G1 Phase Accumulation Induced by UCN-01 Is Associated with Dephosphorylation of Rb and CDK2 Proteins as well as Induction of CDK Inhibitor p21/Cip1/WAF1/Sdi1 in p53-mutated Human Epidermoid Carcinoma A431 Cells

Tadakazu Akiyama, Tetsuo Yoshida, Tetsuya Tsujita, Makiko Shimizu, Tamio Mizukami, Masami Okabe, and Shiro Akinaga

Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Shimotogari 1188, Nagaizumi-cho, Santo-gun, Shizuoka-ken 411 [T. A. M. S. M. O., T. A.], and Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Asahimachi 3-6-6, Machida-shi, Tokyo 194 [T. Y. T. T. M. J. Japan

ABSTRACT

UCN-01 (7-hydroxystaurosporine) was originally isolated as a Ca2+- and phospholipid-dependent protein kinase C selective inhibitor and now is being developed as an anticancer agent. Results from our and other laboratories have suggested that UCN-01 induces preferential G1-phase accumulation in several human tumor cell lines tested. To elucidate this mechanism, we examined the effects of UCN-01 on several cell cycle-regulatory proteins critical for G1/S-phase transition in p53-mutated human epidermoid carcinoma A431 cells. After 24 h exposure at around 50% growth-inhibitory concentrations (IC50), 260 and 520 nM, UCN-01 induced the accumulation of pRb (the dephosphorylated retinoblastoma protein form). The protein expression of cyclin A but not cyclin E was markedly reduced and that of cyclin D1 was partially reduced under the same condition. UCN-01 also showed the concentration-dependent inhibitions of the activity of cyclin-dependent kinase 2 (CDK2) using histone H1 and pRB as substrates in vitro (IC50 530 and 640 nM, respectively). In addition, CDK2 activities of the cells pretreated with UCN-01 for 24 h at 260 and 520 nM were markedly inhibited, giving IC50 of far less than 260 nM. When the same cell lysates were analyzed by Western blotting for CDK2, the lower band (e.g., active and phosphorylated CDK2) was remarkably reduced, in accordance with the reduced activity. Furthermore, UCN-01 induced the expression of the CDK inhibitor p21 protein and its complex formation with CDK2 after 24 h exposure at 260 and 520 nM, whereas the expression level was very low or undetectable in untreated or DNA-damaged cells. The increase of p21 mRNA levels was also induced under the same condition. UCN-01 further increased luciferase activities in A431 cells transiently transfected with p21 promoter-luciferase reporter plasmid after 24 h exposure at 260 and 520 nM. UCN-01 also increased the expression of the CDK inhibitor p27 protein after 24 h exposure at 260 and 520 nM. These results suggest that G1-phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitors p21 and p27.

INTRODUCTION

UCN-01 (7-hydroxystaurosporine) was originally isolated from the culture broth of Streptomyces sp. as a protein kinase C-selective inhibitor (1). Previous studies from our laboratory and other laboratories have shown that the drug exhibits potent antitumor activity against several rodent and human cancer cell lines in vitro and in vivo (2–6). However, the precise mechanism of action for its antitumor activity is still not fully understood. Recent studies have revealed that UCN-01 inhibits cell cycle progression from G1 to S phase in various mammalian cell lines (3, 7–9). In addition, UCN-01 was shown to enhance antitumor activities of several important cancer chemotherapeutic drugs, such as mitomycin C, cisplatin, and 5-fluorouracil in vitro and in vivo (4, 6, 10–12). Based on these unique preclinical data, UCN-01 has already entered into Phase I clinical trials in the United States and Japan.

