Prostate Cancer Progression, Metastasis, and Gene Expression in Transgenic Mice

Carlos Perez-Stable,1 Norman H. Altman, Parmender P. Mehta, Leonard J. Deftos, and Bernard A. Roos

Geriatric Research, Education, and Clinical Center [C. P. S., P. P. M., B. A. R.], Veterans Affairs Medical Center, and Departments of Medicine [C. P. S., P. P. M., B. A. R.], Pathology [N. H. A.], and Neurology [B. A. R.] and Sylvester Comprehensive Cancer Center [C. P. S., N. H. A., P. P. M., B. A. R.] University of Miami School of Medicine, Miami, Florida 33101, and Department of Medicine, University of California, San Diego and the Veterans Affairs Medical Center, San Diego, California 92161 [L. J. D.]

ABSTRACT

We previously reported that a transgenic mouse line containing the fetal globin promoter linked to the SV40 T antigen (T Ag) viral oncogene (Gy/T-15) resulted in prostate tumors. In this study, we further explored tumor origin, frequency, invasiveness, androgen sensitivity, and gene expression pattern. T Ag was detected in adult but not fetal and neonatal prostates, suggesting a role for androgens in tumor progression. However, castration shortly after prostate morphogenesis did not prevent tumor development, suggesting an androgen-independent phenotype. Tumors originated within ventral or dorsal prostate lobes and involved intraepithelial neoplasia, rapid growth in the pelvic region, and metastasis to lymph nodes and distant sites. In addition, the primary cancers could be propagated in nude mice or nontransgenic mice. Seventy-five percent of hemizygous and 100% of homozygous transgenic males developed prostate tumors, suggesting a T Ag dosage effect. Biochemical characterization of advanced tumors revealed markers of both neuroendocrine and epithelial phenotypes; markers of terminal differentiation are lost early in tumorogenesis. Tumor suppressor genes (p53 and Rb), normally bound to T Ag, were up-regulated; hcl-2 proto-oncogene, which prevents apoptosis, was slightly up-regulated. Myc, a stimulus to cell cycle progression, was unchanged. We propose the Gy/T-15 transgenic line as a model of highly aggressive androgen-independent metastatic prostate carcinoma with features similar to end-stage prostate cancer in humans.

INTRODUCTION

Prostate cancer is increasingly recognized as a major health problem; it is the most frequently diagnosed cancer in men in the United States and the second leading cause of male cancer deaths. Estimates for 1996 predict that approximately 317,100 men will be diagnosed with prostate cancer and 41,400 will die of the disease (1). Many diagnosed patients undergo surgery or radiation treatment, which is most effective on localized, organ-confined prostate cancer (2, 3). In non-organ-confined and metastatic prostate disease, androgen ablation is effective in 60–80% of the patients, resulting in tumor regression and improved prognosis (4). However, after a period of time, an androgen-independent, or unresponsive, prostate carcinoma occurs in these patients, possibly due to the selection of a small number of androgen-independent cells (5) or to the adaptation of formerly androgen-responsive cells into androgen-independent (6) cells. These tumors, as well as initially androgen-unresponsive prostate tumors, often metastasize to the lymph nodes, lung, and bone, resulting in poor patient prognosis and short survival time (4). Currently, there is no effective treatment for androgen-independent metastatic prostate cancer (reviewed in Ref. 7).

Prostate adenocarcinoma in humans consists predominantly of epithelial cells arranged in acinar structures surrounded by stromal or mesenchymal cells, whereas metastatic or poorly differentiated prostate carcinoma consists of nests of anaplastic epithelial cells separated by bands of fibrovascular stroma (8). Benign prostate hyperplasia

Received 7/8/96; accepted 12/31/96.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed, at Department of Medicine (Endocrinology), University of Miami School of Medicine, P. O. Box 016960 (D-503), Miami, FL 33101. Phone: (305) 243-4006; Fax: (305) 243-6581.

