Deletion Map of Chromosome 9 and p16 (CDKN2A) Gene Alterations in Neuroblastoma

Junko Takita, Yasuhide Hayashi, Takashi Kohno, Naohito Yamaguchi, Ryoji Hanada, Keiko Yamamoto, and Jun Yokota

Biology Division [J. T., T. K., J. Y.] and Cancer Information and Epidemiology Division [N. Y., J. National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104; Department of Pediatrics, Faculty of Medicine, University of Tokyo, 3-1, Hongo 7-chome, Bunkyo-ku, Tokyo 113] [J. T., Y. H.]; and Division of Hematology/Oncology, Saitama Children's Medical Center, 2100, Magome, Iwatsuki 339 [R. H., K. Y.], Japan

ABSTRACT

We reported previously that loss of heterozygosity (LOH) on chromosomes 2q, 9p, and 18q frequently occurs in neuroblastoma and that patients with 9p LOH in the tumors showed statistically significant association with an advanced stage of the disease and poor prognosis. To determine the role of chromosome 9 loss in neuroblastoma, we performed deletion mapping of chromosome 9 in 80 cases of neuroblastoma using 11 polymorphic microsatellite markers and a restriction fragment length polymorphism marker. LOH at one or more loci on chromosome 9 was detected in 33 of 80 cases (41%). Chromosome 9p was lost in 24 of 80 cases (30%), whereas chromosome 9q was lost in 18 of 80 cases (23%). There were two commonly deleted regions mapped to 9p21 between the D9S171 marker and the IFNB1 marker and 9q34–qter distal to the D9S176 marker. In addition, patients with LOH at 9p21 but not at 9q34–qter in the tumors showed statistically significant association with poor prognosis (P = 0.023). Because the commonly deleted regions at 9p21 includes the p16 (CDKN2A) gene, the status of the p16 gene was further examined in 80 fresh tumors and 19 cell lines of neuroblastoma. A missense mutation was detected at codon 52 in a fresh tumor. The p16 gene was not expressed in 13 of 19 cell lines (72%), and 5 of the 13 cell lines displayed methylation of the CpG island surrounding the first exon of the p16 gene. These results suggest that the p16 gene is a candidate tumor suppressor gene for neuroblastoma, and its inactivation may contribute to the progression of neuroblastoma.

INTRODUCTION

Recent molecular studies have revealed that the genesis and progression of human cancer is largely attributed to accumulation of a series of genetic events that culminate in the transformation of a cell into a malignant clone (1). Central to this theory are the roles of oncogenes and tumor suppressor genes, the activation and inactivation of which, respectively, cause disruption of critical events in cell division and differentiation (1). The paradigm of alterations in the tumor suppressor gene is a mutation of one allele and a loss of the other allele. Reduction to homozygosity of the tumor suppressor gene can be detected as LOH2 of informative polymorphic markers in the region of the tumor suppressor gene. Thus, allelic losses are hallmarks of chromosomal regions harboring tumor suppressor genes (2).

Although NB is one of the most common childhood tumors, little is known about the genetic changes that contribute to the development of tumor. It has been reported that LOH occurs frequently on at least three chromosome arms, 1p, 11q, and 14q, in NB (3–10). In addition, we demonstrated recently that three additional loci on chromosomes 2q, 9p, and 18q were deleted with high frequency in NB. Moreover, several studies have shown the correlation of genetic changes with prognosis of the patients with NB (11). N-myc (NMYC) oncogene amplification has been known to be an appreciable prognostic factor in an advanced stage of the disease. It is also indicated that chromosome 1p deletion frequently occurs in an advanced stage of the disease, and there may be two tumor suppressor genes on chromosome 1p associated with progression of the disease (9, 10). In addition, we also reported that 9p LOH was significantly associated with advanced stages of the disease and with poor prognosis (12).

