Endostatin: Yeast Production, Mutants, and Antitumor Effect in Renal Cell Carcinoma

Mohanraj Dhanabal, Ramani Ramchandran, Ruediger Volk, Isaac E. Stillman, Michelle Lombardo, M. L. Iruela-Arispe, Michael Simons, and Vikas P. Sukhatme

ABSTRACT

Endostatin is a M, 20,000 COOH-terminal fragment of collagen XVIII that inhibits the growth of several primary tumors. We report here the cloning and expression of mouse endostatin in both prokaryotic and eukaryotic expression systems. Soluble recombinant protein expressed in yeast (15–20 mg/L) inhibited the proliferation and migration of endothelial cells in response to stimulation by basic fibroblast growth factor. A rabbit polyclonal antibody was raised that showed positive immunoreactivity to the recombinant protein expressed from both systems. Importantly, the biological activity of the mouse recombinant protein could be neutralized by this antiserum in both endothelial proliferation and choroidallantoic membrane assays. Systemic administration of endostatin at 10 mg/kg suppressed the growth of renal cell cancer in a nude mouse model. The inhibition of tumor growth with soluble yeast-produced protein was comparable to that obtained with non-refolded precipitated protein expressed from bacteria. In addition, two closely related COOH-terminal deletion mutants of endostatin were also tested and showed strikingly differing activity. Collectively, these findings demonstrate the expression of a biologically active form of mouse endostatin in yeast, define a role for the molecule in inhibiting endothelial cell migration, extend its antitumor effects to renal cell carcinoma, and provide a formal proof (via the neutralizing antiserum experiments and the mutant data) that endostatin (and not a possible contaminant) acts as an antiangiogenic agent. Finally, the high level expression of mouse endostatin in yeast serves as an endotoxin free, soluble source of protein for fundamental studies on the mechanisms of tumor growth suppression by angiogenesis inhibitors.

INTRODUCTION

Thirty thousand cases of RCC were diagnosed in the United States in 1996 (1). The prognosis for metastatic RCC remains highly unfavorable. Despite advances in radiation therapy and chemotherapy, the long-term survival of treated patients has shown only marginal improvement over the past few decades (1). Because RCC is a highly vascularized tumor, VEGF is likely to play an important role in the formation of tumor-associated angiogenesis. Moreover, the VHL gene, lost in >99% of sporadic RCC cases along with alterations of the remaining allele in ~70% of cases (2), represses VEGF (3–6). In a nude mouse model, introduction of a wild-type VHL gene into 786-O cells, a RCC tumor cell line, inhibited tumor growth (7) and angiogenesis (8). The lack of significant treatment options available for RCC emphasizes the need to focus on the development of novel therapeutic strategies. In this regard, targeting tumor vasculature of solid tumors has recently shown promising results in several animal model systems (8–12).

The growth of solid tumors beyond a few mm depends on the formation of new blood vessels (13). Numerous studies have shown that both primary tumor and metastatic growth are angiogenesis dependent (13–16). A number of angiogenesis inhibitors have been identified. Certain ones, such as platelet factor-4 (17, 18), IFN-α, IFN-inducible protein-10. and PEX (19–21), are not “associated with tumors,” whereas two others, angiotatin and endostatin, are “tumor associated” (22, 23). Angiotatin, a potent endogenous inhibitor of angiogenesis generated by tumor-infiltrating macrophages that up-regulate matrix metalloelastase (24), inhibits the growth of a wide variety of primary and metastatic tumors (25–29).

