Activation of Mitogenic Signaling by Endothelin 1 in Ovarian Carcinoma Cells

Anna Bagnato,2 Raffaele Tecce, Valeriana Di Castro, and Kevin J. Catt

ABSTRACT

Endothelin 1 (ET-1) is produced in ovarian cancer cell lines and has been shown to act through ET_{A} receptors as an autocrine growth factor to promote tumor cell proliferation in vitro. In OVCA 433 cells, the efficacy of ET-1 as a stimulus of [H]thymidine incorporation was equivalent to that of epidermal growth factor. ET-1 also stimulated the rapid expression of c-fos, an action mediated by ET_{A} receptors. The mitogenic action of ET-1 was not mediated by a pertussis toxin-sensitive G protein. An analysis of the effects of inhibition and depletion of protein kinase C (PKC) on mitogenic responses demonstrated that PKC was necessary but not sufficient for maximal stimulation by ET-1. In quiescent OVCA 433 cells, ET-1-induced stimulation of [H]thymidine incorporation was prevented by two structurally distinct inhibitors of tyrosine kinase, herbimycin A and genistein. These results indicate that both PKC and protein tyrosine kinase participate in ET-1-stimulated mitogenic signaling. ET-1 rapidly stimulated tyrosine phosphorylation of several cellular proteins, among which p125^{FAK} and p42 mitogen-activated protein kinase were identified. The additivity between the potent mitogenic actions of ET-1 and epidermal growth factor is consistent with the independence of their signal transduction pathways in ovarian cancer cells. These findings also indicate that intracellular signaling between the ET_{A} receptor and a yet unidentified tyrosine kinase is involved in the mitogenic response to ET-1.

INTRODUCTION

Recent studies on ovarian cancer, which is a major cause of death from gynecological malignancy, have focused on factors that regulate the growth of neoplastic ovarian cells (1). A more extensive characterization of these factors might reveal novel and potentially more effective approaches to the treatment of ovarian tumors. ET-1, a potent vasoconstrictor peptide initially isolated from endothelial cells (2), is also produced by a variety of human cancer cells (3–6). ET-1 has been suggested to be involved in the pathogenesis of certain types of cancer through an autocrine or paracrine mechanism (7, 8).

The physiological effects of ET-1 are mediated by two distinct, GPCRs: a selective ET_{A} receptor that binds ET-1 and ET-2 with high affinity and ET-3 with low affinity, and a nonselective ET_{B} receptor that binds all three ET isopeptides with equal affinity. These receptors trigger a common set of early signaling events, including activation of phospholipase C and inositol triphosphate-dependent increases in intracellular Ca^{2+} levels, activation of PKC, and rapid expression of c-jun and c-fos (9, 10).

In the porcine ovary, ET-1 acts through ET_{B} receptors as an endogenous regulator of granulosa cell function (11). However, we have recently demonstrated that ET-1 is produced by human ovarian cancer cells and acts through ET_{A} receptors as an autocrine growth factor to stimulate calcium signaling and proliferative responses (12).

These findings support the view that ET-1 could participate in the development and/or progression of human ovarian tumors. As a growth regulatory peptide, ET-1 influences cell proliferation directly and can also act synergistically with growth factors that have been implicated in cancer progression (13, 14). The intracellular signaling pathways involved in the regulation of cell growth and division in response to mitogenic activation of GPCRs have not been clearly defined. Recent studies have focused on the roles of intermediates such as cyclic AMP and βγ subunits (15), and associated intracellular signaling proteins (16), in the tyrosine kinase cascade activated by GPCRs. Both PKC and protein tyrosine kinase activity have been implicated in mitogenic signaling pathways activated by ET-1 in specific cell types, but their individual contributions remain unclear. Although such pathways are independently controlled, the existence of cross-talk between them has been observed in cells stimulated by ET-1 (17, 18).