2 The abbreviations used are: T Ag, T antigen; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PIN, prostatic intraepithelial neoplasia; nt, nucleotides.

Copyright © 1997 American Association for Cancer Research.
Prostate tumor. The bladder was lifted with forceps, and an incision was made at the mid-urethra, not including the bulbourethra gland. Tissue blocks containing prostate, bladder, seminal vesicles, and coagulating and ampullary glands were laid flat on a small paper, fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 5 μm, and stained with H&E.

Prostate Tumor Formation in Castrated Transgenic Mice. Eight 4–6-week-old transgenic males were castrated via the scrotal route under xylazine/ketamine (1:10) anesthesia. After 16 weeks, the animals were examined histologically for the onset of prostate tumors as described above.

Western Blot Analysis. Tissues from transgenic and normal mice were prepared for Western blot analysis by mechanical dispersion in hot (70°C) lysis buffer containing 66 mM Tris-HCl (pH 6.8); 2% SDS; 5 mM EDTA; 5 mM EGTA; 10 mM phenylmethylsulfonyl fluoride; 10 mM sodium vanadate; 10 mM sodium fluoride; 10 mM N-ethylmaleimide (29). Samples were boiled for 10 min and centrifuged for 20 min in an Eppendorf microfuge. The supernatant was collected, and protein concentrations were determined with the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA). After separation of 10 μg of protein by SDS-PAGE, proteins were transferred by electrophoresis to Immobilon-P membrane (Millipore, Bedford, MA) and incubated overnight at 4°C in 10% nonfat dry milk, PBS, and 0.1% Tween 20. Primary antibodies specific for epithelial cells (i.e., those expressing cytokeratin 8 (PCK-26; 1/300 dilution; Sigma, St. Louis, MO) and mouse dorsolateral prostate secretory proteins (1/5000 dilution; Ref. 30)) were diluted in PBS containing 3% BSA, 2% polyethylene glycol 6000, 1% gelatin, and 0.1% Tween 20, incubated for 1 h at room temperature, and washed in PBS and 0.1% Tween 20. Membranes were then incubated with alkaline phosphatase-conjugated secondary antibody (anti-rabbit IgG (Sigma); antiserum IgG (Boehringer Mannheim, Indianapolis, IN)) for 1 h at room temperature, washed in PBS and 0.1% Tween 20, and analyzed by exposure to X-ray film (X-OMAT; Kodak, Rochester, NY) using Lumi-phos Plus (Boehringer Mannheim).

RNAse Protection Assay. RNA was isolated from transgenic and non-transgenic animals by the LiCl-urea method (31). TAg RNA was detected in most fetal and adult tissues of transgenic males using reverse transcription-PCR (data not shown). Thus, we used the less sensitive but more quantitative RNAse protection assay to detect low levels of TAg mRNA with a 32P-labeled SP6 polymerase-synthesized antisense RNA probe as described previously (26, 27). Mouse chromogranin A mRNA levels were measured with 32P-labeled T7 polymerase-synthesized antisense RNA probe from plasmid-digested EcoRI-Stul/Bluescript-SK (32). The following pTRIPLEscript-mouse antisense DNA templates were used to synthesize 32P-labeled antisense RNA probes: p53, retinoblastoma Rb, c-myc, and bcl-2 (Ambion, Austin, TX). Mouse GAPDH mRNA was measured using a 32P-labeled T7 polymerase-synthesized antisense RNA probe from Syl-digested pTRIPLEscript GAPDH DNA (Ambion). Ten μg of total RNA were hybridized to individual or a combination of antisense RNA probes (p53/Rb/GAPDH and myc/bcl-2/GAPDH) at 37°C for 16–20 h and digested with RNase mixture (Ambion) for 30 min at 37°C. RNase digestion products were analyzed by electrophoresis on polyacrylamide-urea gels and autoradiography.