To determine the locus on chromosome 9 that may harbor putative tumor suppressor genes involved in the progression of NB, we performed deletion mapping of chromosome 9 in 80 cases of NB using 11 microsatellite markers and a RFLP marker. The result indicated that there were two commonly deleted regions on chromosome 9, 9p21 and 9q34–qter, in NB, and that LOH at 9p21 was significantly associated with poor prognosis. The p16 (CDKN2A) tumor suppressor gene has been mapped to 9p21 and is inactivated in a variety of malignancies by various mechanisms, including deletion, point mutation, and methylation of the CpG island in the 5' end of the p16 gene (13–17). Therefore, we further examined the alterations of the p16 gene in NB. Although deletions and mutations of the p16 gene are infrequent, transcriptional silencing and DNA methylation were frequently detected in NB cell lines. Thus, it was indicated that the p16 gene is a candidate tumor suppressor gene involved in the progression of NB.

MATERIALS AND METHODS

Primary Tumors and Cell Lines. Tumor samples were randomly obtained from 80 patients admitted to various institutions between May 1987 and July 1993 at surgery or at autopsy. Corresponding normal tissues were available in all cases. The patients were staged according to the classification of staging in NB (18). Of the 80 cases, 21 were classified as stage I, 27 as stage II, 8 as stage III, 16 as stage IV, and 8 as stage IVS. In our 80 NB patients, 74 patients were infants under 1 year of age at diagnosis, and 6 patients were over 1 year. Patients with stage I, II, or IVS were treated with either surgery alone or surgery plus chemotherapy consisting of vincristine and cyclophosphamide with or without radiotherapy. Patients with stage III or IV were treated with multidrug chemotherapy consisting of cyclophosphamide, Adriamycin, cisplatin, and etoposide with or without surgery and radiotherapy. In 53 cases, histological data was available; thus, tumors were histologically classified as described by Ota and Shimizu (19). There were 4 cases of GNB classified as well differentiated, 8 cases of GNB classified as composite, 9 cases of GNB classified as poorly differentiated, 27 cases of NB classified as rosette-fibrillary, and 5 cases of NB classified as round cell. We also used 19 NB cell lines, NB1, NB9, NB16, NB19, NB39, NB69, LAN1, LAN2, LAN5, KP-N-NS, GOTO, CHP-134, IMR-32, TGN-1, TGW, SCMCN2, SCMCN3, SCMCN4, and SCMCN5, for the analysis of the p16 gene alterations in NB.

DNA, RNA, and Protein Extraction. DNA was isolated from tumors, normal tissues, and cell lines by proteinase K digestion and phenol/chloroform isomyl alcohol (24:1) extraction as described previously (20). mRNA was extracted from cells growing in culture using the FastTrack 2.0 mRNA isolation kit according to the manufacturer's instructions (Invitrogen). Cellular protein was extracted by lysing 1×10^6 cells with 40 μl of lysis buffer [50 mM
HEPES-NaOH (pH 7.0), 1% NP40, 1% sodium deoxycholate, 0.1% SDS, 250 mM NaCl, 5 mM EDTA, 50 mM NaF, 1 mM DTT, 1 mM phenylmethylsulfonyl fluoride, and 50 μg/ml aprotinin.

PCR-LOH Analysis. DNA from tumors and corresponding normal tissues were analyzed for LOH by PCR amplification of microsatellite sequences. Microsatellite markers for PCR-LOH analysis were listed in Fig. 1. Total reaction volumes were 10 μl containing 50–100 ng DNA, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 250 μM of each deoxynucleotide triphosphate, 0.01% gelatin, 125 ng of each primer, 1.14 μCi of [α-32P]dCTP, and 1 unit of Taq DNA polymerase (Pharmacia Biotech, Inc.). Because unequal amplification of alleles occurs with 35 cycles of PCR (21), PCR amplifications were performed for 35 cycles consisting of denaturation at 94°C for 40 s, annealing at 55°C for 40 s, and extension at 72°C for 90 s in a Gene Amp PCR system 9600 (Perkin-Elmer) as described (12).