Recently, O’Reilly, et al. (23) have isolated endostatin, an angiogenesis inhibitor from a murine hemangioendothelioma cell line (EOMA). Circulating levels of a fragment of human endostatin have been detected in patients with chronic renal insufficiency with no detectable tumor (30). The NH2-terminal sequence of endostatin corresponds to the COOH-terminal portion of collagen XVIII. Endostatin is a specific inhibitor of endothelial proliferation and angiogenesis. Systemic administration of non-refolded precipitated protein expressed in Excherichia coli caused growth regression of Lewis lung carcinoma, T241 fibrosarcoma, B16 melanoma, and EOMA (23) cells in a xenograft model. Moreover, no drug resistance was noted in three of the tumor types studied. Surprisingly, repeated cycles of administration with endostatin resulted in tumor dormancy (31).

The results from this study open new avenues for treatment of cancer and provide a promising route for overcoming drug resistance often seen during chemotherapy. However, in all of these investigations, a non-refolded precipitated form of endostatin was administered in the form of a suspension to tumor-bearing animals. In addition, large amounts of protein were required to cause tumor regression and to lead to tumor dormancy. As pointed out by Kerbel (32), an oral drug equivalent of endostatin is needed. Clearly, mechanistic investigations could be undertaken if recombinant protein were available in soluble form. Moreover, initial testing could be done in vitro with soluble protein before studying its efficacy under in vivo conditions.

In the present study, we have obtained the expression of mouse endostatin in the Pichia pastoris system. The yeast expression system was selected because of its ability to express heterologous protein in a large scale and to process posttranslational modifications (33, 34). Our studies show for the first time that it is possible to express biologically active mouse endostatin with a yield of 15–20 mg/L of yeast culture. Biological activity was demonstrated in vitro by effects on endothelial proliferation and migration (the latter not described previously for endostatin) and in the CAM assay, along with growth inhibition in a RCC tumor xenograft model. For the first time, mutants of the endostatin protein (EM 1 and EM 2) were created, and one mutant (EM 2) showed loss of function in a RCC model.

MATERIALS AND METHODS

Cell Lines. 786-O, a renal clear cell carcinoma line; C-PAE, a bovine pulmonary arterial endothelial cell line; and ECV304, a human endothelial cell line, were all obtained from American Type Culture Collection. The cell lines were maintained in DMEM (786-O and C-PAE) and M199 (ECV304) supplemented with 10% FCS, 100 units/ml of penicillin, 100 μg/ml of strepto-
mycin, and 2 mM l-glutamine. The cDNA clone for mouse endostatin pBACp8 was kindly provided by B. R. Olsen (Department of Cellular Biology, Harvard Medical School, Boston, MA). The prokaryotic expression vector pET17b was purchased from Novagen (Madison, WI). The yeast expression system, P. pastoris (pPICZαA), was purchased from Invitrogen (San Diego, CA). Restriction enzymes and Vent DNA polymerase were purchased from New England Biolabs (Beverly, MA).

Cloning and Expression of Mouse Endostatin and Mutants into a Prokaryotic System. The sequence encoding the COOH-terminal portion of mouse collagen XVIII was amplified by PCR using Vent DNA polymerase, and the endostatin pBACp8 vector was used as a template. The primers used were 5'-GGC ATA TGC ATA CTC ATC AGG ACT TT-3' and 5'-AAC TCG AGA TTT GGA GAA AGT GGT-3'.

PCR was carried out for 30 cycles with the following parameters: 94°C denaturation, 60°C for annealing, and 72°C extension, each for 1 min. The amplified DNA fragment (555 bp) was purified using a QiAquick PCR purification kit, digested with NdeI and XhoI, and ligated into the expression vector pET17bhis (35). Initial transformation was carried out with the HMS 174 host strain. Positive clones were sequenced on both strands. The desired clones were finally transformed into BL21(D3) for expression. The expression of recombinant protein in the pET system was carried out as described by the manufacturer.