TAg Expression in Fetal, Neonatal, and Adult Prostates. Transgenic fetal and neonatal males were identified by the position of the testis or ovary during tissue dissection. Tissue from three pooled fetal (16.5 days) males, four pooled 2.5-day-old neonatal males, one 7.5-day-old neonatal male, four 11-week-old adult males, and four 16–20-week-old adult males was isolated, and RNA was prepared and analyzed for TAg expression as described above. Fetal prostates were isolated as described previously (33).

RESULTS

Previous work with the GytT-15 transgenic line has shown that TAg is expressed in embryonic tissue (27) but not adult tissue before tumor formation (26); however, transgenic males developed TAg-expressing prostate tumors by 5–7 months (26). To better understand why these tumors develop, we examined in more detail the TAg expression pattern in relation to prostate tumor progression.

TAg Expression in Adult but not Fetal or Neonatal Prostates. To determine TAg expression in transgenic male fetal, neonatal, and adult tissues, including prostate, we used an optimized RNAse protection assay with minimal background. We found TAg expression in fetal tissues (n = 3 pooled 16.5-day), with diminishing or repressed levels in neonatal (n = 4 pooled 2.5-day; n = 1 7.5-day) and adult mice (n = 8, 11–20-week; Fig. 1, A and B). In contrast, TAg was expressed in adult prostate (seven of eight samples), but not fetal and neonatal prostate (Fig. 1A, compare fetal Lane 13, neonatal Lane 13, and adult lane 9). Because prostate morphogenesis requires androgens (34, 35), these data point to an androgen-dependent component in tumor progression, similar to that of human prostate cancer.

Prostate Tumor Development and Metastasis. Male GytT-15 transgenic mice developed palpable tumors in the urogenital area between 16 and 24 weeks of age (see Fig. 4). These tumors grew very rapidly and resulted in bladder obstruction, possible kidney failure, and a moribund state. Advanced tumors reached 25–30 mm in diameter at a location between the testis and the seminal vesicle, at the base of the bladder (Fig. 2, A and B). The invasive properties of the tumors

![Fig. 1. Adult prostate-specific expression of TAg.](image-url)

- Fetal
- Neonatal
- Adult

Fig. 1. Adult prostate-specific expression of TAg. A, RNAse protection analysis of TAg expression in a variety of tissues from transgenic male 16.5-day fetal, 7.5-day neonatal, and 20-week adult mice. Tissues used for RNA were as follows: PT, prostate tumor; Br, brain; Th, thymus; Td, thyroid; He, heart; Lu, lung; Li, liver; Ki, kidney; Ad, adrenal; Bn, bone; Bl, bladder; Te, testis; Pr, prostate; SV, seminal vesicle; Sp, spleen; and Fa, fat. Sizes of the protected fragments are 158 nt (TAG) and 135 nt (GAPDH). GAPDH RNA varies widely in different adult tissues and is not reflective of the equal amounts (10 μg) of RNA loaded onto the gels. Autoradiograms were exposed for 3 days using two intensifying screens. B, summary of TAg tissue and developmental gene expression pattern in fetal, neonatal, and adult transgenic males before prostate tumor formation. Relative TAg expression was highest (++) in fetal heart, lung, and testis, with declining (+) levels in 2.5-day (data not shown) and 7.5-day neonatal males; no expression (−) was detected in fetal or neonatal prostate. In 11-week-old (data not shown) and 16–20-week-old adult transgenic males, TAg was detected only in prostate tissue (black bar).
METASTATIC PROSTATE CARCINOMA

Fig. 2. Advanced metastatic prostate tumor. A, posterior view of advanced prostate tumor (PT) location shown relative to testis (Te) in the urogenital region. B, anterior view of the same tumor (PT) shown relative to kidney (Ki), ureter (U), seminal vesicle (SV), and bladder (Bl). Note the metastasis to the renal lymph nodes (LN).

were frequently demonstrated by visible tumor metastasis to the renal lymph node (Fig. 2B; Table 1), adrenal glands, and kidneys.