Southern and Northern Blot Analyses. Approximately 10 μg of purified DNA were digested with appropriate restriction enzymes and separated by electrophoresis on 0.8% agarose gel. DNA was transferred from the gel to nylon membranes (12). The membranes were hybridized with a PCR-generated fragment corresponding to exon 1 of the p16 gene (p16-1), a full-length p16 cDNA fragment, IFNB1, and pNB-1 labeled with [α-32P]dCTP. LOH at the IFNB1 locus was examined by Southern blot analysis (12). Approximately 3 μg of mRNA were denatured with 40% formamide/32% formaldehyde and was electrophoresed on a 1.2% agarose gel containing 25% formaldehyde. Then mRNA was transferred to nylon filters. The filters were hybridized with p16-1 and full-length cDNA probes labeled with [α-32P]dCTP and were exposed to Kodak XAR-5 film at −80°C. Prehybridization, hybridization, and posthybridization washes were performed basically as described (20).

PCR-SSCP Analysis. All samples were screened for mutations in exons 1 and 2 of the p16 gene by PCR-SSCP analysis (22). Exon 1 was amplified as one fragment, whereas exon 2 was split into two fragments for PCR-SSCP analysis. The primer sets for the p16 gene were: exon 1, PQIS, 5'-TCTGCGGAGGGAGAAGCGGCA (sense) and PQ1A, 5'-TCTGCGGAGAGCAGGCA (antisense); first exon 2, PQ2AS, 5'-ACAAGCTCTTTTCTCTCAGCGG (sense) and PQ2AA, 5'-CCAGCGGAGCAGCCAGCC (antisense); and second exon 2, PQ2BS, 5'-TTCGCTGGACAGCGTGGGT (sense) and PQ2BA, 5'-TCTGAGClTFGGA (antisense). PCR conditions for exons 1 of the p16 gene were 35 cycles of PCR amplifications were performed for 35 cycles consisting of denaturation at 94°C for 40 s, annealing at 55°C for 40 s, and extension at 72°C for 90 s in a Gene Amp PCR system 9600 (Perkin-Elmer) as described (12).

RESULTS

Frequency and Common Regions of LOH on Chromosome 9 in NB. Eighty cases of NB were examined for LOH on chromosome 9 using 11 microsatellite polymorphic markers and a RFLP DNA marker. The incidence of LOH at each locus is summarized in Fig. 1. All cases showed heterozygous genotypes in their normal tissue at one or more loci on chromosome 9, and LOH at one or more loci was detected in 33 of 80 cases (41%). LOH on chromosome 9p was detected in 24 of 80 cases (30%), whereas LOH on chromosome 9q was detected in 18 of 80 cases (23%). Five of 33 cases (15%) showed LOH at all informative loci, whereas the other 28 tumors showed partial deletions of chromosome 9 (Fig. 1). Case 23 showed LOH at

Statistical Analyses. Significance of the differences in various biological and clinical features of the disease among the patient group was examined by Fisher's exact test. The vital status of the patients was observed until December 31, 1995. The survival curves for each group of the patients were estimated by the Kaplan-Meier method, and the resulting curves were compared using the log-rank test for univariate analysis. Multivariate analysis was performed using the Cox proportional hazards model.

Western Blot Analysis. Fifty μg of protein were separated in a 4–20% gradient SDS/polyacrylamide gel and electrophobbed to Hybond-ECL Chemiluminescence (ECL) nitrocellulose membrane (Amersham Corp., Arlington Heights, IL). After being blocked with 5% nonfat dry milk and 0.1% Tween 20 in Tris-buffered saline, membranes were incubated at 37°C for 2 h with the 1:400 dilution of a rabbit polyclonal anti-p16 antibody (Pharmingen), the epitope of which is unknown, and a rabbit polyclonal anti-p16 antibody for amino acids 137–156 at the COOH terminus of the p16 protein (Santa Cruz Biotechnology). The blot was subsequently probed by the ECL Western blotting detection system (Amersham Corp.). Equal loading of protein was confirmed by staining the membrane after detection.
CHROMOSOME 9 DELETIONS AND p16 IN NEUROBLASTOMA