To investigate the proliferative actions of ET in ovarian carcinoma cells, we compared the activation of mitogenic signal pathways induced by ET-1, which binds to a GPCR, and EGF, which activates a receptor tyrosine kinase. In OVCA 433 cells, ET-1 was found to be as effective as EGF as a mitogenic stimulus and rapidly induced c-fos gene expression. Both PKC and tyrosine phosphorylation are involved in the ET-1-induced mitogenic signaling response. The binding of ET-1 to ET_{A} receptors also rapidly stimulated tyrosine phosphorylation of cellular proteins, including focal adhesion kinase (p125^{FAK}) and MAP kinase. It is possible that mitogenic signaling by ET-1 involves cross-talk between GPCRs and growth factors such as EGF, leading to increased proliferation of ovarian cancer cells.

MATERIALS AND METHODS

Cell Culture. The human ovarian carcinoma cell line OVCA 433 (19) was a generous gift from Dr. Giovanni Scambia (Catholic University School of Medicine, Rome, Italy). Cells were cultured in DMEM (Whittaker Bioproducts, Inc., Walkersville, MD) containing 1% penicillin-streptomycin and 10% FCS in 75-cm² plastic flasks at 37°C under 5% CO_{2}-95% air. When the cells reached 70–80% confluence, the cultures were serum deprived by incubation for 24 h in DMEM.

Thymidine Incorporation Assay. Cells were seeded in 96-well plates at approximately 80% confluence (2 × 10^{5} cells/well) and incubated in serum-free medium for 24 h to induce quiescence. Mitogenic stimuli were then added, and after 18 h, when the cells were confluent, 1 μCi of [methoxy-³H]thymidine (6.7 Ci/mmol; DuPont, New England Nuclear Research Products, Wilmington, DE) was added to each well. Six h later the culture media were removed and the cells were washed three times with PBS, treated with 10% trichloroacetic acid for 15 min, washed twice with 100% ethanol, and solubilized in 0.4 N sodium hydroxide. The cell-associated radioactivity was then determined by liquid scintillation counting. Responses to all agents were assayed in sextuplicate and results were expressed as the means of three separate experiments.

RNA Extraction and Northern RNA Blot Analysis. Total cellular RNA was isolated from quiescent or ET-1-stimulated cells using the acid guanidinium isothiocyanate method (20). Ten to 20 μg of RNA were electrophoresed on 1% agarose-formaldehyde gels, transferred to Nytran membranes by capillary blotting, and immobilized by UV cross-linking. The filters were treated for 4 h at 42°C in 50% formamide prehybridization buffer containing 200 μg/ml denatured salmon sperm DNA and torula yeast RNA. The filters were hybridized with ³²P-labeled cDNA probes containing inserts from plasmid clones of fos (Clontech, Palo Alto, CA). Subsequently, rehybridization
performed with a cDNA probe for human GAPDH (Clontech) to control for variations in gel loading and transfer efficiency. The cDNA probes were labeled at specific activities of 0.5–1 × 10⁶ dpm/nmol with [³²P]dCTP (6000 Ci/mmol) using a random hexanucleotide priming kit. After hybridization in a 50% Northern blot hybridization buffer at 42°C for 12 to 16 h, the blots were washed at a final stringency of 0.1 X SSc-0.1% SDS at 55°C and exposed to Kodak films at -70°C with intensifying screens for 12 to 24 h. Levels of gene expression were quantitated with a PhosphorImager and ImageQuant software (Molecular Dynamics, Sunnyvale, CA) and were normalized to those of GAPDH, whose mRNA remained essentially constant.

Immunoprecipitation. OVCA 433 cells were grown to 80–90% confluency in 100-mm plastic Petri dishes and then serum starved for 24 h. After addition of agonists to the dishes for selected periods, the cells were rapidly washed with ice-cold PBS and scraped into 0.5 ml of ice-cold lysis buffer (50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 50 mM sodium fluoride, 5 mM EDTA, 1 mM o-vanadate, 0.06 units of aprotinin, 1 mM phenylmethylsulfonyl fluoride, and 10 µg/ml leupeptin). The lysates were preclarified for 30 min at 4°C with protein A-Sepharose, and immunoprecipitation was performed with anti-p125FAB polyclonal antibody (a gift from Dr. G. Tarone, University of Turin, Turin, Italy) for 1 h at 4°C. The precipitates were washed six times with lysis buffer and analyzed by electrophoresis on 7.5% polyacrylamide gels followed by immunoblotting.

