Highly specific antibodies to PHOSPHOSERINE, PHOSPHOTHREONINE, and the novel tumor suppressor FHIT are just a few of the nearly 800 unique, high performance, Zymed Quality products you'll find in our Antibodies for Cell Biology Research Catalog. Get your copy today. Call 1-800-874-4494.
The AACC-Pezzoller International Award for Cancer Research is given annually to a scientist who has made a major scientific discovery in the field of cancer, who continues to be active in the field, and whose ongoing work holds promise for future contributions to cancer research. The Pezzoller Foundation was established in 1982 by Professor Alesso Pezzoller, a dedicated Italian surgeon who has made important contributions to medicine during his career and who, through his foresight, vision, and generous gift in support of the formation of the Foundation, stimulated others to make significant advances in cancer research. Over the past decade the Pezzoller Foundation has given a major award for outstanding contributions to cancer and cancer-related biomedical science.

The American Association for Cancer Research (AACR) was founded in 1907 by eleven physicians and scientists dedicated to the conquest of cancer and now has nearly 14,000 members in more than 60 countries who are experts in basic, clinical, and translational cancer research. The mission of the AACR is to foster cancer research; this is accomplished in part through outstanding scientific publications, meetings, and training and educational programs. Because of the commitment of the Foundation and the AACR to scientific excellence in cancer research, these two organizations are collaborating annually on the presentation of the AACC-Pezzoller Award. This jointly sponsored award will strengthen international collaborations and will be a catalyst for advancements in cancer research internationally. The awardee will be selected by an international committee of AACR members appointed by the AACR President along with the agreement of the Council of the Pezzoller Foundation. While normally the Award will be presented to a single investigator, in exceptional cases two individuals may be selected to share the award when their investigations have resulted in related prizeworthy work. The committee will make its selection solely on the basis of the awardee's scientific accomplishments without regard to race, gender, nationality, or religious or political views. The candidate will give an award lecture during the AACC Annual Meeting in Philadelphia, USA (April 10-14, 1999) and will receive the award in an official ceremony at the Foundation's headquarters in Trento, Italy, after the annual meeting. The award consists of an honorarium of US$75,000 and a commemorative plaque.

The Pezzoller Foundation and the AACR are now soliciting nominations for the 1999 Award. Nominations can be made by any scientist who is now or has been affiliated with an institution engaged in cancer research. Institutions or organizations are not eligible for this award, and candidates may not nominate themselves.

There is no official application form for this award. The nomination package should consist of the following:

- the candidate's curriculum vitae and full list of published works
- an indication of the candidates's most important publications
- a letter of recommendation in English (500 words, maximum) explaining why the candidate is deserving of this prestigious Award. This letter should summarize the candidate's major scientific achievements, indicate which of the candidate's publications best describe these achievements, and explain the impact of these achievements on progress in cancer research.

Nominators are asked to maintain the confidentiality of the nomination process and to refrain from informing the candidate about the nomination.

The deadline for receipt of nominations for the 1999 Award is October 1, 1998. Questions about the nomination process should be directed to the AACR via FAX at (215) 440-9322 or E-mail at aacr@aacr.org. Nominations should be submitted to the AACR. Please forward the original nomination letter plus 15 copies of the letter and any accompanying materials to:

Peter K. Vogt, Ph.D., Chairperson, Selection Committee
American Association for Cancer Research
150 S. Independence Mall West
Philadelphia, PA 19106-3483
USA
Cancer Biology and the Mutant Mouse: New Methods, New Models, New Insights

January 31-February 5, 1999
Keystone Resort & Conference Center
Keystone, Colorado

CONFERENCE CO-CHAIRPERSONS
Tyler Jacks / Cambridge, MA
Ronald A. DePinho / Boston, MA

CONFERENCE PROGRAM

Keynote Addresses
Richard D. Klausner / Bethesda, MD
J. Michael Bishop / San Francisco, CA

Model Systems I
Suzanne Cory / Melbourne, Australia
Tak W. Mak / Toronto, Ontario, Canada
Neal G. Copeland / Frederick, MD
Stanley J. Korsmeyer / St. Louis, MO
Pier Paolo Pandolfo / New York, NY

Genomics/Genetics
David E. Housman / Cambridge, MA
David H. Mack / S. San Francisco, CA
Allan Balmain / Richmond, CA
Peter Demant / Amsterdam, The Netherlands