Fig. 2. LOH in cases showing partial or interstitial deletions of chromosomes 9. DNA was isolated from tumors (Lanes T) and corresponding normal tissues (Lanes N) from patient 23 (Lane 1), patient 60 (Lane 2), patient 33 (Lane 3), and patient 76 (Lane 4). Allelic fragments that showed LOH are indicated by arrowheads.

<table>
<thead>
<tr>
<th>LOH</th>
<th>Age</th>
<th>Stage</th>
<th>Result of screening</th>
<th>N-myc amplification</th>
<th>Histological type</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><1 yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥1 yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>GNB Well differentiated</td>
<td></td>
</tr>
<tr>
<td>9p21-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>9q34-qt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poorly differentiated</td>
<td></td>
</tr>
<tr>
<td>9p21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NB Rosette fibrillary</td>
<td></td>
</tr>
<tr>
<td>9q24-qt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Round cell</td>
<td>0.387</td>
</tr>
</tbody>
</table>

Table 1 Correlation of LOH on chromosome 9 with biological and clinical variables in neuroblastoma

Fisher's exact test.

P-value, log-rank test.
Table 2 Status of the p16 gene

<table>
<thead>
<tr>
<th>Cell line</th>
<th>DNA</th>
<th>mRNA</th>
<th>Protein</th>
<th>Methylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGW</td>
<td>WT</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>IMR-32</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAN1</td>
<td>WT</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>LAN2</td>
<td>WT</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LAN5</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB1</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB9</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB16</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB19</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>NB39</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NB69</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SCMCN2</td>
<td>WT</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SCMCN3</td>
<td>WT</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SCMCN4</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SCMCN5</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CHP-134</td>
<td>WT</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>TNB1</td>
<td>WT</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GOTO</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KP-N-NSWV</td>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* WT, wild type.

DISCUSSION

We present here the deletion map of chromosome 9 and alterations of the p16 gene in NB. In this study, we detected two commonly deleted regions: one was between the IFNB1 and D9S171 loci at chromosome 9p21 and the other was distal to the D9S176 locus at chromosome 9q34–qter. Recently, it has been demonstrated that both short and long arms of chromosome 9 are frequently deleted in many types of human cancers. Loss of the short arm of chromosome 9, in contrast, is not as common. In this study, we detected two commonly deleted regions: one was between the IFNB1 and D9S171 loci at chromosome 9p21 and the other was distal to the D9S176 locus at chromosome 9q34–qter. Recently, it has been demonstrated that both short and long arms of chromosome 9 are frequently deleted in many types of human cancers. Loss of the short arm of chromosome 9, in contrast, is not as common.
CHROMOSOME 9 DELETIONS AND p16 IN NEUROBLASTOMA

Fig. 5. Methylation of the 5’ CpG island in the p16 gene and expression of the p16 gene in NB cell lines. N417 small cell lung carcinoma cell line and A549 non-small cell lung carcinoma cell line are used as positive and negative controls, respectively. The p16 gene is expressed in N417, whereas it is homozygously deleted in A549. Lane 1, N417; Lane 2, A549; Lanes 3–9, NB cell lines, TOW, IMR-32, LAN1, NB16, NB69, LAN2, and NB19. A, Southern blot analysis of the 5’-region of exon 1 of the p16 gene. Digestion with Smal plus EcoRI yields two small fragments (0.65 and 0.35 kb) in six cell lines (Lanes 1, 3, 4, 5, 6, and 7), indicating that the Smal site is unmethylated, and one large fragment (4.3 kb) in two cell lines (Lanes 8 and 9), indicating that the Smal site is methylated. B, Northern blot analysis of the p16 gene. The p16 transcripts of 0.8 kb were detected in two of NB cell lines (Lanes 3 and 5). C, Western blot analysis of the p16 protein. p16 protein was detected in two of NB cell lines (Lanes 3 and 5).