Recent studies indicate that cell cycle progression in mammalian cells is regulated by a family of serine/threonine protein kinases termed CDKs (13). The activity of CDKs is regulated by binding to their partner cyclins (13) and phosphorylation by CAK (14). Progression through early to mid G1 phase of the cell cycle is dependent on CDK4 and/or CDK6, which are activated by D-type cyclins. Transition through mid G1 to S phase is regulated by activation of CDK2 by cyclin E. CDK2 and cyclin A is also required for late G1 to S-phase progression. A critical target of these cyclin/CDK complexes is pRb, the protein product of the retinoblastoma tumor suppressor gene (15). Phosphorylation of pRB occurs in mid G1 to late G1 phase and is required for entry into S phase (15). ppRb inactivates the function to suppress transcriptional activation driven by E2F (16).

Recent studies also reveal that the activity of CDKs in G1 is negatively regulated by two families of CDK inhibitor proteins. One CDK inhibitor family includes p16INK4A, p15INK4B, p18INK4C, and p19INK4D, that target the CDK4 and CDK6 kinases and prevents their interaction with cyclin D (17). The other CDK inhibitor family includes p21 (also termed Cip1, WAF1, Sdi1, CAP20, and Pici), p27Kip1, and p57Kip2 (17). p21 binds to cyclin/CDK complexes and either inhibits their kinase activities (17) or prevents their activation by CAY (18). p21 family proteins are also shown to have potent inhibitory activities against diverse CDKs in G1 (17). In addition, p21 binds proliferating cell nuclear antigen, a processivity factor for DNA polymerase-δ, and inhibits proliferating cell nuclear antigen-dependent DNA replication in vitro (19).

Several antiproliferative agents including rapamycin (20), staurosporine (21, 22), anti-estrogen ICI182780 (23), TGF-β (24), IFN-α (25), and tumor necrosis factor-α (26) were shown to induce G1-phase accumulation, dephosphorylation of ppRb, and reduced expression of some G1 cyclins in mammalian cultured cells. In addition, recent reports have shown that the expression of p21 is induced by various cell growth-inhibitory signals that cause G1-phase arrest, including a DNA-damaging agent by a p53-dependent mechanism (27), and other antiproliferative agents such as TGF-β (28, 29), staurosporine (22), ICI182780 (23), tumor necrosis factor-α (26), retinoid derivatives (30), and differentiation inducers (31, 32) in either p53-dependent or independent pathways. In addition, p27Kip1 has also been shown to be increased in response to antiproliferative agents such as TGF-β (33), lovastatin (34), cyclic AMP (35), rapamycin (36), staurosporine (22), and vitamin D3 (37) when they induce G1-phase accumulation.

In this report, we have examined the effects of UCN-01 on expression of G1 cyclins, phosphorylation state of pRb, and kinase activity

Received 8/19/96; accepted 2/20/97.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed.

2 The abbreviations used are: CDK, cyclin-dependent kinase; CAY, cyclin-dependent kinase-activating kinase; ppRb, retinoblastoma protein; ppRb, phosphorylated retinoblastoma protein; TGF, transforming growth factor; EGF, epidermal growth factor; RT-PCR, reverse transcription-PCR.
of CDK2 in vitro and in cell culture as well as induction of universal CDK inhibitor p21/Cip1/WAF1/Sdi1 in A431 epidermoid carcinoma cells to elucidate the mechanism of its preferential G1-phase accumulation.

MATERIALS AND METHODS

Drugs and Reagents. UCN-01 was produced by fermentation in our laboratories as described previously (1). The drug was dissolved in DMSO and freshly diluted with cell culture medium [DMEM (Life Technologies, Inc., Grand Island, NY) and 10% fetal bovine serum (Filtron, Brooklin, Australia)]. Adriamycin was produced by Kyowa Hakko Kogyo Co., Ltd. Tris and Tween 20 were purchased from Bio-Rad Laboratories (Hercules, CA). NaCl, KCl, EDTA, and sodium fluoride were from Kanto Chemical Co., Inc. (Tokyo, Japan). DTT was from Wako Pure Chemical Industries, Ltd. (Osaka, Japan), and Triton X-100 was from Yoneyama Yakuhi Kogyo Co., Ltd. (Osaka, Japan). HEPES, β-glycerophosphate, sodium ω-avandate, phenylmethylsulfonyl fluoride, aprotinin, leupeptin, EGF, and the other reagents were purchased from Sigma Chemical Co. (St. Louis, MO).