Before tumor formation, adult transgenic males expressed T Ag only in their prostates (Fig. 1). Therefore, we used the RNase protection assay to identify potential micrometastasis to the lung and bone, which are common metastatic sites in human prostate cancer; our results suggested micrometastasis of prostate tumor cells to the lung, bone, and thymus (Fig. 3, A and B; Table 1). The metastatic phenotype was further confirmed by propagation in nude mice and nontransgenic mice, which resulted in a similar histological tumor pattern (data not shown).

Prostate Tumor Frequency in Hemizygous and Homozygous Transgenic Mice. Forty hemizygous transgenic males were necropsied at different ages and examined for the presence of prostate tumors (Fig. 4). We found that prostate tumor development began in these animals between 16 and 20 weeks; by 32 weeks, only 10% of the hemizygous males were free of tumors. Of the 28 transgenic males older than 20 weeks, 21 (75%) developed prostate tumors; individual animals had an adrenal tumor, a hibernoma, and a seminoma, and 4 animals had no visible tumor formation. In transgenic male mice between 16 and 20 weeks, 100% of homozygotes (n = 8) developed prostate tumors, whereas 50% of hemizygotes (n = 20) developed prostate tumors. These findings suggest that the penetrance of prostate tumor development is complete in the homozygous transgenic males, possibly because of the higher expression of T Ag resulting from the 2-fold greater amount of GyT-15 DNA.

Early Prostate Tumor Development. To further confirm the tumor origin site as the prostate and not other accessory glands in the urogenital area, seven transgenic males 16—20 weeks old without a visible tumor and one with a small visible tumor were examined histologically. The ventral and dorsal lobes of the prostate can be distinguished from the bladder, seminal vesicles, coagulating glands, and ampulla based on anatomical location and tissue and cell morphology (34, 35). The ventral lobe of the prostate is located farther from the seminal vesicle, whereas the dorsal lobe of the prostate extends to the backside of the urethra, closer to the seminal vesicle (34, 35). Two males showed early tumor formation, one at the ventral (Fig. 5A) and the other at the dorsal lobe of the prostate (Fig. 5B). Similar results were obtained in additional males. This analysis is important because a previous report of a transgenic mouse model of benign prostate hyperplasia (36) was subsequently determined to be hyperplasia of the ampulla.

Table 1: Tissue locations and frequency of prostate tumor metastasis in GyT-15 males (n = 7)

<table>
<thead>
<tr>
<th>Tissue location</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible metastasis</td>
<td></td>
</tr>
<tr>
<td>Renal lymph node</td>
<td>7/7</td>
</tr>
<tr>
<td>Adrenal</td>
<td>3/7</td>
</tr>
<tr>
<td>Kidney</td>
<td>3/7</td>
</tr>
<tr>
<td>Micrometastasis</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>4/7</td>
</tr>
<tr>
<td>Bone</td>
<td>2/7</td>
</tr>
<tr>
<td>Thymus</td>
<td>2/7</td>
</tr>
</tbody>
</table>

Fig. 3. Micrometastasis. A, RNase protection analysis of a transgenic male with an advanced prostate tumor (PT, Lane 14) and visible metastasis to the renal lymph node (PTm, Lane 15) showed T Ag expression in thymus (Th, Lane 3) and bone (Bn, Lane 8) but not in brain (Br, Lane 1), thyroid (Td, Lane 2), heart (He, Lane 4), lung (Lu, Lane 5), spleen (Sp, Lane 6), adrenal (Ad, Lane 7), bone marrow (BM, Lane 9), blood (Bd, Lane 10), seminal vesicle (SV, Lane 11), bladder (Bl, Lane 12), and testes (Te, Lane 13). B, transgenic male with advanced prostate tumor (PT, Lane 15) and visible metastasis to the renal lymph node (PTm, Lane 16) and adrenal (Ad, Lane 17) showed T Ag expression in thymus (Th, Lane 3) and lung (Lu, Lane 5) but not in brain, thyroid, heart, liver, spleen, kidney, bone, bone marrow, blood, seminal vesicle, bladder, and testes (Lanes 1, 2, 4, and 6—14, respectively). In males before tumor formation (n = 4), T Ag was not detected in any tissue, including lung and bone, except prostate.

