Recombinant Humanized Anti-HER2 Antibody (Herceptin™) Enhances the Antitumor Activity of Paclitaxel and Doxorubicin against HER2/neu Overexpressing Human Breast Cancer Xenografts

Jose Baselga, Larry Norton, Joan Albanell, Young-Mee Kim, and John Mendelsohn

ABSTRACT

Recombinant humanized anti-HER2 antibody, rhuMAb HER2, inhibits the growth of breast cancer cells overexpressing HER2 and has clinical activity. We explored in preclinical models its capacity to enhance the tumoricidal effects of paclitaxel and doxorubicin. In cultures of naturally HER2-overexpressing cancer cells, rhuMAb HER2 inhibited growth and enhanced the cytotoxic effects of paclitaxel. Treatment of well established BT-474 breast cancer xenografts overexpressing HER2 in athymic mice with rhuMAb HER2 resulted in a dose-dependent antitumor activity. In combination studies, treatment with paclitaxel and rhuMAb HER2 or doxorubicin and rhuMAb HER2 resulted in greater inhibition of growth than that observed with any agent alone. The combination of paclitaxel and rhuMAb HER2 resulted in the highest tumor growth inhibition and had a significantly superior complete tumor regression rate when compared with either paclitaxel or rhuMAb HER2 alone. Clinical trials that are built on these results are under way.

INTRODUCTION

The HER2 gene (also known as neu and as c-erbB-2) encodes a 185-kDa transmembrane tyrosine/kinase receptor, designated p185HER2, that has partial homology with the other members of the EGFR family (1-3). HER2 is overexpressed in 25-30% of breast cancers and predicts for a worse prognosis as measured by lower overall survival and disease free survival (4-6). Antibodies directed at p185HER2 can inhibit the growth of tumor xenografts and transformed cells that express high levels of this receptor (7-10). The murine MAb 4D5, directed against the extracellular domain of p185HER2, is a potent inhibitor of growth of human breast cancer cells that overexpress HER2 (11). However, murine antibodies are limited clinically because they are immunogenic. To facilitate clinical development, MAb 4D5 was humanized by inserting the complementary determining regions of MAb 4D5 into the framework of a consensus human immunoglobulin G1 (12). The resulting recombinant humanized anti-p185HER2 monoclonal antibody, rhuMAb HER2 (Herceptin), has a higher affinity for p185HER2 (Kd=0.1 nM) than the murine MAb 4D5, and has a cytostatic growth inhibitory effect against breast cancer cells overexpressing HER2 (12, 13). RhuMAb HER2 was found to be safe and to have dose-dependent pharmacokinetics in clinical phase I studies. The proof-of-principle of HER2 as a therapeutic target for anticancer therapy was recently established in patients with HER2-overexpressing metastatic breast cancer. Weekly administration of rhuMAb HER2 induced tumor responses and the combined rate of clinical response and disease stabilization was half of the evaluable patients (14).

One way to optimize the clinical role of anti-HER2 MAbs might be to administer them in combination with chemotherapy. Previous studies with anti-HER2 antibodies have shown enhancement of the antitumor activity of cisplatin (7, 15). It has been postulated that the mechanism for this interaction is the interference of anti-HER2 antibodies with repair of cisplatin-induced DNA-damage (15, 16). Paclitaxel and doxorubicin are two of the most active chemotherapeutic agents for the treatment of patients with breast cancer (17). Thus, finding enhanced antitumor activity of these drugs when combined with anti-HER2 MAbs would have distinct clinical implications for breast cancer therapy. We had previously observed that MAbs C225 and 528 directed at the EGFR, a member of the same tyrosine kinase receptor family, markedly enhanced the antitumor activity of doxorubicin and paclitaxel against cancer cells overexpressing the EGFR (18, 19). Taking these results into consideration, we decided to conduct the present studies with rhuMAb HER2 in combination with paclitaxel or doxorubicin. We have observed enhanced and concentration-dependent inhibition of growth in cultures of human cancer cell lines overexpressing HER2 treated with rhuMAb HER2 plus paclitaxel, and striking antitumor effects in breast carcinoma xenografts, resulting in the cure of well established tumors. RhuMAb HER2 also enhanced, but to a lesser extent, the in vivo antitumor effects of doxorubicin.

