Identification of Three Distinct Tumor Suppressor Loci on the Short Arm of Chromosome 9 in Small Cell Lung Cancer

Se K. Kim, Jae Y. Ro, Bonnie L. Kemp, Jin Soo Lee, Tae Jung Kwon, Kwun M. Fong, Yoshitaka Sekido, John D. Minna, Waun K. Hong, and Li Mao

Departments of Thoracic/Head and Neck Medical Oncology [S. K. K., J. S. L., W. K. H., L. M.], and Pathology [J. Y. R., B. L. K., T. J. K.], The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235 [K. M. F., Y. S., J. D. M.]

Abstract

Deletion at 9p21 is frequent in many tumor types. A candidate tumor suppressor gene, pJ6INK4a, was mapped to this region and is frequently inactivated by allelic loss in multiple tumor types. We identified this region as a candidate tumor suppressor locus by intensive microsatellite analysis and tested it in 46 primary small cell lung cancers. Among those areas, LOH at 9p21 was most frequent (81%), with a peak at a marker 150 kb telomeric to pJ6INK4a. LOH was also observed in more than 50% of the tumors at two other regions, 9p22 and 9p13. Our data strongly suggest the presence of at least three novel tumor suppressor loci on 9p in SCLC, and further investigations to clone candidate tumor suppressor genes are warranted.

Introduction

Lung cancer is the leading cause of cancer death in industrialized countries, and SCLC accounts for more than 20% of this tumor type. SCLC carries an extremely poor prognosis. The development of SCLC is believed to occur through a multistep process in which the genetic alterations are accumulated, promoting tumorigenesis. Inactivation of tumor suppressor genes plays an important role in this process and involves both alleles of the genes (1, 2). Recently, a candidate tumor suppressor gene, pJ6INK4a, was mapped to 9p21 (3). Intensive study of the gene and its product has revealed frequent alterations that can inactivate the function of this gene through at least three mechanisms: mutations, homozygous deletion, and methylation of the promotor region (4—6). p16 functions as a cyclin/CDK inhibitor to prevent phosphorylation of pRB. It has been demonstrated that most SCLCs have lost pRB but retained p16, and the inactivation of pRB excludes the inactivation of p16 and vice versa. To determine the potential existence of other tumor suppressor genes on the short arm of chromosome 9 in SCLC, we tested 46 primary SCLCs by microsatellite analysis. We found that more than 89% of the tumors exhibited loss of heterozygosity (LOH) at 9p with three distinct minimal deleted areas. Among those areas, LOH at 9p21 was most frequent (86%), with a peak at a marker 150 kb telomeric to pJ6INK4a. LOH was also observed in more than 50% of the tumors at two other regions, 9p22 and 9p13. Our data strongly suggest the presence of at least three novel tumor suppressor loci on 9p in SCLC, and further investigations to clone candidate tumor suppressor genes are warranted.

Materials and Methods

Primary Tumors and Control Tissues. A total of 91 patients with SCLC were identified based on tissue blocks available from autopsy, biopsy, or surgery at The University of Texas M. D. Anderson Cancer Center from 1978 to 1995. The 46 primary SCLCs (41 from autopsy and 5 from surgical resection of primary tumors) were chosen for this study because of the availability of both primary tumor tissue and corresponding control tissue. The quality of tumors (with fewer contaminating normal cells within the tumor area) was also a factor. The control tissues were kidneys or spleens without evidence of tumor cell infiltration. Paraffin-embedded tissue blocks were sectioned using a microtome. A 4-μm section from each block was stained with H&E and reviewed by pathologists to confirm the diagnosis, locate tumor areas, and select tumor-free control samples. Four or five additional 10-μm serial sections were mounted on slides and stained with H&E. Tumors were dissected with a scalpel under a stereomicroscope to ensure the accuracy of the dissection. We used only the tumor blocks in which tumor cells could be dissected with less than 30% normal cell contamination. Normal control tissues were dissected using the same approach.

SCLC Cell Lines. Genomic DNA from 40 SCLC cell lines was selected randomly from our cell line DNA bank: pRB and p16 status of 35 cell lines was available in the literature (9, 11, 12). Thirty-one (89%) cell lines contained an abnormal pRB, whereas the other four (11%) lines had a normal pRB. Thirty of 31 cell lines with an abnormal pRB had normal p16, whereas one (H1417) contained homozygous deletion of p16. All four cell lines with a normal pRB did not have p16 protein. p16 exon 1, p16 exon 2, p16β exon 1, and p15 exon 2 were amplified using exon-specific primers as described previously (15). Amplified products were separated on 1% agarose gel and visualized by ethidium bromide staining.

