Carcinogens Preferentially Bind at Methylated CpG in the p53 Mutational Hot Spots

James X. Chen, Yi Zheng, Melissa West, and Moon-shong Tang

Department of Carcinogenesis. University of Texas, M. D. Anderson Cancer Center. Science Park, Smithville, Texas 78957

Abstract

The major mutational hot spots in human cancers occur at CpG sequences in the p53 gene. It is generally presumed that the majority of mutations at these sites result from the endogenous deamination of methylated cytosine. Using a UvrABC incision method, we have found that cytosine methylation greatly enhances guanine alkylation at all CpG sites in the p53 gene by a variety of carcinogens, including benzo(a)pyrene diol epoxide, benzo(g)chrysene diol epoxide, aflatoxin B1, 8,9-epoxide, and N-acetoxy-2-acetylaminofluorene. These findings suggest that mutational hot spots at methylated CpG sequences in the p53 gene may be a consequence of preferential carcinogen binding at these sites.

Introduction

Mutations in proto-oncogenes and tumor suppressor genes that are either hereditary or nonhereditary in origin are commonly observed in human cancers. Although proto-oncogenes can be activated by a variety of genetic alterations, including point mutations, the position and type of mutations that activate the oncogenic function of a proto-oncogene during carcinogenesis are generally dictated by their conveyance of selective advantage and, thus, tend to be confined to a few sequence positions with limited variations (1). A much broader spectrum and variety of signature mutations has been observed in tumor suppressor genes (1–3), which is not surprising, considering that there are more ways to abolish the function of a tumor suppressor gene product than there are ways to gain an oncogenic function from a proto-oncogene product. The frequency of mutation at each site within a gene depends upon a number of factors, including the type and frequency of DNA damage formation at that site, the rate and efficiency of repair of each type of damage, and the efficiency and fidelity of translation synthesis by DNA polymerases; each of these factors may be affected by sequence context, and selective pressure for phenotype may result in disproportionate representation of certain mutations.

It has been found that over 50% of human cancers have a mutation in the p53 tumor suppressor gene (2). Although these mutations are distributed along the coding region of this gene at more than 200 positions, most are located in the sequences which code for amino acids in the DNA binding domain of the p53 protein (2, 3). Intriguingly, more than 30% of these p53 mutations occur at CpG sites in codons 157, 175, 245, 248, 273, and 282 (Fig. 1A), with up to 55% of the mutations in human colon cancers occurring at such sites (Fig. 1B; Refs. 2 and 3). Because all of the cytosine residues of CpG sites in the coding region of the p53 gene are known to be methylated in a variety of tissues (4), it has been hypothesized and is generally presumed that most of these mutations arise by endogenous cytosine deamination at the methylated CpG sites (5, 6). Consistent with this hypothesis is the finding that a majority of the mutations observed in human cancers are C → T transitions (2, 3, 5–7). Recently, using the UvrABC nuclease incision method in combination with ligation-mediated PCR techniques, we have found that, in lung cancer mutational hot spots at codons 157, 248, and 273 of the p53 gene, are the preferential binding sites for the activated cigarette smoke component BPDE (8). Our findings raise the possibility that targeted carcinogen binding rather than selective advantage is the main determinant for mutational hot spots in the p53 gene in human cancers. Our further studies have demonstrated that cytosine methylation at the CpG site determines the pattern of preferential BPDE binding at this site (9) and that BPDE adducts formed at mutational hot spots in the p53 gene are poorly repaired (10).

A significant portion of germ-line mutations in human hereditary disorders and somatic mutations in human cancers, including most of the mutational hot spots in the p53 gene, occur at CpG dinucleotide sequences (2, 3, 5–7). In light of these findings, we have determined the effect of cytosine methylation on the alkylation of guanine by various environmental and model carcinogens to better understand the etiology of human cancer. We have previously demonstrated that, under controlled conditions, UvrABC nuclease is able to incise bulky chemicals such as BPDE, NAAAF, 7,12-dimethylbenz(α)anthracene diol epoxide, and mitomycin C-induced DNA adducts both specifically and quantitatively, as indicated by the quantitative relationships between the number of adducts formed in a defined DNA fragment, the number of UvrABC incisions induced by these adducts, and the nearly identical kinetics of UvrABC incisions at different sequences (11). We have used these same UvrABC nuclease reaction conditions to determine the effect of cytosine methylation on the CpG site on the guanine alkylation by the bulky chemical carcinogens BPDE, AFB1, NAAAF, and BgCDE. These compounds were chosen not only because of their carcinogenic potency (12, 13) but also because they interact with different moieties within the guanine base structure (12–15) and, therefore, allow us to probe the nature of the effects of methylation on guanine alkylation.