Immunoblotting. For immunoblot analysis of the mobility shift of MAP kinase, cells were stimulated, treated with lysis buffer as above, and separated on 12.5% polyacrylamide gels (acrylamide/bis, 30:0.2). Blotting of cell extracts or p125FAB immunoprecipitates to nitrocellulose was performed at 0.5 A for 3 h in 10 mts 3-(cyclohexylamino)-1-propanesulfonic acid (pH 11) and 20% (v/v) methanol. Nonspecific binding of antibodies was prevented by incubating the blots in 3% BSA in Tris-buffered saline-0.5% Tween 20 for 1 h at room temperature. The blots were then incubated for 1 h with anti-phosphorysosine monoclonal antibody (0.5 µg/ml, clone 4G10; Upstate Biotechnology, Inc., Lake Placid, NY) or anti-p42 MAP kinase polyclonal antibody (1:1000, anti-ERK2, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in Tris-buffered saline-0.5% Tween 20. The blots were subsequently incubated (45 min at room temperature) with peroxidase-labeled affinity-purified goat anti-mouse or anti-rabbit antibody (Bio-Rad Laboratories, Hercules, CA) for 3 h in 10 mt,i 3-(cyclohexylamino)-1-propanesulfonic acid (pH 11) and 20% (v/v) methanol. Nonspecific binding of antibodies was prevented by incubating the blots in 3% BSA in Tris-buffered saline-0.5% Tween 20 for 1 h at room temperature. The blots were then incubated for 1 h with anti-phosphorysosine monoclonal antibody (0.5 µg/ml, clone 4G10; Upstate Biotechnology, Inc., Lake Placid, NY) or anti-p42 MAP kinase polyclonal antibody (1:1000, anti-ERK2, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in Tris-buffered saline-0.5% Tween 20. The blots were subsequently incubated (45 min at room temperature) with peroxidase-labeled affinity-purified goat anti-mouse or anti-rabbit antibody (Bio-Rad Laboratories, Hercules, CA). After three washes, immunostained bands were visualized using the enhanced chemiluminescence detection system according to the manufacturer’s instructions (Amerham, Arlington Heights, IL). All results shown are representative of at least three separate experiments.

MAP Kinase Activity. MAP kinase activity was measured using rabbit MBP (Sigma, St. Louis, MO) as substrate. Cell extracts, obtained as indicated above, were incubated with anti-MAP kinase antibody (ERK-2; Santa Cruz Biotechnology, Inc.) bound to protein A-Sepharose 4B (Pharmacia, Uppsala, Sweden). Immunocomplexes were recovered by centrifugation and washed three times in lysis buffer and twice in kinase buffer and then incubated for 30 min at 30°C with 5 µg of MBP, 10 µg of ATP, and 10 µCi of ³²P]-ATP. The reactions were terminated by the addition of 20 µl of Laemmli’s buffer and boiling for 3 min, and samples were analyzed by SDS-PAGE in 12.5% acrylamide gels followed by autoradiography to visualize the phosphorylation of MBP.

RESULTS

Effects of ET-1 on DNA Synthesis in Ovarian Cancer Cells. Assays for ET-1-induced mitogenic responses were performed on OVCA 433 cells, which express abundant high-affinity receptors for ET-1 and for EGF (Kd 0.10 nm and 45,500 receptors/cell for ET-1 versus Kd 0.25 nm and 52,700 receptors/cell for EGF as determined by Scatchard analysis). ET-1 has been reported to act as a comitogen that requires low concentrations of serum, insulin, or polypeptide growth factors for maximum mitogenic activity (13). However, we recently observed that ET-1 alone can stimulate dose-dependent increases in [³²P]thymidine incorporation and proliferation in OVCA 433 cells, and these actions were blocked by BQ 123 (12), an ET₄-selective receptor antagonist (21). A comparison of the mitogenic effects of ET-1 and EGF on OVCA 433 cells is shown in Fig. 1. In this study, ET-1 was equipotent with EGF in stimulating mitogenesis. When quiescent OVCA 433 cells were treated with 10 nm ET-1 in the presence of 10 ng/ml EGF, additive thymidine responses were observed (Table 1). However, at a 10-fold higher ET-1 concentration, slightly greater than additive effects (+16%) were observed.