MATERIALS AND METHODS

Compounds. RhuMAb HER2 and rhu IgG1 were provided by Genentech Inc. (South San Francisco, CA). Paclitaxel was from the Bristol-Myers-Squibb Company (Princeton, NJ), and doxorubicin was from Adria Laboratories (Columbus, OH).

Cell Lines. Human breast adenocarcinoma cell lines BT-474, SK-BR-3, and MCF7/HER2 and the human ovarian carcinoma cell line SK-OV-3 were chosen for the present series of studies. BT-474, SK-BR-3, and SK-OV-3 cells were obtained from the American Type Culture Collection (Manassas, VA). The levels of HER2 expression in these cells relative to the normal mammary epithelial cell line 184 are: BT-474, 25-fold increase; SK-BR-3, 33-fold increase; and SK-OV-3, 16.7-fold increase (11). MCF7/HER2-18 cells were a gift of Dr. C. C. Benz (University of California, San Francisco, CA). These cells are a subclone of MCF7 cells that have been transfected with a full length HER2 cDNA coding region, and have a 45-fold increased expression of HER2 (20).

Cell Culture and Monolayer Growth Assay. BT-474 cells were maintained in 1:1 DMEM/Ham's (v/v) supplemented with 10% FCS, 300 mg/ml L-glutamine, and 10 mg/ml human insulin. SK-BR-3 and SK-OV-3 cells were cultured in DMEM/Ham's (v/v) with 10% FCS. MCF7/HER2 cells were cultured in DMEM/H16 medium (1 g/l glucose) with 10% FCS, 100 units/ml penicillin, 100 units/ml streptomycin, and 400 μg/ml G-418. All cells were grown at 37°C and 5% CO2. For monolayer growth assays, cells were distributed into 6-well plates (Falcon 3046, Lincoln Park, NJ) at 10,000 cells/well. On the next day, cells were changed to medium containing 0.5% FCS for 18 h, and then treatment was added. Paclitaxel was added to appropriate wells, with
or without rhuMAb HER2, at concentrations indicated in “Results.” Paclitaxel was removed after 1 h by washing the cells, followed by the addition of cell culture medium and rhuMAb HER2. The medium and MAb were replenished every 2–3 days. After 5 days, cells were harvested by trypsinization and counted with a Coulter counter.

Soft Agar Colony Forming Assay. For soft agar assays, a bottom layer of 1 ml of the corresponding culture media containing 0.7% agar (DIFCO Laboratories, Detroit, MI) and 10% FCS was prepared in 35-mm 6-well plates (Falcon 3046). After the bottom layer was solidified, 20,000 cells/well were added in 1.5 ml culture medium containing the sample, 0.35% agar, and 10% FCS. RhuMAb HER2 and paclitaxel were added at the concentrations indicated in “Results” and the figures. Triplicates were performed for every condition. Cells were incubated 11–14 days at 37°C in 5% CO2 atmosphere. Colonies with more than 25 cells were then counted manually.

Assay of Tumor Growth in Athymic Nude Mice. Female BALB/c nude mice, 6–8 weeks of age, were used. These mice were bred and maintained in the animal facility at Memorial Sloan-Kettering Cancer Center as described previously (18). BT-474 cells were selected because they express high levels of HER2, have a high level of basal phosphorylation of the receptor, and are growth-inhibited by anti-HER2 MAbs (11, 21). BALB/c nude mice received implants of slow release estrogen pellets (0.72 mg 17ß-estradiol; Innovative Research of America, Toledo, OH) and, on the following day, with 1 X 107 BT-474 cells s.c. In our initial studies, we observed significant discrepancies between the rate of tumor take and the tumor size among animals. To optimize the model and enhance tumorigenicity, a large and rapidly growing tumor was removed from one of the mice and these cells were subcultured and expanded. These cells retained both the level of HER2 expression and their response to rhuMAb HER2 when compared with control cells (data not shown), and they were used in all of the experiments described in this study.

