Association of Cytochrome P450 1B1 (CYP1B1) Polymorphism with Steroid Receptor Status in Breast Cancer

L. Renee Bailey, Nady Roodi, William D. Dupont, and Fritz F. Paré

Departments of Pathology [L. R. B., N. R., F. F. P.] and Preventive Medicine and Biostatistics [W. D. D.], Vanderbilt University, Nashville, Tennessee 37232

Abstract

A key enzyme involved in the production of potentially carcinogenic estrogen metabolites and the activation of environmental carcinogens is cytochrome P450 1B1 (CYP1B1), the predominant member of the CYP1 family expressed in normal breast tissue and breast cancer. Because of the preeminent role of CYP1B1 in mammary estrogen/carcinogen metabolism, we examined the CYP1B1 gene to determine whether genetic differences could account for interindividual differences in breast cancer risk. We focused on exon 3, because it encodes the catalytically important heme binding domain of the enzyme, and discovered three polymorphisms of which two are associated with amino acid substitutions in codons 432 (Val→Leu) and 435 (Asn→Ser), designated as m1 and m2, respectively. Approximately 40% of Caucasian women have the m1 Val allele compared with nearly 70% of African-American women (P < 0.0001). The allele frequency also differs significantly in m2, with the rare Ser allele being present in 17.4% of Caucasians but only in 3.4% of African Americans (P < 0.0003). To determine whether the polymorphic CYP1B1 alleles hold implications as potential breast cancer risk factors, we compared the CYP1B1 genotypes in 164 Caucasian and 59 African-American breast cancer cases with those in age-, race-, and frequency-matched controls. Odds ratio calculations failed to show a significant association between any of the genotypes and breast cancer. Because CYP1B1 is known to be involved in mammary estrogen metabolism, we investigated whether the estrogen receptor status is influenced by the CYP1B1 genotypes. Caucasian patients with the m1 Val/Val genotype have a significantly higher percentage of estrogen receptor-positive (P = 0.02) and progesterone receptor-positive breast cancers (P = 0.003). There was no correlation with the m2 genotypes. These data suggest that the CYP1B1 polymorphisms in exon 3 are not associated with increased breast cancer risk but that the m1 polymorphism may be functionally important for steroid receptor expression in breast cancer of Caucasian patients.

Introduction

CYP1B1 is a key enzyme involved in the production of potentially carcinogenic estrogen metabolites and the activation of environmental carcinogens. CYP1B1, together with CYP1A1, has been shown to catalyze the formation of mutagenic intermediates from a number of polycyclic aromatic hydrocarbons, including several that are potent mammary gland carcinogens in rodents. CYP1B1 appears to be more active than CYP1A1 in the conversion of several polycyclic aromatic hydrocarbons to genotoxic intermediates. CYP1B1 also exceeds CYP1A1 in its catalytic efficiency as E2 hydroxylase, principally owing to its low Km for E2 (2, 3). CYP1B1 has its primary activity at the C-4 position of E2 with a 5-fold lower activity at C-2, whereas CYP1A1 has activity at the C-2, C-6α, and C-15α positions. The E2 4-hydroxylase activity of CYP1B1 has received particular attention due to the fact that the catechol estrogen, 4-hydroxyestradiol, is carcinogenic in animal models (4). Moreover, human breast cancer tissue was shown to have significantly higher levels of E2 4-hydroxylation than adjacent normal breast tissue (5). CYP1B1 is expressed both in normal breast and virtually all breast cancers (6, 7). Therefore, endogenous production of potentially carcinogenic catechol estrogens as well as metabolic activation of exogenous procarcinogens by CYP1B1 place the enzyme in a key position for mammary carcinogenesis. Inherited alterations in CYP1B1 activity hold the potential to define differences in carcinogen exposure and thereby explain differences in breast cancer risk. In this study, we examined the human CYP1B1 gene to determine whether genetic differences are associated with increased breast cancer risk.

Materials and Methods

Subjects. The study is based on 164 Caucasian women and 59 African-American women with primary invasive breast cancer who were treated at Vanderbilt University Medical Center, Nashville, TN, between 1982 and 1996. All patients except seven had tumors of sufficient size (≥1.0 cm) to allow multipoint hormone-binding analyses of ER and PR and extraction of DNA in addition to routine histopathological studies. In seven tumors, the amount of tissue was insufficient for PR analysis. Each breast cancer patient was matched by age and race to a control patient hospitalized at Vanderbilt University Medical Center for various medical reasons other than breast cancer or other forms of malignancy. Peripheral blood leukocytes were served as source for DNA for the controls.