Effect of ET-1 on c-fos Gene Expression. Mitogens that stimulate increases in intracellular Ca²⁺ levels and activate PKC often induce expression of immediate response genes (22). When added to OVCA 433 cells, ET-1 increased the level of c-fos mRNA with the time course shown in Fig. 2A. The low levels of c-fos found in quiescent cells showed a substantial increase after stimulation with 100 nm ET-1 to reach a maximum at 30 min and returned to the basal level by 4 h (Fig. 2B). The induction of c-fos mRNA was almost completely abolished in the presence of a 10-fold excess of BQ 123, demonstrating that this response to ET-1 is mediated by ET₄ receptors (Fig. 3).

Effect of PTX on ET-1-Induced DNA Synthesis. To determine whether mitogenic signaling by ET-1 utilizes a PTX-sensitive (23) or insensitive (18) G protein, ovarian cancer cells were preincubated with PTX prior to hormone stimulation. Treatment of quiescent cells with 100 ng/ml PTX for 6 or 16 h had no effect on ET-1-induced

Table 1 Stimulation of DNA synthesis in OVCA 433 cells by ET-1 and EGF

<table>
<thead>
<tr>
<th></th>
<th>No addition</th>
<th>EGF (1 ng/ml)</th>
<th>EGF (10 ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.4 ± 1.1</td>
<td>80.7 ± 2.7</td>
<td>89.9 ± 2.6</td>
</tr>
<tr>
<td>ET-1 (10 nm)</td>
<td>72.6 ± 2.5</td>
<td>96.0 ± 3.0</td>
<td>128.5 ± 4.1</td>
</tr>
<tr>
<td>ET-1 (100 nm)</td>
<td>79.1 ± 2.9</td>
<td>109.9 ± 3.1</td>
<td>146.5 ± 5.0</td>
</tr>
</tbody>
</table>

*[^][³²P]thymidine incorporation in quiescent OVCA 433 cells was measured 24 h after agonist addition, as described in "Materials and Methods." [³²P]thymidine incorporation in 10% FCS-stimulated cells was 147.3 ± 5.0 × 10⁶ cpm/well. Values represent means ± SD (n = 6).

[^a]: p < 0.01.
[^b]: p < 0.002.
[^c]: p < 0.001, compared with control values.
Role of Protein Kinase C in ET-1-induced DNA Synthesis. To analyze the contribution of PKC to mitogenic signaling by ET-1, quiescent OVCA 433 cells were treated with 800 nM GF 109203X, a PKC-selective bisindolylmaleimide inhibitor. This compound, when applied at a concentration known to inhibit DNA synthesis induced by PKC-activating mitogens (24), markedly attenuated the subsequent stimulation of [3H]thymidine incorporation by ET-1 but not that induced by EGF (Fig. 5A). The latter finding indicates that inhibition of the mitogenic response to ET-1 was specific and not due to cytotoxicity. Similarly, addition of 0.1 nM staurosporine, a potent but less selective inhibitor of PKC, markedly inhibited ET-1 induced [3H]thymidine incorporation (data not shown). Furthermore, depletion of PKC by pretreatment of cells with TPA reduced the subsequent stimulation of [3H]thymidine incorporation by ET-1 but had no effect on the response to the EGF (Fig. 5B). Although these results indicate that mitogenic signaling by ET-1, but not by EGF, requires PKC, they suggest that activation of PKC is not alone sufficient to mediate this response. The extent to which stimulation of PKC can mimic the

Fig. 2. A, Time course of c-fos mRNA induction in ET-1-stimulated OVCA 433 cells. Total RNA was isolated from quiescent or ET-1-treated (100 nM) cells at the indicated times during stimulation. B, hybridization signals were quantified and expressed as relative levels of specific mRNA normalized to those of GAPDH mRNA levels in the same blot.

Fig. 3. Blockade of ET-1-stimulated c-fos mRNA expression by an ETA receptor antagonist. Quiescent OVCA 433 cells were stimulated with ET-1 (100 nM) in the absence or presence of BQ 123 (1 μM) for 30 min. Total RNA was isolated and Northern blots were probed for the expression of c-fos mRNA.