Tumors were measured every 3–4 days with vernier calipers. Tumor volume was calculated by the formula: \(V = \pi/6 \times \text{larger diameter} \times (\text{smaller diameter})^2 \). When tumors reached a mean size of 0.2–0.3 cm3, the animals were divided into groups with comparable tumor size and treated as described in the text and figures. Briefly, for rhumAb HER2 treatment, mice received the antibody in PBS, at a dose range of 0.1–30 mg/kg i.p. twice a week. Paclitaxel was given by slow retro-orbital i.v. injection in a solution of normal saline with 8% Cremophor EL and 8% ethanol at a dose range of 5–10 mg/kg on days 1 and 4 (two doses total). This dose schedule was suggested by Dr. Jackie Plowman (National Cancer Institute, Bethesda, MD) and confirmed in our experimental model. Doxorubicin was given i.p. in distilled water at the indicated dose schedules as described previously by us (18). The mice were followed for the observation of xenograft growth rate, body weight changes, and life span.

Statistical Analysis. Rates of complete tumor regression among different treatment groups were compared using the Pearson \(\chi^2 \) test, and statistical significance of differences in tumor growth among the different treatment groups was determined by the Mann-Whitney \(U \) test using SPSS 6.1 software. Two-sided \(P \)s are given at a 95% significance level.

RESULTS

Additive Inhibition of Growth by rhuMAb HER2 and Paclitaxel in Monolayer Cultures. To characterize the antiproliferative effects of rhuMAb HER2 plus paclitaxel in monolayer cultures, BT-474 cells were treated with increasing concentrations of these compounds. Treatment with rhuMAb HER2 (3–30 nm) continuously for 5 days produced a concentration-dependent inhibition of BT-474 proliferation. Exposure of cells to paclitaxel for 1 h (2–50 nm) also resulted in a concentration-dependent inhibition of cell proliferation (data not shown). We then proceeded to combination experiments. RhuMAb HER2 showed an additive and concentration-dependent effect on the growth inhibition induced by paclitaxel. The enhancement of the growth inhibition seen with paclitaxel plus rhuMAb HER2, versus paclitaxel alone, ranged from 41–82% at the doses tested (data not shown).

Additive Inhibition of Anchorage-independent Growth by rhuMAb HER2 and Paclitaxel. A series of assays were conducted to characterize the combined effects of rhuMAb HER2 and paclitaxel in soft agar, a more stringent test of mitogenic capacity because several cycles of cell division are required to form a detectable colony. The experiments were conducted in a series of cancer cell lines expressing high levels of HER2 receptors to validate the data obtained with BT-474 cells. RhuMAb HER2 produced a concentration-dependent inhibition of the clonogenic growth of breast cancer cells BT-474 (rhuMAb HER2 dose range, 0.5–2.5 nm) and SK-BR-3 (rhuMAb HER2 dose range, 0.1–10 nm) and also inhibited, but to a lesser degree, the growth of ovarian cancer cells SK-OV-3 (rhuMAb HER2 dose range, 10–100 nm; data not shown). Clonogenic assays of these cell lines after 1-h exposure to increasing concentrations of paclitaxel (dose range, 0.25–900 μM) also showed growth inhibition in a concentration-dependent manner. On the basis of the response data from these experiments, combined treatment assays with increasing concentrations of rhuMAb HER2 and paclitaxel were performed. As shown in Fig. 1, the cotreatment with rhuMAb HER2 and paclitaxel resulted in an additive inhibition of the growth of these three cell lines with endogenous HER2 overexpression. The magnitude of the rhuMAb HER2-mediated enhancement of the antitumor effects of paclitaxel was up to 67% in BT-474 cells, 50% in SK-BR-3 cells, and 32% in SK-OV-3 cells (Fig. 1, A–C; for each cell line, only data for the rhuMAb HER2 dose that produced the highest increase in paclitaxel cytotoxicity are shown). In contrast, the growth of the MCF7 cell line transfected with HER2, which has been reported to be resistant in vitro to the antiproliferative effects of MAbs directed against the HER2 receptor (20), was minimally affected by rhuMAb HER2 (2.5–100 nm). Cotreatment with this antibody and paclitaxel did not increase the growth suppressive effects of paclitaxel in these cells (Fig. 1D).