Antibodies. Anti-pRb, anti-p21, and anti-p27 monoclonal antibodies were purchased from Pharmaingen (San Diego, CA). Anti-cyclin D1 monoclonal antibody was purchased from IBL (Gunma, Japan), and anti-cyclin E monoclonal antibody was purchased from Santa Cruz Biotechnology Co. (Santa Cruz, CA). Anti-cyclin A and anti-CDK2 monoclonal antibodies were prepared according to previous reports (38, 39) in our Tokyo Research Laboratories.

Cell Culture. Human epidermoid carcinoma, A431, was obtained from the American Type Culture Collection through Dainippon Pharmaceutical Co. (Osaka, Japan). The cell cultures were performed at 37°C in a humidified atmosphere of 5% CO2.

Cell Cycle Analysis. A431 cells (3 × 10^5/dish) were cultured in DMEM with 10% fetal bovine serum in Falcon 3003 plastic dishes (Becton Dickinson, Lincoln Park, NJ) overnight and treated with the indicated concentrations of UCN-01 for 24 h. The cells were harvested and treated with 0.25% trypsin, washed with PBS, and stored at −80°C. The cells were lysed in lysis buffer [50 mM Hepes/NaOH (pH 7.4), 150 mM NaCl, 0.1% Triton X-100, 50 mM sodium fluoride, 80 mM β-glycerophosphate, 0.1 mM sodium ω-avandate, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml aprotinin, and 1 μg/ml leupeptin] (39) for 20 min at 4°C. The cell lysate was centrifuged at 14,000 rpm for 10 min at 4°C, and its protein content was determined using the protein assay kit (Bio-Rad Laboratories).

In Vitro CDK2 Kinase Assays. Exponentially growing A431 cells were harvested by treatment with 0.25% trypsin, washed with PBS, and stored at −80°C. The cells were lysed in lysis buffer [50 mM Hepes/NaOH (pH 7.4), 150 mM NaCl, 1.5 mM MgCl2, and 1 mM DTT] two times and separated into 10–15 tubes. Each CDK2-immunoprecipitate was mixed with 40 μl of kinase buffer [50 mM Hepes/NaOH (pH 7.4), 10 mM MgCl2, 1 mM DTT, 16 μg of histone H1 (Boehringer Mannheim, Mannheim, Germany), or 1 μg of truncated pRb (p56L; QED Bioscience, Inc., San Diego, CA), 50 μM ATP, 2.5 μCi [γ-32P]ATP (5000 Ci/mmol; Amersham Life Sciences, Buckinghamshire, England)] containing the indicated concentration of the drug in DMSO and incubated for 10 min at 30°C. Each sample was mixed with 30 μl of 3X SDS-sample buffer (40) to stop the reaction, heated for 5 min at 95°C, and subjected to SDS-PAGE. The gel was dried, stained with Coomassie Brilliant Blue, and analyzed by BAS2000 image analyzer (Fuji Photo Film Co., Tokyo, Japan).

Cell Culture CDK2 Kinase Assay and Western Blotting. A431 cells (3 × 10^5/dish) were precultured in Falcon 3003 plastic dishes overnight and treated with the indicated concentration of the drugs for 24 h. X-ray treatment was performed by using an X-iradiator (MBR-1520R; Hitachi Medical, Tokyo, Japan) 4 h before cell harvest. Cell lysis and immunoprecipitation were performed as described above. For kinase assay, 20 μl of CDK2-immunoprecipitate from 400 μg of protein of the lysate were incubated with 40 μl of kinase buffer for 10 min at 30°C. The following analyses were performed as described above. For Western blotting, whole-cell lysate or CDK2-immunoprecipitate was heated in 1X SDS-sample buffer for 5 min at 95°C and subjected to SDS-PAGE. The protein was transferred to a membrane (ATTO, Tokyo, Japan), probed with primary antibodies followed by secondary antibodies conjugated with horseradish peroxidase (Amersham), and detected by enhanced chemiluminescence system (Amersham).