Fig. 4. Effect of PTX on ET-1-stimulated incorporation of [3H]thymidine. Quiescent OVCA 433 cells were treated with ET-1 (100 nM) or 10% FCS. Where indicated, the cells were incubated with PTX (100 ng/ml) for 6 or 16 h before agonist stimulation. Data are means of results from three experiments, each performed in sextuplicate. Bars, SD.

Fig. 5. Effects of PKC inhibition and depletion on ET-1-stimulated [3H]thymidine incorporation. A, ET-1 or EGF was added to quiescent OVCA 433 cells or quiescent cells pretreated with 800 nM GF 109203X for 30 min to inhibit PKC. B, ET-1 (100 nM) or EGF (10 ng/ml) was added to cells pretreated with 100 nM TPA for 16 h to deplete PKC. In the last experiments, 10 nM TPA or 100 nM OAG were added alone to quiescent cells to activate PKC. In all cases, [3H]thymidine incorporation was analyzed 24 h after the addition of agonists. Data are means of results from three experiments, each performed in sextuplicate. Bars, SD.
effects of ET-1 was examined in OVCA 433 cells treated with the PKC activators OAG and TPA. These agents only slightly increased [3H]thymidine incorporation and did not reconstitute the growth factor-like action of ET-1 on this response (Fig. 5B).

Effects of Tyrosine Kinase Inhibitors on ET-1-Stimulated DNA Synthesis. ET-1 has been shown to increase tyrosine phosphorylation of cellular proteins, but it is not clear whether this response is linked to mitogenesis (25, 26). To evaluate the functional significance of ET-1-stimulated tyrosine phosphorylation, the [3H]thymidine incorporation response of cells stimulated by ET-1 was measured after pretreatment with herbimycin A, a benzoquinoid inhibitor of cellular tyrosine kinases (27). As shown in Fig. 6A, herbimycin A prevented [3H]thymidine incorporation in response to all concentrations of ET-1 tested. Furthermore, genistein, a chemically and functionally dissimilar inhibitor of tyrosine kinase activity (28), also completely prevented [3H]thymidine incorporation in cells treated with mitogenic concentrations of ET-1 (Fig. 6B). These data are consistent with the hypothesis that stimulation of tyrosine phosphorylation is necessary for mitogenic signaling by ET-1.

DISCUSSION

The downstream signals that mediate growth responses secondary to activation of GPCRs have been extensively analyzed in normal and immortalized cells, but have been little explored in human cancer cells. We have previously shown that ET-1 activates calcium signaling and proliferative responses in ovarian cancer cells. The present findings demonstrate the induction of immediate early gene expression in such cells, one of the earliest genomic responses to ET-1 (10). This transcriptional response, which is an important nuclear signal for the activation and phosphorylation of MAP kinase.

ET-1 Stimulates Tyrosine Phosphorylation of FAK (p125FAK).

The observation that tyrosine-phosphorylated substrates in the 115-130-kDa region were present in protein extracts from ET-1-stimulated cells (data not shown) led us to test whether p125FAK was phosphorylated during agonist action in OVCA 433 cells. p125FAK is a newly identified tyrosine kinase that becomes rapidly phosphorylated on tyrosine residues after integrin-mediated cell spreading and adhesion (29) and also when cells are stimulated by mitogenic peptides or transformed by v-src (30). Immunoprecipitation of p125FAK demonstrated that the enzyme was tyrosine phosphorylated in unstimulated OVCA 433 cells (Fig. 7) and that ET-1 induced significant increases in its phosphotyrosine content, with an initial peak at 5 min that fell toward basal values at 30 min. In contrast, EGF had no significant effect on p125FAK phosphorylation in these cells (data not shown).