Effects of rhuMAb HER2 upon Well Established Tumor Xenografts. We conducted animal experiments to determine the efficacy of rhuMAb HER2 in nude mice bearing BT-474 xenografts. In a first set of 39 animals, rhuMAb HER2 was given at doses ranging from 1–30 mg/kg twice a week for 4 weeks. At least nine animals were treated in each group. The control group was treated with a nonspecific rhuh IgG MAb at a dose of 30 mg/kg i.p. twice a week, which was the same as the highest dose level of rhuMAb HER2. Treatment was started when xenografts reached a mean size of 0.3 cm3 (day 7). Marked antitumor activity was observed at all dose levels. Complete tumor eradication was seen in 3 of 10 mice treated with rhuMAb HER2 at 30 mg/kg, in 5 of 10 mice treated at 10 mg/kg, and in 3 of 8 mice treated at 1 mg/kg (Fig 2A). Antibody administration was nontoxic, as assayed by animal survival and weight loss.

To better define whether there was a dose-response relationship with rhuMAb HER2 treatment, a second animal experiment was conducted using lower doses of antibody. In this experiment rhuMAb HER2 was administered at doses of 0.1, 0.3, and to 1 mg/kg, given i.p. twice a week for 5 weeks. The total number of mice was 24, allocated into different treatment groups of at least 5 animals/group (Fig 2B). The control group was treated with a nonspecific rhu IgG at a dose of 1 ml/kg i.p. Treatment was started when tumors reached a mean size of 0.2 cm3 (day 10). In this experiment, a dose-dependent antitumor activity was observed (Fig 2B). Doses of 0.1, 0.3, and 1 mg/kg resulted in an average inhibition of tumor growth at 5 weeks of 25, 40, and 80%, respectively, as compared with those mice treated with control antibody. No animal toxicity was observed. A dose of rhuMAb HER2 of 0.3 mg/kg, that modestly inhibited the growth of the BT-474 xenografts, was then chosen for the subsequent combination treatment studies.
HERCEPTIN ENHANCES ACTIVITY OF PACLITAXEL AND DOXORUBICIN

Fig. 1. Cytotoxicity of paclitaxel in combination with rhuMAb HER2 (HER2) in soft agar cultures of BT-474 (A), SK-BR-3 (B), SK-OV-3 (C), and MCF7/HER2 (D) cells. Paclitaxel was added for 1 h in the continuous presence or absence of rhuMAb HER2. Cytotoxicity was enhanced in rhuMAb HER2-sensitive cells (BT-474, SK-BR-3, and SK-OV-3 cells, A-C), but not in the rhuMAb HER2-resistant MCF7/HER2 cells (D). Results represent the mean + SE of triplicate readings.

Effects of rhuMAb HER2 Combined with Paclitaxel or Doxorubicin upon Well Established Tumor Xenografts. We explored next the effects of paclitaxel or doxorubicin plus rhuMAb HER2 in a series of experiments with well established BT-474 xenografts in nude mice.

First, we studied whether rhuMAb HER2 could enhance the antitumor activity of equipotent doses of paclitaxel or doxorubicin (Fig 3A). We chose a doxorubicin dose of 10 mg/kg body weight, because we had previously determined it to be a dose killing 10% of the animals (18). The dose of paclitaxel was 10 mg/kg i.v. on day 1 and day 4. This dose was nontoxic, but had antitumor activity similar to the dose of doxorubicin used in preliminary experiments (data not shown). A modest schedule of rhuMAb HER2 of 0.3 mg/kg i.p. twice a week for 5 weeks was chosen to prevent tumor regressions attributable to antibody alone. Control animals were treated with the nonspecific rhuMAb IgG at 0.3 mg/kg i.p. twice a week for 5 weeks.

Fifty-one animals were allocated into the different treatment groups after tumors reached an average volume of 0.2 cm³ (day 11). At least seven animals were treated in each group. Treatment groups consisted of: control MAb; rhuMAb HER2; paclitaxel plus control MAb; paclitaxel plus rhuMAb HER2; doxorubicin plus control MAb; and doxorubicin plus rhuMAb HER2 (Fig. 3A). In this experiment, the growth inhibition resulting from the single modality therapies was similar; average tumor volume at 5 weeks was reduced by 36% with rhuMAb HER2 (P = 0.2), 27% with doxorubicin (P = 0.38), and 35% with paclitaxel (P = 0.3). Combined therapy with rhuMAb HER2 plus doxorubicin inhibited growth by 70% versus control treated mice (P = 0.04), but it was not statistically superior than doxorubicin alone (P = 0.16) or rhuMAb HER2 alone (P = 0.59). The enhancement of antitumor activity was more profound with the combination of rhuMAb HER2 plus paclitaxel, resulting in growth inhibition of 93% (P = 0.006). In addition, growth inhibition at 5
HERCETIN ENHANCES ACTIVITY OF PACLITAXEL AND DOXORUBICIN