PIN. Higher magnification of the early ventral prostate tumor showed a histological pattern similar to that of the advanced prostate tumors (26), except that prostatic acini or their remnants remained entrapped in the tumor nodule (Fig. 6A), characteristic of prostatic hyperplasia (34, 35).
METASTATIC PROSTATE CARCINOMA

GyT'-15 male mice develop without high levels of androgen and are probably androgen-independent.

Expression of Epithelial and Neuroendocrine Markers in Prostate Tumors. We previously stated that prostate tumors contain mixed epithelial and neuroendocrine cell features based on light and electron micrographs (26). We used Western blot analysis to determine if epithelial markers were expressed in the prostate tumors in our model. We found that advanced prostate tumors expressed cytokeratin 8 (Fig. 7A, Lane 7), similar to the human prostate epithelial cell lines LNCaP and PC3 (Fig. 7A, Lanes 1 and 2; see Ref. 38) and to normal mouse prostate (Fig. 7A, Lane 6). However, tumors did not express mouse dorsolateral prostate secretory protein, which is normally found in well-differentiated mouse prostate epithelial cells (30). In addition, the gap-junction-forming protein connexin 32 gene product expressed in normal human (29) and mouse prostate epithelial cells is lost early in prostate cancer progression (data not shown).

Although we were previously unable to detect the presence of neurosecretory granules in electron micrographs of the prostate tumors (26), we have detected high levels of chromogranin A mRNA in primary, metastatic, and transplanted prostate tumors using RNase protection analysis (Fig. 7B, Lanes 3—10). No differences in cytokeratin 8 protein and chromogranin A RNA were observed in prostate tumors from castrated males (data not shown). In addition, parathyroid hormone-related protein (39, 40) was detected in transplanted prostate tumor by immunohistochemistry (data not shown). These results confirm the original observation that GyT'-15 prostate tumors contain mixed epithelial and neuroendocrine cell features.

Expression of p53, Rb Tumor Suppressor, c-myc, and bcl-2 Proto-Oncogene Products. To begin to explore the molecular changes involved in tumor progression, we used the RNase protection assay to compare the levels of p53, Rb, c-myc, and bcl-2 gene products in prostate tumors and normal mouse tissues including prostate. The p53 and Rb RNA levels were found to be higher than the levels in normal prostate (Fig. 8, compare Lanes 6—8), probably because of the inactivation of p53 and Rb by T Ag (41, 42).

Androgen-independent Prostate Cancer. To determine if the GyT'-15 prostate tumor, which expresses androgen receptor RNA (data not shown), is androgen-dependent, eight hemizygous transgenic males were castrated at or shortly after sexual maturation (4—6 weeks). At 20—28 weeks, four (50%) animals developed prostate tumors similar in histology to the prostate tumor from normal transgenic males. Two males developed brown adipose tumors, similar to mice in the GyT-f21 transgenic line (26), and two other males died of undetermined causes. These results suggest that prostate tumors in GyT'-15 male mice develop without high levels of androgen and are probably androgen-independent.

Adenocarcinoma (8). A prostate acinus located next to the tumor nodule revealed numerous foci of neoplastic epithelial cells (Fig. 6B), which is characteristic of human PIN, considered to be the precursor of invasive carcinoma (37). Also shown are normal prostatic acini with low cuboidal epithelial cells (one-cell thickness) surrounded by the lumen on the inside and the fibrovascular stroma on the outside (Fig. 6B). Similar PIN-like foci were observed in several mice (n = 4) before tumor formation. Thus, the GyT'-15 prostate tumor seems to originate from multiple foci of intraepithelial neoplasia and then progress rapidly to an undifferentiated carcinoma, bypassing the intermediate steps observed in the slower-growing human cancer.

