkpoint (99, 100), but it is
used in a bud morphogenesis checkpoint (10!). In Xenopus egg

extracts, the block imposed by unreplicated DNA can be overcome by
expression of Cdc25 (22, 102), which implies that Thr'4fFyr'5 phos
phorylation does play a regulatory role. However, when Xenopus egg
extracts are arrested with aphidicolin, the activities of Wee! and Myti
(20, 103) and Cdc25 (104) are not altered significantly. Moreover,
unreplicated DNA reduces the capacity of an Ala'4IPhe'5 mutant
Cdc2 to induce mitosis, and this has led to the idea that an as-yet
unidentified Cdc2 inhibitor is involved in the suppression of cyclin

B-Cdc2 activity in the presence of unreplicated DNA in Xenopus
(104, 105). However, we obtained no evidence that DNA damage
increases the level of an inhibitor that is stably associated with Cdc2
in mammalian cells.

Caffeine. Caffeine can induce mitotic events in mammalian cells
when DNA replication is blocked with hydroxyurea (65), and time

lapse videomicroscopy of hamster BHK fibroblasts revealed that
caffeine can induce multiple entries into mitosis when DNA synthesis

is blocked (106). Caffeine probably uncouples mitosis from DNA
synthesis and DNA damage by activation of preformed cyclin A/B-

Cdc2 complexes (67). We found that caffeine induced the activation

7 M. Hoekstra, personal communication.
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Fig. 9. Model of the modulation of cyclin-Cdc2 activity by the DNA damage and

spindle microtubule-assembly checkpoints.

of cyclin A-Cdc2 and cycin Bl-Cdc2 kinases, even when the cells
were arrested in G2 by DNA damage. Unlike many human cell lines,
hamster cell lines and Swiss 3T3 cells contain high levels of cyclin

A/B-Cdc2 complexes when arrested in S phase or G2. We found that
caffeine induced dephosphorylation of Thr'4fFyr'5 in Cdc2 in DNA

damage-arrested cells, thus leading to its activation. When we delib
erately blocked the Cdc2-positive feedback loop by using butyrolac
tone-I to inhibit cycin B-Cdc2 kinase activity, dephosphorylation of
Cdc2 still occurred. It should be noted, however, that the dephospho
rylation of Cdc2 in the absence of Cdc2 activation was not observed

in a normal cell cycle (cells released from aphidicolin early S-phase
block).5 Thus, we can conclude that the dephosphorylation of Cdc2
caused by caffeine in cells with DNA damage does not require Cdc2
kinase activity, and that for caffeine-induced activation of cyclin
B-Cdc2, the dephosphorylation of Thr'4ffyr'5 is a key control step. It
is likely that caffeine acts on Cdc25C or upstream regulators of
Cdc25C. Preliminary evidence indicates that caffeine causes activa
tion of Cdc25C.5

Like caffeine, okadaic acid also overrides the cell cycle arrest
induced by unreplicated DNA (107); it is possible that caffeine and
okadaic acid activate Cdc2 through a common pathway. p53 may also
play a role in caffeine-induced uncoupling of DNA damage check

point, because p53@ cells are more sensitive than p53@'@ cells to
Uv irradiationin the presenceof caffeine(!08).Uncouplingof
normal DNA damage-induced cell cycle arrest by caffeine could
contribute to the increased risk of mutagenesis. The action of caffeine

appears to be specific for the DNA damage checkpoint; we did not
observe uncoupling of the microtubule-assembly checkpoint by cal
feine.5

The Spindle Microthbule-Assembly Checkpoint. The signal
from damaged DNA that leads to the inactivation of Cdc2 may
intersect with the signal from improperly assembled spindle microtu
bules, which stabilizes Cdc2 activity. The possible mechanisms that
underlie the spindle-assembly checkpoint are reviewed in Rudner and
Murray (42). The spindle-assembly checkpoint probably stabilizes
Cdc2 activity by preventing cyclin B! destruction, whereas the DNA
damage checkpoint inactivates Cdc2 by causing TKr'4fFyr'5 phospho

rylation. We found that inactivation of Cdc2 by DNA-damaging
agents is dominant over the stabilization of Cdc2 activity by nocoda
zole or Taxol. This can be explained by the fact that the inhibition of
Cdc2 by Thr'4tTyr'5 phosphorylation is dominant over the activation
of Cdc2 by cyclins (2). This is consistent with the observation that
when Cdc2 was inactivated by DNA damage in nocodazole or Taxol

blocked cells, the cells still remained in G2-M and did not proceed into
G1.5 The activity of Wee!Hu is suppressed during M phase, when
Wee!Hu is hyperphosphorylated and degraded (9â€”11). Hence, the
phosphorylation of Cdc2 in nocodazole-arrested cells induced by
DNA damage is likely to be carried out by Myt! or other as-yet
unidentified Thr'4tTyr'5 kinases.
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In summary, we propose that DNA damage may inhibit the activity
of mitotic Cdc2 in part by reducing the phosphatase activity of

Cdc25C, thus leading to increased phosphorylation at Thr'4fFyr'5 in
Cdc2. The inactivation of Cdc25C may be accentuated by the lack of
the Cdc2-positive feedback loop. However, the activity of the only
known upstream activator of Cdc25C, P1k!, was not affected by DNA
damage; hence, other mechanisms, such as Chkl phosphorylation,

may regulate the activity of Cdc25C after DNA damage (Fig. 9).
Finally, it is worth noting that there are striking parallels between the
mechanisms of DNA damage-induced G2 arrest in fission yeast and in
mammalian cells, implying that this is an evolutionary conserved
checkpoint.
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