weeks was significantly superior in the group treated with rhuMAb HER2 plus paclitaxel versus paclitaxel alone (P = 0.016), but not versus rhuMAb HER2 alone (P = 0.4). The significance of all these findings was statistically confirmed at earlier (3 weeks) and later (8 weeks), which was the time when overall follow-up ended analyzed time points. RhuMAb HER2 did not increase the toxicity of paclitaxel or doxorubicin in mice as determined by animal survival and weight loss (data not shown).

The above experiment, showing the enhancement of antitumor activity when paclitaxel was given in combination with rhuMAb HER2, was performed with only one dose level of paclitaxel. Therefore, we could not exclude the possibility that the results were restricted to the paclitaxel dose level used. To determine whether the enhanced antitumor effects against xenografts were dose-dependent, as was observed in in vitro experiments, a follow-up experiment was conducted with two dose levels of paclitaxel (Fig. 3B). On day 10 when tumors reached a mean size of 0.2 cm³, 50 animals were allocated into treatment groups consisting of at least 8 animals. RhuMAb HER2 dose was unchanged at 0.3 mg/kg twice a week i.p. for 5 weeks and paclitaxel was given at 5 mg/kg and 10 mg/kg i.v. given on days 1 and 4, either alone or in combination with rhuMAb HER2 (Fig 3B). The average tumor volume at 5 weeks, as compared with the control mice treated with rhu IgG, was reduced by 42% with rhuMAb HER2 alone (P = 0.04), by 51% with paclitaxel 5 mg/kg × 2 (P = 0.7), and by 77% with paclitaxel 10 mg/kg × 2 (P = 0.3). In mice treated with rhuMAb HER2 plus paclitaxel (5 or 10 mg/kg × 2) the growth of the xenografts was strikingly affected. Average tumor volume was reduced by more than 98% (P = 0.04 for paclitaxel 5 mg/kg × 2 plus rhuMAb HER2 versus control; P = 0.01 for paclitaxel 10 mg/kg × 2 plus rhuMAb HER2 versus control) and resulted in the eradication of well established xenografts in five of eight mice (paclitaxel 5 mg/kg × 2) and in seven of eight mice (paclitaxel 10 mg/kg × 2). In this experiment, growth inhibition effects at 5 weeks resulting from combined treatment with paclitaxel 10 mg/kg × 2 plus rhuMAb HER2 was superior to rhuMAb HER2 alone (P = 0.02) and paclitaxel 10 mg/kg × 2 alone (0.02). The significance of these findings was statistically confirmed at earlier (3 weeks) and later (7 weeks, which was the time when overall follow-up ended) analyzed time points. Combined paclitaxel 5 mg/kg × 2 plus rhuMAb HER2 was also significantly superior than rhuMAb HER2 alone (P = 0.02; versus paclitaxel 5 mg/kg × 2 alone, P = 0.08). In seven mice whose tumors were completely eradicated upon treatment with rhuMAb HER2 plus paclitaxel at both doses and who were followed for 90 days after cell inoculation, no evidence of tumor regrowth was observed. In another two mice with small tumors after therapy and that were followed for 90 days, tumor size was stabilized in one and minimal regrowth was observed in the other.