RT-PCR. Total RNA was isolated using the Total RNA separation kit (Clontech, Palo Alto, CA). cDNA was prepared from μg of RNA with the Superscript Preamplification system (Life Technologies, Inc.) in a 20-μl reaction and diluted 50-fold with H2O. PCR was performed in a 40-μl reaction containing 10 μl of cDNA, 1 μm each primer, 10 mM Tris(pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dATP, 0.2 mM dCTP, 0.2 mM dGTP, 0.2 mM dTTP, and 2.5 units Takara Taq (Takara, Shiga, Japan). Temperature conditions were: 1 cycle at 94°C for 5 min, 26 (p21) or 20 (β-actin) cycles at 94°C for 1 min, 59°C (p21) or 61°C (β-actin) for 1 min, 72°C for 1 min, and 1 cycle at 72°C for 7 min. Primers used were as follows: p21, 5'-AGGACGCCCCGT- GAGCGAGCAGATGGAAAC-3' and 5'-ACAA- GTGPPGGGAGAATGAC-3'; and β-actin, 5'-GATATCGCCGCGCTCGTCGAC-3' and 5'-CAGGAGAAGGGCTGGAAGAGTCG-3'. After amplification, 15-μl aliquots were subjected to 2%-agarose gel electrophoresis, followed by ethidium bromide staining and photographic recording of the gels.

Luciferase Assay. Luciferase reporter plasmid WWP-Luc was a kind gift from Dr. W. El-Deiry (University of Pennsylvania, Philadelphia, PA; Ref. 41). A431 cells (5 × 10^5/plate) were precultured in six-well culture plates overnight and transiently transfected with 1 μg of WWP-Luc using Lipofectamine (Life Technologies, Inc.). The transfected cells were then cultured for 24 h, followed by UCN-01 treatment for another 24 h. The cells were washed once with PBS, harvested, and lysed in lysis buffer [100 mM KH2PO4 (pH 7.8), 1% Triton X-100, and 1 mM DTT]. The cell lysates were auto-injected with 300 μl of luciferin solution [25 mM glycollicine (pH 7.5), 15 mM MgSO4, 5 mM ATP, and 0.33 mM luciferin] and were measured for luciferase activity with a luminometer LB953 (EG&G Berthold, Bad Wild Bad, Germany). The luciferase activity was normalized by total protein concentration of the lysates.

RESULTS

Effects of UCN-01 on pRb Phosphorylation and Cyclin Protein Expression. In a previous study, we have shown that UCN-01 induces G1-phase accumulation in A431 cells at 50 and 80% growth-inhibitory concentrations obtained after 72 h exposure (7). In this study, we again confirmed this G1-phase accumulation concomitant with an S-phase decrement of cycling A431 cells after 24 h exposure at 50% growth-inhibitory concentration (IC50) of 260 nM (Fig. 1). The same magnitude of G1-phase accumulation was also induced at two times the IC50 of 520 nM (Fig. 1). At both concentrations, G2-M-phase accumulation was never observed (Fig. 1). To elucidate the arrest point of UCN-01-treated A431 cells in GI, we analyzed the phosphorylation state of pRb and the expression of G1-cyclin proteins, both of which were shown to be critical for the G1→S phase transition (13, 15). As shown in Fig. 2A, in untreated exponentially growing cells, pRb was constitutively hyperphosphorylated, causing it to migrate slower than the underphosphorylated form in SDS-polyacrylamide gel (42–44). After 24-h exposure to UCN-01 at 260 or 520 nM, in which condition apparent G1-phase accumulation was evident (Fig. 1), concentration-dependent accumulation of dephosphorylated, faster-migrating pRb was observed (Fig. 2A).