Biochemical Analysis. In the ligand binding analyses for ER and PR status, tumors were considered positive if values exceeded 10 fmol/mg. DNA was isolated from all samples using a DNA extraction kit (Stratagene, La Jolla, CA). For PCR analysis of exon 3 of the CYP1B1 gene, we designed appropriate primers (primer 1, 5'-GGT GTT GGT GTC ACG CAG TGG; primer 2, 5'-GCC TCT TGC TTC GTC TTG GCA) to amplify genomic DNA (0.5 μg) through 30 cycles in a 100-μl volume containing 10 mm Tris-HCl (pH 8.3), 50 mm KCl, 4 mm MgCl2, 200 μM each of the four deoxyribonucleotides, Taq polymerase (2 units; Promega Corp., Madison, WI), and each oligonucleotide at 25 μM. Amplification conditions consisted of a denaturing step at 95°C for 1 min, annealing at 62°C for 1 min, and polymerization at 72°C for 1 min. A sample of each PCR mixture was size fractionated by electrophoresis in a 1.5% agarose gel and visualized by ethidium bromide staining. For DNA sequencing, the PCR products from 10 individuals were gel purified and subjected to the Thermo Sequenase radiolabeled terminator cycle sequencing method using [α-35S]P]dideoxynucleoside-5'-triphosphate nucleotides (Amersham, Piscataway, NJ). Sequencing reactions were carried out with primer 1 and analyzed by denaturing gel electrophoresis using glycerol-tolerant gel buffer. For genotype analysis, each PCR product was subjected to two separate restriction endonuclease reactions. Digestion with EcoRV revealed the m1 polymorphism with bands of 104 and 39 bp, whereas digestion with Cac8I identified the m2 polymorphism with bands of 105 and 38 bp.

Statistical Methods. Allele and genotype frequencies were calculated for each of the four groups, i.e., controls and cases, Caucasians and African Americans. The statistical methods used were logistic regression, contingency table χ², and Fisher’s exact test. Models for logistic regression analysis

Received 6/19/98; accepted 9/28/98.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported in part by United States Army Breast Cancer Training Grant DAMD-17-94-J024 (to L. R. B.), National Cancer Institute Grants CA50468-06 and CA68485 (to W. D. D.), and NIH P30 ES00267 (to F. F. P.).

2 Supported in part by United States Army Breast Cancer Training Grant DAMD-17-94-J024 (to L. R. B.), National Cancer Institute Grants CA50468-06 and CA68485 (to W. D. D.), and NIH P30 ES00267 (to F. F. P.).

3 To whom requests for reprints should be addressed, at Department of Pathology, TVC 4918, Vanderbilt University Medical Center, Nashville, TN 37232. Phone: (615) 343-9117; Fax: (615) 343-9563.

4 The abbreviations used are: CYP1B1, cytochrome P450 1B1; CYP1A1, cytochrome P450 1A1; E2, 17β-estradiol; ER, estrogen receptor; PR, progesterone receptor.

Statistical Methods. Allele and genotype frequencies were calculated for each of the four groups, i.e., controls and cases, Caucasians and African Americans. The statistical methods used were logistic regression, contingency table χ², and Fisher’s exact test. Models for logistic regression analysis
included age as a potential confounding variable in breast cancer. We assessed the effect of heterozygous and homozygous recessive genotypes separately in a logistic model with each possibility characterized by separate indicator variables. We estimated relative risks of breast cancer by odds ratios from 2 × 2 contingency tables. Confidence intervals for these odds ratios were derived using Woolf's method by PROC FREQ of the SAS statistical analysis package (8). P values for allele frequencies were computed under the assumption of Hardy-Weinberg distribution.

Results and Discussion

The CYP1B1 gene contains three exons, but only exons 2 and 3 encode the protein (Fig. 1a). Analysis of the CYP1B1 amino acid sequence shows several conserved regions of ≥40% identity to CYP1A1 (9). In our search for polymorphisms, we decided to focus on exon 3 because it encodes the heme binding domain, which is essential for the catalytic function of CYP1B1. DNA sequencing identified three polymorphic sites at nucleotides 1294G→C, 1347T→C, and 1358A→G (Fig. 1b). Two of the polymorphisms result in amino acid changes in codons 432 (Val→Leu) and 453 (Asn→Ser), designated as m1 and m2, respectively, in analogy to polymorphisms in the CYP1A1 gene. To date, the only abnormality of the CYP1B1 gene has been described in primary congenital glaucoma, an autosomal recessive eye disorder. Both frameshift and missense mutations were identified in affected Turkish and Saudi Arabian families, with homozygosity being associated with the disease phenotype (10, 11).