Cancer Biology
Douglas Hanahan / San Francisco, CA
George D. Yancopoulos / Tarrytown, NY
Philip Leder / Boston, MA
Andrea I. McClatchey / Boston, MA

Applications
Jolene J. Windle / San Antonio, TX
Scott W. Lowe / Cold Spring Harbor, NY
Raymond W. Tennant / Res. Triangle Park, NC
Ronald A. Lubet / Bethesda, MD
Nancy Kohl / West Point, PA

Technologies
Joe W. Gray / San Francisco, CA
Anton Berns / Amsterdam, The Netherlands
Tetsuo Noda / Tokyo, Japan
Arthur Sands / The Woodlands, TX

Cancer Pathways
Martine F. Roussel / Memphis, TN
Guillermina Lozano / Houston, TX
Terry A. Van Dyke / Chapel Hill, NC
Erwin Wagner / Vienna, Austria
Nicole Schreiber-Agus / Bronx, NY

Special Lecture
Harold E. Varmus / Bethesda, MD

Model Systems II
Raju Kucherlapati / Bronx, NY
Glenn T. Merlino / Bethesda, MD
Timothy C. Thompson / Houston, TX

The conference will also feature a methods workshop session and a late-breaking research session.

Registration Deadline: December 4, 1998

Information and Registration Forms:
American Association for Cancer Research
Public Ledger Building, Suite 826
150 South Independence Mall West
Philadelphia, PA 19106-3483
215-440-9300 215-440-9313 (FAX)
E-mail: meetings@aacr.org
Website: http://www.aacr.org
Except for studies on alcohol, it is only recently that the question of beverage use has become a subject of interest. Tea ranks second only to water as a major component of fluid intake worldwide. It is a safe beverage, since it is made generally with boiling water, an important consideration in places where pure, uncontaminated water is not available. Yet, detailed research on the health effects of tea, particularly regarding its role in cancer, is quite recent.

Tea is derived from the leaf of the plant *Camellia sinensis* (cover),* which was discovered thousands of years ago in China (Prev. Med., 21: 334, 1992; Food Rev. Int., 11: 371, 1995; *Handbook of Antioxidants*, E. Cadenas and L. Packer (eds.), p. 469, 1996; Cancer Lett., 114: 315, 1997). The leaf contains caffeine, but the caffeine content of a cup of tea is only one-third that of coffee. Antioxidant polyphenols comprise about one-third of the weight of the dried leaf. An enzyme, polyphenol oxidase, is a key component. Upon harvesting, the tea leaves are dried, rolled and crushed, and the enzyme is then liberated; however, it is inactivated when the dried leaves are immediately steamed or heated, yielding green tea. A delay in enzyme inactivation permits conversion of the indigenous tea polyphenols to other polyphenols. When the action of the enzyme is relatively short (about 30 minutes), prior to final heating and drying of the processed leaf, the product is oolong tea. When the enzyme activity proceeds for one to two hours, black tea results (Prev. Med., 21: 334, 1992; J. Natl. Cancer Inst., 85: 1038, 1993; Int. J. Oncol., 8: 221, 1996). The main polyphenol in green tea is epigallocatechin gallate (EGCG). Polyphenol oxidase converts EGCG to theaflavin gallates (which are responsible for the orange-reddish color of black tea infusions). These and other potent polyphenols are believed to account for the beneficial attributes of tea. The tea leaf also contains small amounts of essential oils and terpenes, providing part of the flavor. Fluoride is present as well, having a protective effect on tooth enamel, and the bacteriostatic action of the tea polyphenols might also improve dental health [Chem. Pharm. Bull. (Tokyo), 38: 717, 1990; Agric. Biol. Chem., 54: 2925, 1990]. Green tea is consumed mainly in the Far East and North Africa, oolong tea in Taiwan and Southern China, and black tea in the rest of the world. In such places as Turkmenistan and Northern Iran, large amounts are traditionally consumed very hot, a habit that might account in part for the elevated incidence of cancer of the esophagus in those places (IARC Monograph, 51: 207, 1991), due not to the tea, but to the high temperature at which it is consumed.

![Cancer Research](image)

The illustration of the tea plant was kindly provided by J. Simrany, U.S. Tea Council.

John H. Weisburger