particular 9p21–22, occurs in a variety of human cancers, including melanoma (24), renal cell carcinoma (25), lung cancer (26), bladder cancer (27), head and neck cancer (28), and ovarian cancer (29). Chromosome 9q, in particular 9q34–qter, is also frequently deleted in several human cancers (27, 29–31). Interestingly, both of the short and long arms are deleted in some human cancers, such as bladder cancer, ovarian cancer, esophageal carcinoma, and renal cell carcinoma (27, 29–31). Therefore, as in the case of several other types of cancers, at least two tumor suppressor genes on both short and long arms of chromosome 9 may contribute to genesis and progression of NB. Furthermore, we found that 9p LOH significantly correlates with an advanced stage of the disease and poor prognosis of the patient, and 9q LOH did not correlate with these clinical parameters. In the present study, 9p LOH was significantly associated with poor prognosis independently of N-myc amplification. Thus, it is possible that a tumor suppressor gene located on chromosome 9p21 plays an important role in the progression of NB through a different pathway from N-myc amplification. Although the age of children at diagnosis is also a factor to predict the outcome of patients, 9p LOH was not correlated with the age of patients. This might be due to the small number of patients over 1 year in this study. Therefore, further studies with a large population of children over 1 year may lead to conclusive data for the correlation between age of patients and 9p LOH.

Although 1p LOH is also considered to correlate with poor survival, we found no association between 1p LOH and 9p LOH. Because we used only two markers at 1p32 for detection of 1p LOH (12), it could influence the statistical analysis.

The p16 gene, a candidate tumor suppressor gene involved in many types of human cancers (13–15), have been mapped to chromosome 9p21 between the IFNB1 and D9S171 loci, which is one of the commonly deleted regions on chromosome 9 in NB. However, no homozygous deletions have been reported in NB (32). It is also reported that there were no p16 gene mutations and no LOH at the IFNA locus close to the p16 gene locus (32). In this study, we found no homozygous deletions in both primary tumors and cell lines, and a missense mutation was detected only in a primary tumor. Because this type of mutation has not been reported previously, we do not know if it is functionally significant. These data suggest that the p16 gene is not a target tumor suppressor gene inactivated in NB. However, it is possible that the p16 gene is inactivated by alternative mechanisms in most tumors, such as intronic deletions and mutations not detected by sequence analysis of exons or Southern blot analysis. Moreover, recent evidence indicated that transcriptional repression by DNA methylation of promoter and 5’ regulatory sequences may be a pathway for inactivation of the p16 gene in several types of human cancers (16–17). To clarify whether the p16 gene is inactivated in NB, we examined the status of the p16 gene using Southern, Northern, and Western blot analyses. The p16 gene was not expressed in most NB cell lines. Absence of the p16 mRNA in the samples lacking the p16 protein suggests that p16 expression is likely to be regulated at the transcriptional level. Moreover, we found that hypermethylation of the 5’ CpG island in the p16 gene is frequent in cell lines lacking p16 expression. Thus, it is likely that the p16 gene is inactivated mostly by 5’ CpG island methylation rather than DNA alterations in NB. Similar results were also reported in several other types of human cancers (16–17). However, the mechanisms for the absence of the p16 mRNA in the remaining cell lines is not clear. We cannot rule out the possibility that mutation harbors in the promoter region of the p16 gene with the consequence of gene inactivation. Recent studies indicated that expression of not only the p16 gene but also the p15 gene is suppressed by homozygous deletion, point mutation, and hypermethylation of the 5’ CpG island of this gene in several human cancers (33, 34). Particularly, in leukemia, the methylation of the 5’ CpG island in the first exon of the p15 gene is more frequent than that in the p16 gene (17). Therefore, to determine the pathways to inactivate these genes and whether the p15 and/or p16 genes are involved in the progression of NB, more detailed analysis of these genes will be necessary.