In our experimental conditions, two cyclin D1 protein bands (Fig. 2D), three cyclin E protein bands (Fig. 2C), and a single cyclin A protein band (Fig. 2B) were detected in exponentially growing A431 cells. In some human cell lines, cyclin E protein was reported to be encoded by the alternatively spliced mRNAs and produced with different sizes (45, 46). After 24 h treatment of UCN-01, there was little change on the expression of cyclin E protein at both 260 and 520

Downloaded from cancerres.aacjournals.org on June 2, 2017. © 1997 American Association for Cancer Research.
MECHANISM OF G1 PHASE ACCUMULATION BY UCN-01

Fig. 1. Effect of UCN-01 on cell cycle distribution of A431 cells. The cells were harvested after 24 h treatment with UCN-01 (260 and 520 nM) or without (Control). Cell fixation, RNA hydrolysis, and DNA staining with propidium iodide were performed as described in "Materials and Methods." DNA histograms (top) and cell cycle phase proportions (bottom) were analyzed by a flow cytometer.

<table>
<thead>
<tr>
<th>Cell-cycle phase (%)</th>
<th>G1</th>
<th>S</th>
<th>G2/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.7</td>
<td>45.4</td>
<td>17.0</td>
</tr>
<tr>
<td>UCN-01 260 nM</td>
<td>61.6</td>
<td>32.4</td>
<td>6.4</td>
</tr>
<tr>
<td>UCN-01 520 nM</td>
<td>66.8</td>
<td>25.9</td>
<td>7.4</td>
</tr>
</tbody>
</table>

nm (Fig. 2C). On the other hand, the expression of cyclin A protein was markedly reduced, and the upper band of cyclin D1 protein was significantly reduced in the cells pretreated with UCN-01 in a concentration-dependent manner (Fig. 2B). At a higher concentration, cyclin A protein was barely detectable. These results suggest that UCN-01 could accumulate the cells in G1 before entry into S phase in the cell cycle. Because UCN-01 was shown to be a potent inhibitor of serine/threonine kinase such as protein kinase C (1, 3, 5), one could speculate that the inhibition of CDK (which is major Rb kinase) by UCN-01 might be a reason for drug-induced dephosphorylation of pRb in A431 cells.

Effects of UCN-01 on CDK2 Kinase Activity in Cell-free Systems and in Cultured Cells. To see if UCN-01 would directly inhibit CDKs in A431 cells, CDK2 kinase activity of the cells was determined after immunoprecipitation with anti-CDK2 monoclonal antibody using histone H1 as a substrate. As shown in Fig. 3C, exponentially growing A431 cells exhibited apparent CDK2 (H1 kinase) activity, which was inhibited by UCN-01 in a concentration-dependent manner in vitro, giving an IC_{50} of 530 nM (Fig. 3A). The drug also exhibited apparent inhibitory activity against CDK2 when pRb was used as a substrate instead of histone H1 in vitro, giving an IC_{50} of 640 nm (Fig. 3B). To see if UCN-01 would inhibit the cellular CDK2 activity in vivo, A431 cells were pretreated with UCN-01 for 24 h, and then the CDK2 activity was determined by the immunoprecipitation method described above using histone H1 as a substrate. As shown in Fig. 3C, CDK2 activities of the cells pretreated with UCN-01 for 24 h at 260 and 520 nM were inhibited by more than 90% of the activity of untreated control cells. CDK2 has been shown to be active when the protein is phosphorylated by CAK at threonine 160 (47). We then analyzed the phosphorylation state of the CDK2 protein by gel mobility shift assay using a Western blotting method (21) after the treatment of A431 cells with UCN-01 at 260 and 520 nM, as described above. In the drug-treated cells, the amount of faster-mobilizing protein band (e.g., active and threonine 160-phosphorylated CDK2; Ref. 21) was remarkably reduced (Fig. 3D) in accordance with the reduced CDK2 activity shown in Fig. 3C. These results suggest that the decrease of phosphorylated and active form of CDK2 protein also might be an additional mechanism(s) for inhibition of CDK2 activity in UCN-01-treated A431 cells other than direct inhibition of CDK2 enzyme by the drug.