Androgen-independent Prostate Cancer. To determine if the GyT'-15 prostate tumor, which expresses androgen receptor RNA (data not shown), is androgen-dependent, eight hemizygous transgenic males were castrated at or shortly after sexual maturation (4—6 weeks). At 20—28 weeks, four (50%) animals developed prostate tumors similar in histology to the prostate tumor from normal transgenic males. Two males developed brown adipose tumors, similar to mice in the GyT'-21 transgenic line (26), and two other males died of undetermined causes. These results suggest that prostate tumors in GyT'-15 male mice develop without high levels of androgen and are probably androgen-independent.

Expression of Epithelial and Neuroendocrine Markers in Prostate Tumors. We previously stated that prostate tumors contain mixed epithelial and neuroendocrine cell features based on light and electron micrographs (26). We used Western blot analysis to determine if epithelial markers were expressed in the prostate tumors in our model. We found that advanced prostate tumors expressed cytokeratin 8 (Fig. 7A, Lane 7), similar to the human prostate epithelial cell lines LNCaP and PC3 (Fig. 7A, Lanes 1 and 2; see Ref. 38) and to normal mouse prostate (Fig. 7A, Lane 6). However, tumors did not express mouse dorsolateral prostate secretory protein, which is normally found in well-differentiated mouse prostate epithelial cells (30). In addition, the gap-junction-forming protein connexin 32 gene product expressed in normal human (29) and mouse prostate epithelial cells is lost early in prostate cancer progression (data not shown).

Although we were previously unable to detect the presence of neurosecretory granules in electron micrographs of the prostate tumors (26), we have detected high levels of chromogranin A mRNA in primary, metastatic, and transplanted prostate tumors using RNase protection analysis (Fig. 7B, Lanes 3—10). No differences in cytokeratin 8 protein and chromogranin A RNA were observed in prostate tumors from castrated males (data not shown). In addition, parathyroid hormone-related protein (39, 40) was detected in transplanted prostate tumor by immunohistochemistry (data not shown). These results confirm the original observation that GyT'-15 prostate tumors contain mixed epithelial and neuroendocrine cell features.

Expression of p53, Rb Tumor Suppressor, c-myc, and bcl-2 Proto-Oncogene Products. To begin to explore the molecular changes involved in tumor progression, we used the RNase protection assay to compare the levels of p53, Rb, c-myc, and bcl-2 gene products in prostate tumors and normal mouse tissues including prostate. The p53 and Rb RNA levels were found to be higher than the levels in normal prostate (Fig. 8, compare Lanes 6—8), probably because of the inactivation of p53 and Rb by T Ag (41, 42).

The levels of bcl-2 RNA, an inhibitor of apoptosis previously shown to be expressed in androgen-independent prostate cancer (43, 44), were slightly up-regulated compared to the level in normal
prostate (Fig. 8, compare Lanes 6—8). The levels of c-myc RNA, a stimulus to cell cycle progression, were similar in normal prostate and prostate tumor (Fig. 8, Lanes 6—8). In contrast, adrenocortical tumors from transgenic females showed lower levels of Rb and bcl-2 and higher levels of c-myc (Fig. 8, compare Lanes 7—9). These results suggest that the inactivation of tumor suppressor gene products like p53 and Rb and the expression of the antiapoptosis bcl-2 gene may play important roles in the formation of Gy/T-15 prostate tumors.

DISCUSSION

We have characterized the aggressive behavior, androgen sensitivity, early tumor formation, and expression of epithelial, neuroendocrine, tumor suppressor, and proto-oncogene products in Gy/T-15 prostate tumors. We propose that Gy/T-15 can be used as a model of androgen-independent metastatic prostate carcinoma, with similarities to human end-stage prostate cancer.