As seen in Fig. 3A, the combination of doxorubicin and rhuMAb HER2 seemed to be less active than paclitaxel and rhuMAb HER2. An attempt was made to improve the antitumor activity of this combination by changing the schedule of doxorubicin administration (Fig. 3C). In the prior experiment, the maximally tolerated single dose of doxorubicin (10 mg/kg body weight) had been administered. Here, we opted for two successive administrations of doxorubicin over a 2-week period to increase the total dose of doxorubicin without causing prohibitive toxicity. The schedule used was 3.75 mg/kg body weight given on treatment days 1 and 2, with repeat doxorubicin administration on treatment days 14 and 15 when animals had recovered from the first doxorubicin administration. Fifty-nine mice bearing well established BT-474 tumor xenografts were allocated into treatment groups of at least 13 animals each (Fig. 3C). Treatment was started when tumors reached a mean size of 0.2 cm³. The combined therapy resulted in an enhanced antitumor effect, as shown by an average reduction of tumor volume at 5 weeks by 84% (P = 0.0008) as compared with a reduction of 54% with rhuMAb HER2 alone (P = 0.01) and 75% with doxorubicin alone (P = 0.016) versus control-treated mice. However, combined doxorubicin plus rhuMAb HER2 was not statistically better than doxorubicin alone (P = 0.4) or
rhUHMAb HER2 alone (P = 0.7). Although no direct comparisons were made in the two experiments shown in Fig. 3 B and C, the augmentation of doxorubicin activity by rhUHMAb HER2 again seemed to be less than the augmentation of paclitaxel activity by rhUHMAb HER2.

After having shown that rhUHMAb HER2 enhances the inhibition of growth of both paclitaxel and doxorubicin in our xenograft tumor model (Fig. 3), we decided to separately analyze the rate of complete tumor eradication induced in the different treatment groups. In this analysis, only animals with tumors that could not be detected at the time of tumor measurement were considered to have achieved a complete tumor regression. Complete tumor regression rates obtained in the different animals experiments with combination rhUHMAb HER2 plus chemotherapy were compiled, and data from the various doses of paclitaxel and doxorubicin administered were pooled (Table 1). Animals treated with either rhUHMAb HER2 alone or with rhUHMAb plus chemotherapy had a significantly higher complete tumor regression rate than control animals. The highest complete tumor eradication rate was observed in those animals treated with rhUHMAb HER2 plus paclitaxel, which was significantly higher than in those animals treated with paclitaxel (P = 0.004) or rhUHMAb HER2 alone (P = 0.04).

The observed complete tumor regressions were maintained beyond 5 weeks in all of the animals in two of the experiments for which additional follow-up is available. In the experiment with antibody and equipotent doses of paclitaxel or doxorubicin (Fig. 3 A), the remissions lasted until the experiment was terminated at 8 weeks of follow-up. In the subsequent experiment with antibody plus two dose levels of paclitaxel (Fig. 3 B), the follow-up of the various treatment groups was terminated at 7 weeks. However, the animals in complete remission at 5 weeks continued to be followed for 120 days with no evidence of tumor recurrence.

DISCUSSION

These studies demonstrate that rhUHMAb HER2 results in an additive and concentration-dependent effect on the cytotoxicity of paclitaxel in cultures of human carcinoma cell lines overexpressing HER2. The data also indicate that rhUHMAb HER2 has significant and dose-dependent antitumor activity against human breast cancer xenografts established from cells that express high levels of p185HER2. Furthermore, doses of rhUHMAb HER2 that modestly inhibit growth can effectively enhance the tumoricidal effects of the anti-tubulin agent paclitaxel, resulting in a striking rate of tumor eradication in our nude mouse model. RhUHMAb HER2 enhanced the antitumor effects of doxorubicin as well, albeit to a lesser degree than it was observed with paclitaxel. The increased antitumor activity with the studied combinations occurred without additional animal toxicity.

The observed effects were seen in cultures of all three cancer cell lines endogenously overexpressing HER2 (two breast and one ovarian), thus excluding the possibility that the findings could be unique to a single cell line or tumor type. In contrast, rhUHMAb HER2 failed to potentiate the effects of paclitaxel in MCF7/HER2 transfectants. Although the antibody induces p185HER2 phosphorylation in these cells (Ref. 20 and data not shown), it does not result in growth inhibition (Ref. 20 and Fig. 1D). This observation may indicate that growth inhibition by the antibody is required to potentiate the antitumor effects of paclitaxel or that these transfected cells are either not dependent on HER2 or lack critical downstream elements in their signal transduction pathway.