Effect of UCN-01 on Protein Expression of CDK Inhibitor p21/Cip1/WAF1/Sdi1 in A431 Cells. Recent reports show that CDK2 activity is negatively regulated by a CDK inhibitor protein such as the p21 family of proteins (13, 15, 17). In addition, several antiproliferative agents are reported to induce p21 protein in either a p53-dependent or -independent manner when they induce G1-phase accumulation in target cells (22, 23, 26, 28, 29, 31, 32). To see whether UCN-01 also affects the p21 protein expression, we have investigated the effect of UCN-01 on p21 protein level in A431 cells by a Western blotting technique. In untreated control A431 cells, the p21 protein level was very low or undetectable (Fig. 4A), and the complex formation between p21 and CDK2 was also undetectable (Fig. 4B). After 24 h exposure to UCN-01 at 260 or 520 nM, a significant increase of p21 protein in A431 cells was induced (Fig. 4A), and the apparent complex formation between p21 and CDK2 was also observed (Fig. 4B), suggesting that UCN-01-induced p21 would inhibit CDK2 in vivo. To examine the function of p53 in A431 cells, the cells were treated with DNA-damaging agents such as X-ray as well as Adriamycin, both of which were reported to induce p21/WAF1 in p53 wild-type cell lines (27, 48). As shown in Fig. 5, the levels of p21...
we studied the effect of UCN-01 on p21 mRNA by RT-PCR. As shown in Fig. 6, p21 mRNA was constitutively expressed in untreated A431 cells, and the level was clearly increased after 24 h exposure to UCN-01 at 260 or 520 nM. In contrast to this induction of p21 mRNA,

Fig. 6. Effect of UCN-01 on p21 mRNA level in A431 cells. Total RNA was isolated from A431 cells pretreated with UCN-01 (260 and 520 nM) or without (0 nM). RT-PCR for p21 (top) and β-actin (bottom) were performed as described in “Materials and Methods.”

protein induced by Adriamycin and the high dose of X-ray were very low and undetectable in A431 cells, respectively, suggesting that p53 protein in A431 cells is not functional. As reported previously (49), 20 nM of EGF induced the expression of p21 in A431 cells, possibly in a p53-independent manner (Fig. 5, Lane 4), when the growth factor inhibited the growth of A431 cells and induced apparent G1-phase accumulation.

Effects of UCN-01 on mRNA Level and Transcriptional Activation of p21/Cip1/WAF1/Sdi1. To determine whether this induction of p21 protein by UCN-01 was due to an increase of the mRNA,
UCN-01 exhibited little, if any, effect on the steady-state mRNA level of β-actin in the cells, even at higher concentrations (Fig. 6). To elucidate the mechanism by which UCN-01 induces the accumulation of p21 mRNA, a plasmid construct harboring a luciferase reporter gene under the transcriptional control of p21 promoter, WWP-Luc, was transiently transfected into A431 cells, and UCN-01-induced luciferase activity was measured. UCN-01 treatment (24 h) of the transfected cells resulted in a 2–3-fold increase in luciferase activities at both concentrations equally (Fig. 7). Wild-type but not His273 mutant-type human p53 increased the luciferase activity when the expression plasmids coding these types of p53 were cotransfected with WWP-Luc into A431 cells in this system (data not shown). These results suggest that UCN-01-induced accumulation of p21 mRNA is in part a consequence of transcriptional activation of the gene in A431 cells.

Effect of UCN-01 on Protein Expression of CDK Inhibitor p27Kip1 in A431 Cells. To see if UCN-01 would induce other member(s) of the CDK inhibitor protein family, we have examined the effect of UCN-01 on expression of p27 protein, a member of the p21 family (13, 17, 33), by a Western blotting technique. p27 protein was constitutively expressed in untreated A431 cells, and the p27 protein expression was significantly increased after 24 h exposure to UCN-01 at 260 or 520 nM (Fig. 8). In our experimental conditions, we could not detect p16INK4A and p15INK4B proteins by Western blotting in A431 cells.