The progression of the Gy/T-15 prostate tumor resembles the development of human prostate cancer [i.e. from PIN to adenocarcinoma (early tumor) and metastatic prostate carcinoma (advanced tumor)]. However, unlike human prostate cancer, which progresses slowly over a long period of time, the Gy/T-15 prostate tumor progresses very quickly from PIN to metastatic undifferentiated carcinoma. In addition, visible metastatic prostate cells are located primarily in the adrenal gland and kidney, although there is some micrometastasis to the lung and bone, similar to that found in human prostate cancer.

The expression of T Ag in the adult but not fetal and neonatal prostate suggests that androgen-dependent prostate morphogenesis may be necessary for tumor progression. However, castrated Gy/T-15 males still developed prostate tumors, suggesting that the tumors are androgen-independent. It is possible that the males used for castration already had enough androgen stimulation of prostate morphogenesis to initiate tumorigenesis; however, at this age, neither tumors nor abnormal histology was ever observed. Castration at 1—2 weeks (or before androgen stimulation of prostate morphogenesis) would better clarify the role of androgens in tumor progression in young adult males. Thus, unlike most human prostate cancers, which are initially androgen-dependent and then progress to androgen independence, the Gy/T-15 prostate tumor seems to start at or to progress very quickly to an androgen-independent phenotype.

SV40 T Ag is a well-characterized viral oncogene known to bind and inactivate the p53 and Rb tumor suppressor gene products as well as other factors (45, 46). It is likely that increased expression of T Ag in adult prostate leads to tumor progression. p53 and Rb RNA levels in primary (Fig. 8) and metastatic tumors (data not shown) are higher compared to those of normal prostate, recalling previous observations in cell lines and transgenic mice expressing T Ag (41, 42). Thus, tumor progression probably involves the inactivation of p53 and Rb proteins by T Ag. Several reports suggest an important role for numerous tumor suppressor genes including p53 and Rb in the progression of prostate cancer from benign to metastatic carcinoma (reviewed in Refs. 47 and 48). Inactivation of p53 is more common in androgen-independent prostate cancer and seems to be a late-stage event in the progression pathway (49).

Besides removing a block in cell cycle progression, the loss of p53 gene function also probably removes a block to apoptosis (50),
In summary, we characterized GyT-15 prostate tumors by analyzing early tumor formation and frequency, metastatic behavior, androgen sensitivity, and gene expression patterns. We propose to use this transgenic line as a model of androgen-independent metastatic prostate carcinoma, with demonstrated similarities to advanced human prostate cancer, or end-stage disease. These transgenic mice should be useful test subjects for chemotherapeutics for the treatment and prevention of androgen-independent metastatic prostate cancer and for a variety of studies of the molecular mechanisms of transformation in the development of prostate carcinoma.

ACKNOWLEDGMENTS

We thank Annenarie Donjacour and Gerald Cunha for generously providing antibodies against mouse dorsolateral prostate secretory proteins, demonstrating to C. P.-S. the dissection of mouse ventral and dorsolateral prostate lobes, and confirming prostate lobes by light micrographs of early tumors; Alicia De Las Pozas for excellent technical assistance; Carolyn Cray for nude mouse tumor transplants; Douglas Burton for parathyroid hormone-related protein immunostaining; Daniel O’Connor for mouse chromogranin A cDNA; Don Tindall for mouse androgen receptor cDNA; and Semie Capetanaki for mouse vimentin cDNA.

REFERENCES

22. Pretlow, T. G., Wolman, S. R., Miclea, M. A., Pelley, R. J., Kursh, E. D., Resnick,
METASTATIC PROSTATE CARCINOMA

Prostate Cancer Progression, Metastasis, and Gene Expression in Transgenic Mice

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/5/900

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.