There is only one published report that has used the recombinant humanized anti-HER2 antibody against human tumor xenografts (22). The authors administered one single i.v. dose of 36 mg/kg rhUHMAb HER2 in severe combined immunodeficient mice bearing well-established human gastric cancers overexpressing HER2. The single dose of rhUHMAb HER2 inhibited tumor growth by 50%. This effect was maintained during animal follow-up but did not result in tumor eradication. In the present study, we confirmed the in vivo antitumor activity of rhUHMAb HER2 against human cancer xenografts overexpressing HER2. In addition, we showed that repeated administrations of the humanized antibody given at doses equal to or greater than 1 mg/kg resulted in strong growth suppression and eradication of tumors in a significant proportion of animals. This suggests that in our animal model, doses of 1 mg/kg given twice a week result in maximal inhibition of growth. This dose level is similar to the one being administered in the current series of clinical trials in patients with advanced breast cancer (2 mg/kg × week). We also showed that at lower doses the growth inhibition by rhUHMAb HER2 was less marked, thus allowing us to test the concept of combined treatment with rhUHMAb HER2 plus chemotherapy.

Because paclitaxel and doxorubicin are two of the most active chemotherapeutic agents against breast cancer, studies were conducted to analyze the capacity of rhUHMAb HER2 to enhance their activity. In culture of cells overexpressing HER2, an additive and concentration-dependent cytotoxic effect was observed with cotreatment with rhUHMAb HER2 plus paclitaxel. Furthermore, a strikingly enhanced in vivo antitumor activity of these two compounds given together was seen, resulting in a statistically significant increase in the rate of tumor eradication when compared with either rhUHMAb HER2 or paclitaxel given alone. The combined treatment with rhUHMAb HER2 and doxorubicin also showed increased antitumor effects in two separate animal experiments when compared with doxorubicin or rhUHMAb HER2 alone. The lack of significance with the doxorubicin and rhUHMAb HER2 combination could be a reflection of insufficient sample size to achieve enough statistical power.

These results are complemented by studies with antibodies against the closely related EGFR. In xenograft studies with human breast carcinoma cell lines overexpressing the EGFR, the combined therapy with anti-EGFR MAbs and doxorubicin, and anti-EGFR MAbs and paclitaxel resulted in similar results to the ones reported here with rhUHMAb HER2 (18, 19). Hence, the concept of combining antireceptor strategies with either paclitaxel or doxorubicin may apply to other members of the type I tyrosine kinase receptor family. Currently, clinical trials with the human: murine chimeric anti-EGFR MAb C225 are under way (23).

The mechanisms responsible for the observed interaction between paclitaxel and rhUHMAb HER2 are unknown. The simplest explanation for the enhanced activity of paclitaxel and rhUHMAb HER2 is that it is the result of the summation of effects of two anticancer drugs that act

Table 1 Pooled data for complete tumor regressions in the different treatment groups of BT-474 xenografts

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Initial no. of mice</th>
<th>No. of mice alive at 5 weeks</th>
<th>No. of mice tumor-free at 5 weeks</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>31</td>
<td>31</td>
<td>2 (6.4%)</td>
<td></td>
</tr>
<tr>
<td>RhUHMAb HER2</td>
<td>30</td>
<td>29</td>
<td>7 (31%)</td>
<td>0.013</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>25</td>
<td>23</td>
<td>1 (4%)</td>
<td>0.38</td>
</tr>
<tr>
<td>Doxorubicin + rhUHMAb HER2</td>
<td>23</td>
<td>21</td>
<td>7 (33.3%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>26</td>
<td>22</td>
<td>4 (17.3%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Paclitaxel + rhUHMAb HER2</td>
<td>25</td>
<td>22</td>
<td>13 (59%)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* Additional complete tumor regressions were observed after 5 weeks in one mouse in the control group, one mouse in the rhUHMAb HER2 alone group, one mouse in the rhUHMAb HER2 + doxorubicin group, and two mice in the rhUHMAb HER2 + paclitaxel group.

* Two-sided P value for Pearson χ² comparison of complete tumor regression rates of each treated group versus control animals.

* Doxorubicin + rhUHMAb HER2 versus rhUHMAb HER2 alone, P = 0.8; versus doxorubicin alone, P = 0.09.

* Paclitaxel + rhUHMAb HER2 versus rhUHMAb HER2 alone, P = 0.04; versus paclitaxel alone, P = 0.004.
HERCEPTIN ENHANCES ACTIVITY OF PACLITAXEL AND DOXORUBICIN

on different targets; rhuMAb HER2 acts on the HER2 receptor signaling pathway and paclitaxel acts on tubulin. In fact, responses to rhuMAb HER2 were seen in patients previously treated with taxanes or anthracyclines in our phase II study (14). However, the magnitude of the enhanced antitumor activity with the combination may be well beyond a simple summation of effects.