Materials and Methods

DNA Fragment Isolation and 32P Labeling. The p53 gene fragments containing exons 5, 7, and 8 were isolated from p53-containing plasmids (pAT153P53p, obtained from L. Crawford and S. P. Tuck, Imperial Cancer Research Fund Laboratories, London, UK) grown in Escherichia coli cells. To label DNA fragments containing exon 8 sequence, the plasmid DNAs were linearized by AvaII digestion and then 32P-labeled at the 5′ ends. The labeled DNA fragments were then digested with a second restriction enzyme, SspI, to produce single end-labeled fragments. To label DNA fragments containing exon 7 sequence, the plasmid DNAs were linearized by AvaII and then 32P-labeled at the 5′ ends. The labeled DNA fragments were then digested with a second restriction enzyme, ApaI, to produce single end-labeled fragments.

Received 3/27/98; accepted 3/30/98.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This study was supported by Grants ES 03124 and ES 08389 from the National Institutes of Environmental Health Sciences.

2 To whom requests for reprints should be addressed.

The abbreviations used are: BPDE, benzo(a)pyrene diol epoxide; NAAAF, N-acetoxy-2-acetylaminofluorene; AFB1, aflatoxin B1, 8,9-epoxide; BgCDE, benzo(g)chrysene diol epoxide; SAM, S-adenosylmethionine.
5-C Cytosine Methylation at CpG Sites. The 32P single end-labeled DNA fragments were subjected to SsoI methylase treatment with SAM to methylate all cytosines at CpG sites according to vendor’s instructions.

Carcinogen Modification of Methylated and Unmethylated DNA. DNA with and without methylation treatment was then modified with BPDE (10^{-4} mg/ml), BgCDE (5×10^{-5} mg/ml), AFB1 (10^{-4} mg/ml), and NAAAF (2.5×10^{-5} mg/ml). The unreacted carcinogens were removed by diethyl ether extractions and by ethanol precipitation of DNA.

UvrABC Incision Assay. The adduct distributions at various sequence positions were mapped by the UvrABC nuclease incision method. In brief, UvrABC nucleases were added to carcinogen-modified DNA fragments at a molar ratio of 6 in reaction buffer containing 100 mM KCl, 1 mM ATP, 10 mM MgCl$_2$, 10 mM Tris (pH 7.5), and 1 mM EDTA. The reactions were carried out at 37°C for 60 min and were stopped by phenol and ether extractions followed by ethanol precipitation. The resultant DNAs were denatured by dissolving in 85% formamide and heating at 90°C for 4 min and were separated by electrophoresis in 8% denaturing polyacrylamide gels.

Results and Discussion

DNA fragments containing $p53$ exon sequences were isolated from plasmids, single 5' end-labeled with 32P, and then subjected to SsoI methylase treatment with SAM to methylate all cytosines at CpG sites (9). The DNA fragments with and without methylation treatment were then modified with BPDE, NAAAF, AFB1, and BgCDE at different concentrations, and the adduct distributions at various sequence positions were mapped by the UvrABC nuclease incision method (11). The extent of cytosine methylation was determined by Maxam-Gilbert pyrimidine reaction. Because 5-C-methylated cytosines are not modified by hydrazine, both the 5' and 3' phosphodiester bonds of each methylated cytosine are refractory to piperidine hydrolysis; therefore, no cytosine ladders should be observed at methylated cytosines (16). Fig. 2A (Lane 3) shows that, under our methylation conditions, all of the CpG sites in the DNA fragment containing exon 8 sequence of the $p53$ gene are methylated. As can be seen in Fig. 2A, the guanine residues at all methylated CpG sites (codons 273, 282, 283, and 290) show great enhancement of alkylation by BPDE (Lane 8 versus Lane 7), which binds guanine at the exocyclic amine; by AFB1 (Lane 12 versus Lane 11), which binds at the N7 position; and by NAAAF (Lane 14 versus Lane 13), which binds at the C8 position (12-15). Not all CpG dinucleotides show the same enhancement for guanine alkylation; in fact, 2–5-fold variation was observed (Fig. 3). It appears that the surrounding sequences of the CpG dinucleotide may play some
Fig. 2. The effect of cytosine methylation at the CpG dinucleotide on the binding of bulky chemical carcinogens in the human p53 gene. The p53 gene fragments containing exon 8 (A) and exon 7 (B) isolated from p53-containing plasmids were 5'-single 32P end-labeled, as described in “Materials and Methods.” To methylate the cytosines at the CpG sites, DNA fragments were treated with SsoI and SAM according to the vendor’s specifications (9). DNA with and without methylation treatment was then modified with BPDE (10⁻⁵ mg/ml), BgCDE (5 × 10⁻³ mg/ml), AFB1 (10⁻⁴ mg/ml), and AAAF (2.5 × 10⁻³ mg/ml) according to methods described previously (27-29). These modified DNA fragments were then reacted with UvrABC nuclease, and the resultant DNAs were separated by electrophoresis in an 8% denatured polyacrylamide gel, as described previously (11, 27, 28). The gel was dried and exposed to a phosphor screen. Because UvrABC nuclease incises 7 nucleotides 5' and 4 nucleotides 3' to a modified base, its incision bands are 7 bases shorter than the corresponding Maxam and Gilbert purine bands. The band intensity represents the extent of chemical modification at a particular sequence site. The sequences of the bands of interest are indicated. *C, methylated cytosine; Control, DNA without chemical carcinogen modification.
Fig. 3. Quantitation of the effect of cytosine methylation at CpG sites on the binding of polycyclic aromatic hydrocarbons in exon 8 (A) and exon 7 (B) of the human p53 gene. The intensity of carcinogen induced UvrABC incision bands was quantified by a PhosphorImager (Molecular Dynamics) and normalized by the amount of DNA applied in the gel. Y axis, relative intensity at different sequences, which are indicated on the X axis. Top and bottom, methylated and unmethylated DNA, respectively, modified with BPDE (a), AFB1 (b), BgCDE (c), and NAAAF (d).
role in this enhanced guanine alkylation. BgCDE, which binds at the
exocyclic amine of both guanine and adenine (12–13), shows prefer-
ential binding only at the guanine residue at methylated CpG sites
(Fig. 2A, Lane 10 versus Lane 9).