The 1294G→C transversion creates an Eco571 site, whereas the 1358A→G transition creates a Cac81 site. We used PCR amplification and restriction endonuclease digestion to characterize CYP1B1 genotypes (Fig. 1c) and to determine the distribution of CYP1B1 alleles. As shown in Table 1 for controls, ~40% of Caucasian women have the m1 Val allele compared with nearly 70% of African-American women (P < 0.0001). The allele frequency also differs significantly in m2, with the rare Ser allele being present in 17.4% of Caucasians but only in 3.4% of African Americans (P < 0.0003). Differences in allele frequencies between Caucasian and African-American women have also been reported for polymorphisms of the CYP1A1 gene.
CYP1A1 gene. However, the most striking differences are associated with polymorphic sites in the 3' noncoding region of the CYP1A1 gene (12, 13).

CYP1B1 is important for the homeostasis of estrogen in extraplastic tissues such as the breast. To determine the relation of CYP1B1 and E2 hydroxylation, Hayes et al. (1) expressed the human enzyme in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the C-2 and C-4 hydroxylation of E2 with K_m values of 0.78 and 0.71 mM and turnover numbers of 0.27 and 1.39 min^{-1}, respectively. Comparison with CYP1A1, CYP1A2, CYP3A3, and CYP3A4 indicates that the E2 C-4 hydroxylase activity of CYP1B1 has the highest catalytic efficiency and the lowest K_m of all of the E2 hydroxylases reported (3, 14). Thus, CYP1B1 appears to be the main cytochrome P450 enzyme responsible for the C-4 hydroxylation of E2. Given the carcinogenic potential that has emerged for 4-hydroxyestradiol (15), CYP1B1 assumes a special role as the principal enzyme activating carcinogenic chemicals, including polycyclic aromatic hydrocarbons, heterocyclic and aryl amines, as well as mycotoxins. Although CYP1B1 did not produce genotoxic products from benzo(a)pyrene or aflatoxin B1, it had the highest catalytic activity for several procarcinogenic compounds. The involvement of CYP1B1 in the production of carcinogenic catechol estrogens as well as activation of a number of environmental carcinogens is of particular interest with respect to its high expression in benign and malignant mammary tissue (6, 7). To determine whether the variant enzymes encoded by the polymorphic CYP1B1 alleles are associated with interindividual differences in breast cancer risk susceptibility, we compared the CYP1B1 genotypes in 164 Caucasian and 59 African-American breast cancer cases with those in age-, race-, and frequency-matched controls. As Table 2 shows, there was no significant association between any of the genotypes and increased risk of breast cancer. These findings are similar to those seen in investigations of CYP1A1 genotypes. Three case-control studies found no correlation between any of the four CYP1A1 polymorphisms and breast cancer in Caucasian women with the possible exception of smokers (16, 17). A study of 21 African-American patients observed a significant correlation with the m1 allele of CYP1A1 (18), but a larger study of 59 African-American patients found no association (13). Analysis of the menopausal status failed to show a significant association of polymorphic CYP1B1 alleles with breast cancer in pre- or postmenopausal women for either Caucasian or African-Americans, similar to our results with the CYP1A1 polymorphisms (13).

The effects of estrogen on ER gene expression are not clear, because both positive and negative regulation have been described (19). Kaneko et al. (20) presented evidence that the coding region of ER cDNA possesses a sequence(s) necessary for ER down-regulation of both protein and mRNA. ER is down-regulated by E2 in some estrogen-responsive tissues as well as in cell lines such as MCF-7 and GH3 (21). However, this effect is not true under all culture conditions of MCF-7 cells or for all breast cancer cell lines (22). Because CYP1B1 is known to be involved in mammary estrogen metabolism, we investigated whether the ER status is influenced by the CYP1B1 genotypes. Table 3 shows that Caucasian breast cancer patients with the m1 Val/Val genotype have a significantly higher percentage of ER-positive tumors (P = 0.02). There was no correlation with the m2 genotypes. The expression of PR is induced by estrogen via interaction with a functional ER. For that reason, we also examined the correlation of PR expression with the CYP1B1 genotype. An even stronger association was found between PR positivity and the m1 Val/Val genotype (P = 0.003) but not with the m2 genotypes. Evaluation of the African-American breast cancer patients failed to show a significant correlation between genotypes and receptor status (result not shown). It appears that other factors are involved in determining the ER phenotype of breast cancers in African-American women. Several groups have reported a significantly higher percentage of ER negativity in African-American than Caucasian patients (23, 24). Although CYP1A1 is also involved in mammary estrogen metab-