DISCUSSION

Results from our laboratory and other laboratories have suggested that UCN-01 induces preferential G1-phase accumulation in several types of mammalian cell lines examined (3, 7—9). These studies did not clearly define the mechanism for G1-phase accumulation induced by UCN-01. However, we have demonstrated here that both direct inhibition of kinase activity of CDK2 by UCN-01 as a protein kinase inhibitor and indirect inhibition of CDK2 through induction of CDK inhibitor protein p21 by UCN-01 are important for cell cycle arrest in G1.

At the IC50 and two times the IC50s for growth inhibition, in which condition apparent G1-phase accumulation was evident (Fig. 1), UCN-01 decreased the expression of cyclin A and cyclin D1 but not cyclin E (Fig. 2, B—D), suggesting that the drug-treated cells could not enter into S phase. In addition, concentration-dependent dephosphorylation of ppRb (Fig. 2A) induced by UCN-01 in the cells also suggests that the UCN-01-treated cells are arrested before entry into S phase. We have also examined the effects of UCN-01 using other cell lines, indicating that UCN-01 induces G1-phase accumulation as well as dephosphorylation of ppRb in Rb-intact cell lines including MCF-7, HCT116, and WiDr cells. On the other hand, although we have extensively examined the effect of UCN-01 on cell cycle distribution of Rb-null Saos-2 cells by flow cytometric analysis, we have not yet obtained definitive results in this cell line. Further studies are needed to clarify the effect of UCN-01 on cell cycle distribution of Rb-null cells. Previous studies showed that a protein kinase inhibitor, staurosporine, which has a similar indolocarbazole structure to UCN-01, induced G1-phase accumulation and the dephosphorylation of ppRb at a lower concentration of 5 nM in mammalian fibroblasts and lymphocyte cells (50—53). Staurosporine was shown to block cell cycle progression through G1 between cyclin D and cyclin E restriction points because the drug reduced the expression of cyclin E in normal lymphocyte cells activated with phytohemagglutinin (50). These results suggest that staurosporine and UCN-01 might block cell cycle progression of G1 phase at separate points, although more studies are needed to define the accurate arrest points.

Previous studies revealed that both UCN-01 and staurosporine exerted inhibitory activity against CDK2 in cell-free systems (5, 9, 54). In our experimental conditions, UCN-01 and staurosporine also exhibited a concentration-dependent inhibitory effect on CDK2 obtained from cycling A431 cells, giving IC50s of 530 nM (Fig. 3A) and 32 nM, respectively, when histone H1 was used as a substrate. To see if UCN-01 inhibits the CDK2 activity of A431 cells at the cellular level, the CDK2 activities of UCN-01-treated A431 cells were determined. UCN-01 inhibited more than 90% of CDK2 activity in cell culture after 24 h exposure at a 50% growth-inhibitory concentration of 260 nM (Fig. 3C). At 260 nM, UCN-01 could only inhibit the CDK2 activity isolated from A431 cells by 30 to 40% in the cell-free systems (Fig. 3, A and B). This discrepancy suggests that there might be additional mechanism(s) for inhibition of CDK2 activity by UCN-01 in the cells. In addition, if the inhibitory activity of UCN-01 against CDK2 is completely reversible after the immunoprecipitation process, there should be other mechanism(s) for inhibition of CDK2 in cell culture. The CDK2 inhibition by these direct and indirect actions might be one of the mechanisms of dephosphorylation of ppRb by

4 T. Akiyama, T. Tamaoki, and S. Akinaga, unpublished observations.
UCN-01. Another possibility is that UCN-01 might inhibit CDK4 and/or CDK6 (9), which are other kinases for pRb in the cells. In our experimental conditions, CDK4 kinase activity in A431 cells was too low to examine the inhibitory activity of UCN-01. Additional studies are needed to determine whether CDK4 and/or CDK6 inhibition contribute to the induction of dephosphorylation of pRb and G_1-phase accumulation by UCN-01 in A431 cells.