ET-1 Induces Phosphorylation and Activation of MAP Kinase. MAP kinases (or extracellular signal-regulated kinases) are activated by numerous growth factors and calcium-mobilizing agonists, and several lines of evidence have suggested their essential role in cell cycle progression from G0-G1 to S (31, 32). ET-1-induced activation of MAP kinase is readily detectable on immunoblots, where the phosphorylated form of p42 MAP kinase displays lower electrophoretic mobility. As shown in Fig. 8A, both EGF (10 ng/ml) and ET-1 (100 nM) induced a rapid shift in the mobility of p42 MAP kinase, and the activation induced by ET-1 was inhibited by BQ 123. To confirm that the phosphorylation of MAP kinase was accompanied by increased enzyme activity, we performed immunocomplex kinase assays using MBP as a substrate. Stimulation of OVCA 433 cells with either ET-1 or EGF caused enhanced phosphorylation of MBP in MAP kinase immunoprecipitates (Fig. 8B), demonstrating that MAP kinase phosphorylation parallels increased enzymatic activity. Pretreatment of cells with the ETA receptor antagonist, BQ 123, prevented the stimulation of MBP phosphorylation induced by ET-1, confirming that the ETA receptor subtype mediates the activation and phosphorylation of MAP kinase.

Fig. 7. Kinetics of ET-1-induced p125FAK tyrosine phosphorylation. Quiescent OVCA 433 cells were incubated for the indicated times in the absence or presence of 100 nM ET-1. Analysis of p125FAK tyrosine phosphorylation was performed by immunoprecipitation with anti-FAK polyclonal serum and subsequent immunoblotting by a monoclonal antiphosphotyrosine antibody.

Fig. 6. Effects of tyrosine kinase inhibition on ET-1-stimulated [3H]thymidine incorporation. A, Quiescent OVCA 433 cells were preincubated for 16 h in the absence (□) or presence (■) of 6 nM herbimycin A before addition of increasing concentrations of ET-1. Thymidine incorporation was measured 24 h later. Data are means of results from three experiments, each performed in sextuplicate. Bars, SD.

Fig. 8. ET-1-induced phosphorylation and activation of MAP kinase.

Fig. 8A. Immunocomplex kinase assays of MAP kinase from ET-1-stimulated OVCA 433 cells. Blot: aPV. IP: p125FAK. [3P]Th: [3P]thymidine. Blot: aPV. Blot: aPY.
regulating the Gq/Gi transition, is mediated by the ET\text{\textalpha} receptor. In the present study, ET-1 was found to stimulate DNA synthesis in ovarian cancer cells with the same efficacy as EGF, a typical growth factor, and at maximally effective concentrations its effect was additive to that of EGF. In contrast with the synergistic effects of ET-1 and polypeptide growth factors in certain cell types (35), only slight potentiation between the two hormones was observed on the growth responses of ovarian cancer cells. ET-1 has been found to potentiate DNA synthesis in Swiss 3T3 and NRK cells in the presence of EGF (34), and additive effects were observed on the proliferation of prostate cancer cells (4) and breast stromal cells (8). The mechanisms underlying the synergism between ET-1 and EGF are not well defined, but presumably depend on interactions between specific components of their mitogenic signaling pathways. In the present case, the predominately additive actions of ET-1 and EGF on thymidine incorporation at saturating agonist concentrations reflect the independence between their individual signaling mechanisms.

Several ligands that bind to GPCRs have been found to utilize PTX-sensitive G proteins to initiate growth responses in their target cells (35). However, ET-1 is known to stimulate phospholipase C activity and calcium signaling via a PTX-insensitive G protein in several cell types (18, 36, 37). Our data in ovarian cancer cells are consistent with the role of G12 or a related PTX-insensitive G protein in the ET-1-stimulated signal transduction cascade that regulates cell growth. Previous evidence has implicated PKC in mitogenic signaling by ET-1 (17, 38–40), but it is unclear whether PKC activation is sufficient for the proliferative response and whether the requirement for PKC is unique to GPCR agonists. In OVCA 433 cells, the effects of inhibition and depletion of PKC provide evidence that PKC is necessary for ET-1-induced growth responses. However, this was not the case for EGF, indicating the different requirements of the two agonists for activation of PKC to induce mitogenesis. Furthermore, TPA and the cell permeant diacylglycerol analogue, OAG, did not reproduce the effects of ET-1 on \[^{3}H\]thymidine incorporation. Thus, other signals must be required in concert with PKC to mediate ET-1-induced mitogenesis.