DNA Extraction and Microsatellite Analysis. Dissected tissues were digested in 200 μl of 50 mm Tris-HCl (pH 8.0) containing 1% SDS-proteinase K and incubated at 42°C for 12—24 h. Digested samples were purified, and DNA was precipitated as described previously (16). For microsatellite analysis, 14 microsatellite markers on the short arm of chromosome 9 (including D9S269, D9S274, RPS6, D9S156, D9S157, D9S162, IFN-α, D9S1747, D9S171, D9S169, D9S126, D9S161, D9S104, and D9S1853) were obtained from Research Genetics (Huntsville, AL). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 9/19/96; accepted 12/17/96.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by a start-up fund (to L. M.), Cancer Center Support Grant CA 16672, and the Charles A. LeMaitre Chair in Thoracic Medical Oncology (to W. K. H.). W. K. H. is an American Cancer Society Clinical Research Professor.

2 To whom requests for reprints should be addressed, at Department of Thoracic/Head and Neck Medical Oncology, P. O. Box 80, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030.

3 The abbreviations used are: SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; LOH, loss of heterozygosity; CDK, cyclin-dependent kinase; RB, retinoblastoma.

inactivation of pRB or of p16 excluded the other in SCLC and other tumor types (9—12). It is believed that p16 and pRB function in the same pathway; therefore, inactivation of both proteins may be unnecessary. Merlo et al. (13) found that 58% of 33 SCLCs exhibited LOH at 9p21—22, raising the question of whether a tumor suppressor gene other than p16INK4a might exist and play an important role in SCLC in this region. However, one-third of those SCLCs displayed the replication error-positive phenotype, preventing accurate interpretation of LOH in that study (14). Furthermore, the majority of the tumors that exhibited LOH at 9p lost all of the 9p markers that were tested (14), making it difficult to accurately determine the minimal deleted regions. To determine the potential presence of other tumor suppressor genes on the short arm of chromosome 9 in SCLC, we tested 46 primary SCLCs by intensive microsatellite analysis.
Mesa, CA) and T4 DNA polynucleotide kinase (New England Biolabs, Beverly, MA). PCR reactions were carried out in a 12.5-μl volume containing 20 ng of genomic DNA, 1% DMSO, 200 μM dNTP, 1.5 mM MgCl2, 0.4 μM PCR primers, including 0.1 μM 32P-labeled primer, and 0.5 units of Taq DNA polymerase (Life Technologies, Inc., Gaithersburg, MD). DNA was amplified for 35 cycles at 95°C for 30 s, 52—60°C for 60 s, and 70°C for 60 s in a temperature cycler (Hybaid; Omnigene, Woodbridge, NJ) in 500-μl plastic tubes, followed by a 5-min extension at 70°C. The PCR products were separated on a 6% polyacrylamide-urea-formamide gel, which was then autoradiographed. LOH was defined as a >50% reduction of the intensity by visual inspection in either of the two alleles as compared with those in normal control panels. Shifted bands were determined by the appearance of clear novel alleles at microsatellite markers exhibiting retention patterns, tumors with retentions that were not observed in normal tissue control panels.

Results and Discussion

To determine the presence of novel tumor suppressor genes on 9p in SCLC and to pinpoint minimal deleted regions, we selected 46 primary SCLCs from autopsy tissue samples, making this one of the largest panels of primary small cell lung tumors yet studied. Using microdissection, a tumor cell population of more than 80% purity was reached in most tumor samples to ensure accurate analysis. We used 14 highly polymorphic microsatellite markers between 9p13 and 9p23. The order of these markers is shown in Fig. 1. We found that 41 (89%) of 46 tumors exhibited LOH in at least one of these microsatellite markers, representing at least three distinct regions (Table 1). Eight (20%) of the 41 lost a larger area, exhibiting LOH in almost all informative distal markers tested. The other 33 tumors exhibited LOH in a small region or several separated regions.

Thirty-six (86%) of 42 informative tumors showed LOH at markers between IFN-α and D9S171. Six of these tumors lost only this small region and retained heterozygosity at all other informative markers. These observations indicate that a tumor suppressor gene or genes in this region must play an important role in SCLC. There are at least four candidate tumor suppressor genes, p16INK4a, p15INK4b, p16β, and MTAP, in this region (13, 15, 17, 18). A few SCLC cell lines showed inactivation of p16INK4a by methylation of the gene (5), but there is little evidence to support the theory that inactivation of p16INK4a plays a major role in SCLC. Furthermore, no alterations were found in p15INK4b and p16β in the previous studies (15, 19). Because of the sample availability and quality, we were unable to determine pRB status in these primary tumors. However, by examination of 40 SCLC cell lines, we found that 2 (5%) of the cell lines contained homozygous deletions, including p16INK4a, p15INK4b, p16β, and that pRB and p16 status were available in 35 of 40 cell lines. Thirty-one of 35 cell
Table 1. LOH on 9p in small cell lung cancer

<table>
<thead>
<tr>
<th>Regions</th>
<th>Tumors, LOH/informative</th>
<th>% of LOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α ↔ D9S157</td>
<td>36/42</td>
<td>86</td>
</tr>
<tr>
<td>D9S156 ↔ D9S157</td>
<td>24/41</td>
<td>59</td>
</tr>
<tr>
<td>D9S104 ↔ D9S1853</td>
<td>19/58</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>41/46</td>
<td>89</td>
</tr>
</tbody>
</table>

Fig. 2. Examples of deletions observed in primary SCLCs. A, order of microsatellite markers used in this study. Dashed line, approximate location of RPS6. B, LOH at markers D9S156 (9p22), D9S1747 (9p21), D9S169, and D9S157 (9p13) with retention at markers between them in tumor SCLC20. C, LOH at markers D9S156, D9S1747, and D9S161 and retentions at other markers in tumor SCLC29.