In conclusion, it was demonstrated here that at least two tumor suppressor genes on chromosome 9 are involved in the genesis and/or progression of NB. Particularly, the gene on chromosome 9p is likely to be associated with progression of NB, and the p16 gene is a candidate target tumor suppressor gene involved in the progression of NB. However, because we have not examined for p16 methylation in primary tumors, the biological significance of p16 inactivation in the genesis and progression of NB is still unclear. For this reason, we are currently investigating the association of p16 expression and methylation in tumors with prognosis of patients with NB.
ACKNOWLEDGMENTS

We thank Dr. S. Nagata for providing the IFNBI cDNA probe.

REFERENCES

2. Yokota, J., and Sugimura, T. Multiple steps in carcinogenesis involving alterations of
3. Fong, C. T., Dracopoli, N. C., White, P. S., Merrill, P. T., Griffith, R. C., Housman,
D. E., and Brodeur, G. M. Loss of heterozygosity for the short arm of chromosome
4. Suzuki, T., Yokota, J., Mugishima, H., Okabe, I., Oookuni, M., Sugimura, T., and
Terada, M. Frequent loss of heterozygosity on chromosome 14q in neuroblastoma.
5. Fong, C. T., White, P. S., Peterson, K., Sapienza, C., Caveness, W. K., Kern, S. E.,
Vogelstein, B., Cantor, A. B., Look, A. T., and Brodeur, G. M. Loss of heterozygosity for
chromosomes 1 and 14 defines subsets of advanced neuroblastoma. Cancer Res.,
6. Takayama, H., Suzuki, T., Mugishima, H., Fujisawa, T., Oookuni, M., Schwab, M.,
Gehring, M., Nakamura, Y., Sugimura, T., Terada, M., and Yokota, J. Deletion map
7. Caron, H., van Sluis, P., van Hoeve, M., de Kraker, J., Bras, J., Slater, R., Mannens,
in neuroblastoma is of preferential maternal origin and correlates with N-myc amplific-
8. Srivatsan, E. S., Ying, K. L., and Seeger, R. C. Deletion of chromosome 11 and 14q
Maggelenat, I., Thomas, G., and Delattre, O. Two distinct deleted regions on the
short arm of chromosome 1 in neuroblastoma. Genes Chromosomes Cancer, 10:
10. Takada, O., Homma, C., Maseki, N., Sakurai, M., Kanda, N., Schwab, M., Nakamura,
Y., and Kaneko, Y. There may be two tumor suppressor genes on chromosome arm
12. Takla, J., Hayashi, Y., Kohno, T., Shiieki, M., Yamaguchi, N., Hanada, R., Yamamoto,
1834, 1995.
Stockert, E., Day, R. S., III, Johnson, B. E., and Skolnick, M. H. A cell cycle regulator
potentially involved in genesis of many tumor types. Science (Washington DC), 264:
Deletion of the cyclophosphamide-resistant-4 inhibitor gene in multiple human cancers.
D. J., Serrano, M., Hannon, G. J., Shiieki, M., Zarivala, M., Xiong, Y., Beach, D. H.,
Yokota, J., and Harris, C. C. Mutations in the p16/CDKN2/MTSl gene in primary and metastatic lung cancer. Cancer Res., 53:
16. Merlo, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C., Baylin,
S. B., and Sidransky, D. 5′ CpG island methylation is associated with transcriptional
silencing of the tumor suppressor p16/CDKN2/MTSl in human cancers. Nat. Med., 1:
Deletion Map of Chromosome 9 and p16 (CDKN2A) Gene Alterations in Neuroblastoma

Junko Takita, Yasuhide Hayashi, Takashi Kohno, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/5/907

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.