A number of studies have shown that therapies leading to HER2 receptor down-regulation or inhibition of its phosphorylation may enhance sensitivity to paclitaxel. Transfection of mouse fibroblasts and human breast cancer cell lines overexpressing HER2 with the adenovirus type 5 E1A, which results in repression of HER2 expression at the transcriptional level, sensitized resistant cells to paclitaxel (24). MAB 4D5, the murine counterpart of rhuMAb HER2, was observed to produce a marked down-regulation of p185HER2 (13), and we observed that rhuMAb HER2 induces a very potent down-regulation of p185HER2 in BT-474 cells (data not shown). Other studies in HER2-overexpressing non-small cell lung cancer cells showed that suppression of HER2 phosphorylation by the tyrosine kinase inhibitors emodin and AG825 enhanced the chemosensitivity of these cells to a variety of chemotherapeutic agents (25, 26). However, it should be pointed out that both E1A and tyrosine kinase inhibitors had direct antiproliferative effects in the HER2-overexpressing cells that were tested. Thus, the growth inhibition induced by changes in HER2 may play a role in the increased paclitaxel sensitivity. In fact, we found that rhuMAb HER2 did not suppress growth in MCF7/HER2 cells and did not enhance paclitaxel sensitivity as discussed earlier.

An alternative explanation, which may complement the prior hypothesis, is that exposure to paclitaxel may produce a functional up-regulation of the HER2 receptor, and render the cells more sensitive to the antiproliferative effects of rhuMAb HER2. There are data from studies with breast cancer cells showing that paclitaxel treatment leads to activation of c-raf-1, a key component of the HER2 signal transduction pathway, demonstrated by a reduced c-raf-1 electrophoretic mobility after paclitaxel exposure (27).

Although the precise mechanisms for the observed interaction require further characterization, our findings could have therapeutic implications for the treatment of patients with HER2-overexpressing breast cancer. There is evidence that in such patients combined therapy with rhuMAb HER2 and chemotherapy is safe and results in improved response rates. A phase II trial was conducted with rhuMAb HER2 plus cisplatin in patients with HER2-overexpressing breast cancer and clinically observed refractoriness to chemotherapy. The observed response rate to combined therapy was 25%, greater than what was expected with cisplatin alone in this setting (28). In addition, the combined therapy was not more toxic than cisplatin alone.

Our results cannot predict whether the clinical benefits of the combined treatment with MAB and paclitaxel or doxorubicin will be superior to cisplatin plus MAB. It is also not possible to compare our results with the prior reported preclinical studies with cisplatin and anti-HER2 antibodies because different model systems were used (7, 15). However, a greater clinical benefit might be expected when the MAB is combined with doxorubicin or paclitaxel, when compared with MAB plus cisplatin, because doxorubicin and paclitaxel have greater antitumor activity in breast cancer. These considerations have led to the design of a phase III multicenter clinical trial of chemotherapy (doxorubicin-based or paclitaxel-based) plus rhuMAb HER2, versus chemotherapy alone, in patients with advanced breast cancer. The main purpose of the study is to determine whether the addition of rhuMAb HER2 results in an increased time to disease progression although response data will also be gathered.

In summary, our data show that in preclinical models rhuMAb HER2 markedly enhances the antitumor activity of paclitaxel and, modestly, of doxorubicin. A phase III clinical trial in patients with advanced, HER2-overexpressing breast cancer, to test the efficacy of this combined therapy, is currently underway.

ACKNOWLEDGMENTS

We thank Drs. Dan Maneval and Refaat Shalaby for expert assistance in the development of our BT-474 human tumor xenograft model. We also acknowledge Mark Sliwkowski (Genentech Inc.) for careful review of the manuscript and useful suggestions.

REFERENCES

HERCEPTIN ENHANCES ACTIVITY OF PACLITAXEL AND DOXORUBICIN

Recombinant Humanized Anti-HER2 Antibody (Herceptin™) Enhances the Antitumor Activity of Paclitaxel and Doxorubicin against HER2/neu Overexpressing Human Breast Cancer Xenografts

Jose Baselga, Larry Norton, Joan Albanell, et al.

Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/58/13/2825

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.