In accordance with the reduced activity, CDK2 protein was shown to be dephosphorylated after UCN-01 exposure, which was apparent from disappearance of the faster-migrating, threonine 160-phosphorylated active form of the CDK2 protein (Fig. 3D). Such type of inactivation of CDK2 was also reported for staurosporine-treated cultured cells (21). These results suggest that UCN-01 and/or staurosporine inhibit CAK activity in a direct and/or indirect manner. We do not have data for direct inhibitory activity against CAK, which also forms a cyclin/CDK complex, by UCN-01 and/or staurosporine. These possibilities should be examined in future studies. Another possibility for inhibition of CAK activity is induction of p21 (18) by UCN-01. Recently, several antiproliferative agents have been shown to induce p21 protein in target cells (22, 23, 26, 29, 31, 32) when they exhibit apparent G_1-phase accumulation. As shown in Fig. 4, this was the case for UCN-01. In untreated A431 cells, the expression level of p21 protein was very low or undetectable because p53 in A431 cells was shown to be mutated at codon 273 (55). In accordance with this, X-ray irradiation and Adriamycin treatment did not fully induce p21 protein (Fig. 5, Lanes 5 and 6). These results suggest that UCN-01 induces p21 in a p53-independent manner. In our experimental conditions, EGF induced the expression of p21 protein in A431 cells, as reported previously (49). Studies with an RT-PCR method revealed that the steady-state level of p21 mRNA was up-regulated by UCN-01 (Fig. 6), possibly through transcriptional activation of the gene (Fig. 7) in A431 cells. This type of transcriptional activation of the p21 gene was also reported for the other antiproliferative agents such as TGF-β and the retinoid derivatives (29, 30), which induce G_1-phase accumulation in p53-independent pathways. Very recently, staurosporine at a lower concentration was shown to induce p21 protein as well as p27 protein when the drug showed G_1-phase block in the cells. However, the authors did not describe the induction mechanism of p21 in this report (22). Other studies of staurosporine revealed that the drug as well as another protein kinase inhibitor, H7 induced the expression of p21 in MCF-7 cells, which have wild-type p53 (56). UCN-01 was shown to induce the expression of p21 protein in MCF-7 cells when the drug showed apparent G_1-phase accumulation in the cells. Additional studies are needed to clarify precise mechanism(s) of action for transcriptional activation of the p21 gene by UCN-01 and related indolocarbazole compounds. In this study, UCN-01 also increased the p27 protein level in A431 cells (Fig. 8), suggesting that p27 is also important for antiproliferative activity of UCN-01. Overproduction of p21 and p27 proteins in tumor cell lines have been shown to inhibit the growth of the cells in vitro as well as in vivo animal models and to induce apparent G_1-phase accumulation (57–60). Taken together, p21 and/or p27 induction by UCN-01 might play an important role in its antiproliferative activity in cultured cell systems as well as in vivo animal models. These possibilities should be examined in experimental mice tumor models and/or clinical specimens before and after UCN-01 administrations.

ACKNOWLEDGMENTS

We thank Dr. Akira Mihara and Toshimitsu Takiguchi for providing highly purified UCN-01, Dr. Wafik S. El-Deiry for the WWP-Luc plasmid, and Dr. Nobuo Hanai and Akiko Furuya for providing excellent anti-cyclin A and anti-CDK2 antibodies. We also thank Yuka Watanobe and Hiroaki Narumi for excellent technical assistance. We are also grateful to Dr. Tatsuya Tamaoki for continuous encouragement and critical comments on the manuscript.
MECHANISM OF G2 PHASE ACCUMULATION BY UCN-01

G₁ Phase Accumulation Induced by UCN-01 Is Associated with Dephosphorylation of Rb and CDK2 Proteins as well as Induction of CDK Inhibitor p21/Cip1/WAF1/Sdi1 in p53-mutated Human Epidermoid Carcinoma A431 Cells

Tadakazu Akiyama, Tetsuo Yoshida, Tetsuya Tsujita, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/57/8/1495