This cytosine methylation-enhanced carcinogen binding at the CpG
sites was also observed in DNA fragments containing exon 5 (data not
shown) and exon 7 (Fig. 2B) sequence. Results from Fig. 2B show that
BPDE, BgCDE, AFB1, and NAAAF bind 2-5-fold higher at methyl-
lated as compared to unmethylated CpG sites at codons 245 and 248
of the p53 gene (Lane 8 versus Lane 7; Lane 10 versus Lane 9; Lane
12 versus Lane 11; and Lane 14 versus Lane 13). It is worth noting
that, previously, using UvrABC incision in combination with ligation-
mediated PCR, we were unable to detect BPDE-guanine adduct for-
mation at the CpG site in codon 245, although the cytosine at this site
is methylated (8). Results in Fig. 2B, in contrast, clearly demonstrate
that cytosine methylation greatly enhances BPDE-guanine binding at
the CpG site in this codon (Lane 8 versus Lane 7). This discrepancy
is likely due to that the unknown structure at the surrounding se-
quences of codon 245 of the p53 gene allows UvrABC to incise BPDE
adduct formed at this codon but does not allow efficient ligation
with universal linker to occur, therefore resulting in poor amplification
of the UvrABC incision-generated DNA fragment by the ligation-medi-
ated PCR method. Cytosine methylation at CpG sites also has an
effect on the alkylation of guanines distant from CpG sequences. Most
notably, it enhances guanine alkylation at codons 272 and 276 by
NAAAF, but it reduces guanine alkylation by AFB1 at codons 276
and 285 and by BPDE at codons 277 and 279.

Results presented in Figs. 2 and 3 suggest that cytosine methylation
at CpG sites may dramatically change the stereo-structure and/or
chemical environment of the guanines at such dinucleotide sequences;
these changes may promote or enhance guanine interactions with
bulky chemicals at CpG sites and either increase or decrease alkyla-
tion of guanines at sequences distant from CpG sites. It has been
suggested that cytosine methylation may increase the nucleophilicity
of the exocyclic amine of its paired guanine and enhance its binding
with electrophilic compounds (17); however, this interpretation does
not provide a satisfactory explanation for the enhancement of alkyla-
tion at the N7 and C8 positions by AFB1 and NAAAF. Methylation of
cytosine stabilizes (dC • dG) polymer helix structure, and such
methylated (dC • dG) polymers have a high affinity for noncovalent
binding of the nonelectrophilic compound benzo(a)pyrene tetraol
(18). However, it is not known whether a single cytosine-methylated
CpG dinucleotide has an increased affinity toward various electro-
philes and whether enhanced noncovalent binding will lead to alky-
lation. Further elucidation of the cytosine methylation-induced struc-
tural changes at native sequences is needed to understand their effects
on guanine alkylation.