Table 1. CYP1B1 allele frequencies in Caucasian and African-American controls

<table>
<thead>
<tr>
<th>Allele</th>
<th>Caucasian (n = 328)</th>
<th>African American (n = 118)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1 (432)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>134 (40.9%)</td>
<td>82 (69.5%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Leu</td>
<td>194 (59.1%)</td>
<td>36 (30.5%)</td>
<td></td>
</tr>
<tr>
<td>m2 (453)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>271 (82.6%)</td>
<td>114 (96.6%)</td>
<td><0.0003</td>
</tr>
<tr>
<td>Ser</td>
<td>57 (17.4%)</td>
<td>4 (3.4%)</td>
<td></td>
</tr>
</tbody>
</table>

* Number of alleles, followed by percentage in parentheses.

Table 2. Distribution and analysis of CYP1B1 genotypes in Caucasian and African-American breast cancer cases and controls

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Caucasian Cases (n = 164)</th>
<th>Controls (n = 164)</th>
<th>Relative risk (95% CI)*</th>
<th>African American Cases (n = 59)</th>
<th>Controls (n = 59)</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1 (432)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val/Val</td>
<td>27 (16.5%)</td>
<td>19 (11.6%)</td>
<td>1.0*</td>
<td>27 (45.8%)</td>
<td>26 (44.1%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Val/Leu</td>
<td>85 (51.8%)</td>
<td>96 (58.5%)</td>
<td>0.6 (0.3-1.2)</td>
<td>27 (45.8%)</td>
<td>30 (50.8%)</td>
<td>0.9 (0.4-1.8)</td>
</tr>
<tr>
<td>Leu/Leu</td>
<td>52 (31.7%)</td>
<td>49 (29.9%)</td>
<td>0.7 (0.4-1.5)</td>
<td>5 (8.4%)</td>
<td>3 (5.1%)</td>
<td>1.6 (0.4-2.9)</td>
</tr>
<tr>
<td>m2 (453)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn/Asn</td>
<td>111 (67.7%)</td>
<td>111 (67.7%)</td>
<td>1.0*</td>
<td>56 (94.9%)</td>
<td>55 (93.2%)</td>
<td>1.0*</td>
</tr>
<tr>
<td>Asn/Ser</td>
<td>48 (29.3%)</td>
<td>49 (29.9%)</td>
<td>0.9 (0.6-1.6)</td>
<td>3 (5.1%)</td>
<td>4 (6.8%)</td>
<td>0.7 (0.2-3.4)</td>
</tr>
<tr>
<td>Ser/Ser</td>
<td>5 (3.0%)</td>
<td>4 (2.4%)</td>
<td>1.3 (0.3-4.8)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* CI, confidence interval.
* Number of individuals followed by percentage in parentheses.
* Denotes denominator for computation of odds ratios.

Table 3. Analysis of CYP1B1 genotypes and ER/PR status in Caucasian breast cancer cases

<table>
<thead>
<tr>
<th>Genotype</th>
<th>ER-positive (n = 88)</th>
<th>ER-negative (n = 76)</th>
<th>P</th>
<th>PR-positive (n = 56)</th>
<th>PR-negative (n = 101)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1 (432)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val/Val</td>
<td>20 (23%)</td>
<td>7 (9)</td>
<td>0.02</td>
<td>16 (29)</td>
<td>10 (10)</td>
<td>0.003</td>
</tr>
<tr>
<td>Val/Leu or Leu/Leu</td>
<td>68 (77)</td>
<td>69 (91)</td>
<td>40 (71)</td>
<td>91 (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m2 (453)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn/Asn</td>
<td>60 (68%)</td>
<td>51 (67%)</td>
<td>0.88</td>
<td>41 (73%)</td>
<td>67 (66%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Asn/Ser or Ser/Ser</td>
<td>28 (32)</td>
<td>25 (33)</td>
<td>15 (27)</td>
<td>34 (34)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Number of breast cancers, followed by percentage in parentheses.
lism, no correlation between any of the CYPIA1 polymorphisms and ER status has been found (13). This finding is consistent with experimental data showing no functional deviation of the variant CYPIA1 enzymes (25). In contrast, the correlation between the CYPIB1 ml polymorphism and steroid receptor expression suggests an alteration in enzyme function for the Val allele. Preliminary experiments indicate that recombinant mutant CYPIB1 has P450 catalytic activity. More detailed experiments will determine whether the polymorphisms, singly or in combination, alter CYPIB1 function with regard to estrogen and carcinogen metabolism.

References

Association of Cytochrome P450 1B1 (CYP1B1) Polymorphism with Steroid Receptor Status in Breast Cancer

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/58/22/5038

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.