Tyrosine kinases and their phosphorylated substrates are essential components in the mitogenic actions of numerous growth factors (15, 16). Tyrosine phosphorylation has also been found to occur during signaling responses associated with cell activation by phospholipase C-linked mitogenic peptides. The present data reveal a characteristic pattern of protein tyrosine phosphorylation following cell stimulation with ET-1. The importance of tyrosine phosphorylation in mitogenic signaling by ET-1 was indicated by the manner in which two chemically and functionally dissimilar tyrosine kinases inhibitors, herbimycin A and genistein, prevented the stimulation of \[^{3}H\]thymidine incorporation by ET-1. It is clear that, in addition to PKC, mitogenic signaling by ET-1 requires an as yet unidentified tyrosine kinase(s). In the present study, ET-1 rapidly stimulated tyrosine phosphorylation of multiple cellular proteins. Among these we identified p125\text{FAK} kinase, which is predominantly localized in focal adhesions and is rapidly phosphorylated by integrins, neupeptides, and oncogenes (41). Recent studies have shown that p60\text{src} forms a stable association with the tyrosine-phosphorylated form of p125\text{FAK} through its SH2 domain, suggesting a role for p125\text{FAK} in signal transduction (42). Furthermore, increased levels of p125\text{FAK} were found to accompany changes in epithelial and mesenchymal tumors during their progression to an invasive phenotype (43). The convergence of these various properties of p125\text{FAK} suggests that this protein participates in a variety of cellular processes, including a diverse set of normal and abnormal functions such as cell adhesion, cell motility, and, ultimately, cell proliferation.

ET-1 causes phosphorylation and activation of p42 MAP kinase, which is regulated by an upstream MAP kinase (MEK) that is thought to serve as a point of convergence of diverse signaling pathways, including the phospholipase C/PKC cascade and the receptor tyrosine kinase cascade (32). Activation of PKC and tyrosine kinases has been implicated in signaling from ET\text{\textalpha} receptors to MAP kinase in several cell types including fibroblasts (38, 44), mesangial cells (18, 45), vascular smooth muscle cells (46), and astrocytes (16, 36, 47). The present findings are in agreement with these reports and, along with our previous observations, indicate that ET-1 acts as a tumor growth factor by activating G protein-mediated signal transduction pathways in ovarian cancer cells. Binding of ET-1 to the ET\text{\textalpha} receptor subtype results in activation of a PTX-insensitive G protein that stimulates phospholipase C activity and promotes Ca2+/PKC signaling. Furthermore, ET-1 enhances mitogenesis through at least two pathways that utilize PKC and tyrosine kinases as major downstream effectors. ET-1 also stimulates the tyrosine phosphorylation of p125\text{FAK}, which is thought to transduce signals involved in tumor cell invasion. However, the role of this tyrosine kinase in mitogenic signal transduction is not yet known. The activation of MAP kinases by ET-1 is followed by increases in immediate-early gene expression and mitogenic responses that typically accompany growth factor activity.

A comparison of mitogenic signaling by ET-1 and EGF suggests not only the possibility of common intermediates in the signaling pathways of receptor tyrosine kinases and GPCRs, but also the activation of yet unidentified tyrosine kinases through cross-talk between these intracellular signaling cascades. Identification of such putative tyrosine kinase(s) is an obvious challenge for future studies. Recently, Daub et al. (48) have demonstrated a role for receptor tyrosine kinases as downstream mediators in GPCR mitogenic signaling via a ligand-independent mechanism of EGF receptor transactivation. The present findings clearly demonstrate that ET-1 is a potent mitogen in ovarian cancer cells and has additive actions with EGF that do not appear to
involves receptor transactivation. It is likely that interaction or convergence of diverse mitogenic signaling pathways is necessary for expression of the mitogenic activity of ET-1. Further investigation of this should clarify the functional relevance of ET-1 and its receptor in the regulation of cell growth and in the pathophysiology of ovarian cancer.

ACKNOWLEDGMENTS

We are grateful to Fabrizio Vacca for his helpful contribution for immuno-precipitation and immunoblot analysis, Dr. Debora Salani for thyminide in-corporation assays, and Marco Varmi for excellent technical assistance. We are also indebted to Dr. Piergiorgio Natali for his critical reading of the manuscript and insightful comments.

REFERENCES

Activation of Mitogenic Signaling by Endothelin 1 in Ovarian Carcinoma Cells

Anna Bagnato, Raffaele Tecce, Valeriana Di Castro, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/57/7/1306

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.