Our data also show that one of the minimal deleted regions was located at 9p22, between D9S156 and D9S157 (Fig. 1). Twenty-four (59%) of 41 informative tumors exhibited LOH at one or both of the markers. The estimated distance between the two markers is about 1 cm (21). Another minimal deleted region was narrowed to 9p13 between D9S104 and D9S1853 (Fig. 1). Nineteen (50%) of 38 informative tumors exhibited LOH at one or both of the markers. The estimated distance between the two markers is about 3 cm (Research Genetics). The talin gene was recently mapped to 9p, between D9S156 and D9S104 (23). Talin is critical in the formation of focal adhesions, and inactivation of talin may induce fibroblasts to round up and disassemble many of the adhesions (24). Talin, therefore, is a possible candidate gene that may be responsible for the morphological phenotype and metastatic potential of SCLC. Although frequent microsatellite instability was observed in SCLC in a previous report (14), we observed only six shifted bands in six (15%) individual tumors in this study. Instability occurred in only 1% (7 of 644) of the loci tested (22). Because this region has been studied in detail, available data and materials should allow more specific identification of a smaller deleted region and may allow candidate genes to be cloned in the near future.

Two other distinct regions also exhibited frequent LOH (Table 1). Twenty-four (52%) of the 46 tumors showed LOH in two or three distinct regions on 9p (Fig. 1), indicating the presence of more than one tumor suppressor locus in this chromosome arm. Eleven (46%) of the 24 tumors lost three separate regions (Fig. 1). The examples of LOH at different regions are shown in Fig. 2. A possible reason for the observed retentions between markers with LOH may be small homozygous deletion and normal cell contamination (6). However, it is unlikely that this is the case in the present study for the following reasons. Most of the tumors we used contained a minimal amount of contaminating normal cells. We used the multiplex PCR strategy to test 10 tumors selected from those with retention at either marker D9S162 or marker D9S171, flanked by markers with LOH at both sides, and found no evidence of significant changes in the ratio of density between normal tissues and tumors (Fig. 3). Six tumors with LOH at D9S1747 only were also selected for the examination of potential homozygous deletion of p16INK4a region, and no homozygous deletion was observed (Fig. 3).

Our data strongly indicate that at least three tumor suppressor lines had an abnormal pRB, and 30 of 31 (97%) had normal p16 (9, 11, 12). Interestingly, one cell line (H1417) contained a homozygous deletion of p16INK4a. We confirmed this finding in this study and found that the deletion extended to p15INK4b centromERICALLY and MTAP telomERICALLY (data not shown). The other four cell lines with a normal pRB did not express p16. One of them (H211) was found to have a homozygous deletion at the region. Undetectable p16 in the other three cell lines may be due to methylation of p16INK4a, as reported previously (5). These data further demonstrate that inactivation of p16 exists in only a small fraction of SCLC. MTAP encodes methylthioadenosine phosphorylase, which is commonly inactivated in many tumor types, was recently mapped to 9p21, and is about 100 kb telomERIC to p16INK4a (20). In the present study, LOH was found most frequently at D9S1747, which is located about 150 kb telomERIC to p16INK4a. Twenty-six (90%) of 29 informative tumors exhibited LOH at this marker, whereas only 16 (52%) of 31 informative tumors and 18 (50%) of 36 informative tumors showed LOH at markers IFN-α and D9S171, respectively. These data suggest a putative tumor suppressor gene locus around the marker D9S1747. The estimated distance between the markers IFN-α and D9S171 is about 4 cm (21). In fact, the presence of another tumor suppressor gene (rather than p16INK4a and p15INK4b at 9p21 region) had been suspected by others (22). Because this region has been studied in detail, available data and materials should allow more specific identification of a smaller deleted region and may allow candidate genes to be cloned in the near future.
Further intensive studies to clone candidate tumor suppressor genes roles in the tumor development and progression processes in SCLC. Further intensive studies to clone candidate tumor suppressor genes are warranted.

Acknowledgments

We thank Susan Cwercn for the excellent technical support and Julie Starr for critical editorial review of the manuscript.

References

Identification of Three Distinct Tumor Suppresser Loci on the Short Arm of Chromosome 9 in Small Cell Lung Cancer

Se K. Kim, Jae Y. Ro, Bonnie L. Kemp, et al.

Cancer Res 1997;57:400-403.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/3/400

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.