It has been hypothesized that endogenous deamination of meth-
ylated cytosine at the CpG site may be the cause of the frequent
mutations observed in human cancers (5, 6), particularly in the
case of colon cancers, in which 55% of the mutations in the p53
gene occur at CpG sites (Table 1 and Fig. 1). The majority of the
mutations in the p53 gene of colon cancers are C → T transitions
at CpG sites, which are generally considered to be hallmarks of
mutations induced by deamination of methylated cytosine (Table
1; Ref. 19). However, four important considerations challenge the valid-
ity and the generality of this hypothesis. First, a significant pro-
portion of mutations occurring at CpG sites of the p53 gene in
lung, liver, head and neck, and breast involve G → T transversions
(Table 1; Refs. 2 and 3); these mutations most likely are caused by
mechanisms other than deamination of methylated cytosines. Sec-
ond, it has been found that sequence context controls the conform-
amination of the BPDE-DNA adduct (20, 21) and that different
conformers of BPDE adducts at the same sequence may induce dif-
ferent types of mutation (22, 23); for example, mild heat treat-
ment of BPDE-adducted DNA enhances G → A transitions (C →
T in the complementary strand; Ref. 24), whereas polyethylene
glycol treatment enhances G → T transversions (25). It is conceiv-
able that different kinds of adducts in different sequence contexts
may induce different kinds of mutations. Therefore, there is no a
priori reason to conclude that C → T (G → A in the comple-
mentary strand) transition at the CpG dinucleotide must be the
result of cytosine deamination. Third, we have shown that cytosine
methylation at CpG dinucleotides greatly enhances guanine alky-
lation by bulky chemical carcinogens at these sequences. Fourth,
we have found that repair of bulky chemical induced DNA damage
at these CpG sites in the nontranscribed strand of the p53 gene is
significantly slower than repair at other sites (10). Therefore,
on the basis of these findings, we propose that this higher affinity for
a wide variety of DNA-damaging agents at methylated CpG sites
may be the major reason that most mutations in human cancer
occur at sequences containing CpG dinucleotides. It should be
noted that this hypothesis does not preclude the possibility that
adducts formed at the CpG sites may have higher mutability than
those formed at other sequences. The unique structure at a meth-
ylated CpG site may allow a variety of chemical modifications,
with differential effects on the fidelity of translesion DNA synthe-
sis. Thus, the type of mutations that occur at CpG sites may be
dependent on the nature of the damaging agent and may vary for
different tissues and organs. DNA-damaging agents that cause lung
 cancer may induce predominantly G → T transversions, but those
that cause colon cancer may induce mostly G → A transitions.
Therefore, a signature of G → A transition mutations or G → T
transversion mutations may not be a reliable indicator of whether
the mutations are due to spontaneous deamination of methylated
cytosines or due to guanine modifications.

Polycyclic aromatic hydrocarbons and AFB1 contaminants are
widely found in food, air, and water (12–15). Our finding that muta-
tional hot spots in the p53 gene in human cancers have a 2-5-fold
enhanced affinity toward such carcinogens strongly suggests that
DNA damage induced by these agents, in addition to endogenous
deamination of methylated cytosines, may be responsible for most of
the mutations leading to carcinogenesis. Deamination of methylated
cytosines at CpG sites has been implicated as the primary mechanism
of gene dysfunction in colon cancer (6, 26). If spontaneous deamina-
tion of methylated cytosine is a major cause leading to mutations in
human cancers, these mutations will be difficult to prevent. Our
findings challenge these assumptions and provide further evidence
that reductions in carcinogen exposure may reduce cancer risk.

Acknowledgments

We thank Dr. Frederick Beland at the National Center for Toxicological
Research and Dr. Ronald Harvey at the University of Chicago for the generous
gifts of NAAAF and BgCDE.

<table>
<thead>
<tr>
<th>Cancer</th>
<th>C → T or</th>
<th>G → A</th>
<th>G → T</th>
<th>G → C</th>
<th>Total mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>63 (35%)</td>
<td>83 (46%)</td>
<td>33 (18%)</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>23 (48%)</td>
<td>18 (38%)</td>
<td>7 (15%)</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Head/neck</td>
<td>61 (63%)</td>
<td>23 (24%)</td>
<td>11 (12%)</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>111 (80%)</td>
<td>17 (12%)</td>
<td>11 (8%)</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Esophagus</td>
<td>54 (64%)</td>
<td>9 (14%)</td>
<td>1 (2%)</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>285 (94%)</td>
<td>15 (5%)</td>
<td>4 (1%)</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Human cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37%</td>
</tr>
</tbody>
</table>

* These data were obtained from Ref. 3.
References

Carcinogens Preferentially Bind at Methylated CpG in the p53 Mutational Hot Spots

James X. Chen, Yi Zheng, Melissa West, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/58/10/2070

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/58/10/2070.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.