Primers were designed such that 9 and 17 amino acids were deleted from the COOH terminus of endostatin for EM 1 and EM 2, respectively. The amplified DNA fragments (528 bp for EM 1 and 504 bp for EM 2) were purified, digested with NdeI and NotI, and ligated into a predigested pET28(a) expression vector. The rest of the protocol was carried out as described above. Induction conditions and processing of the bacterial pellet were as described elsewhere (23). The purification of recombinant protein was performed using a Ni-NTA column in the presence of 8 m urea as described in the QIAexpresssionist manual. Briefly, the bacterial pellet was solubilized in “equilibration buffer” (8 m urea, 10 mM Tris, and 100 mM sodium phosphate buffer, pH 8.0) for 1 h at room temperature. The suspension was sonicated three to four times and centrifuged at 10,000 x g, and the soluble fraction was loaded on a Ni-NTA column preequilibrated with the above buffer at a flow rate of 10–20 ml/h. The column was washed extensively with equilibration buffer. Bound proteins were eluted by lowering the pH of the buffer (from 8.0 to 6.3, 4.2, and 3.0). For the in vivo experiments using endostatin mutants, nonspecific proteins binding to the column were removed by an equilibration buffer wash, followed by 10 m sodium and 25 mM imidazole washes. Bound proteins were eluted in equilibration buffer containing 0.2 M acetic acid. The purified fractions were analyzed by SDS-PAGE, and the fractions containing purified endostatin (pH 4.2 and 3.0 for wild-type endostatin and equilibration buffer containing 0.2 M acetic acid for endostatin mutants) were pooled and refolded slowly. The final dialysis was carried out against PBS (pH 7.4) at 4°C. During dialysis, the protein precipitated out of solution. It was further concentrated and stored at −70°C in small aliquots. The concentration of protein was determined by the BCA assay (Pierce).

Expression of Mouse Endostatin in P. pastoris. The sequence encoding mouse endostatin was further modified by PCR using Vent DNA polymerase. The amplified fragment containing EcoRI and NotI restriction sites was subcloned into a predigested yeast expression vector. The pPICZαA vector carries an α factor secretion signal sequence with a Zeocin marker for antibiotic selection. Initial transformation was done in the Top 10® host strain. The resultant clones were screened for insert, and positive clones were sequenced. The plasmid was then linearized with SacI and used for homologous recombination into the yeast host strain GS115. The transformation was carried out by the lithium chloride method as described in the Pichia expression manual. Recombinants were selected by plating on YPD plates containing 100 µg/ml of Zeocin. Clones that grew on the YPD/Zeocin plate were tested for expression.

The expression of mouse endostatin in large scale was carried out in 2-liter baffled shaker flasks. The overnight culture (A600=2–6) was used to inoculate 2-liter flasks, with the addition of 500 ml of buffered glycerol medium. Cells were grown at 250 rpm at 30°C until A600=16–20 (2 days). Subsequently, cells were centrifuged at 5000 rpm for 10 min, and the yeast were resuspended in 300–400 ml of buffered methanol induction medium. The supernatant containing the secreted recombinant protein was harvested on the second, third, and fourth day after induction. After the final harvest, the cell-free supernatant was processed immediately.

Purification of Mouse Endostatin: Heparin-Agarose Chromatography. The crude supernatant containing recombinant protein was concentrated by ammonium sulfate precipitation (70%). The precipitated protein was dissolved in 10 mM Tris buffer (pH 7.4) containing 150 mM NaCl and dialyzed overnight at 4°C (three changes at 6–8-h intervals). The dialyzed sample was further concentrated by ultrafiltration using an Amicon concentrator (YM 10). A disposable Polyprop column (Bio-Rad) was packed with heparin-aragose resin and equilibrated with 10 mM Tris, 150 mM NaCl, pH 7.4. The concentrated sample was loaded on the column at a flow rate of 20 ml/h using a peristaltic pump. The column was washed with equilibration buffer until the A280 was <0.001. Bound proteins were eluted by a step-wise gradient of NaCl (0.3, 0.6, 1.2, and 3.0). The peak fractions from 0.6 to 1 M were pooled and dialyzed against PBS (pH 7.4). Protein concentration was measured by the BCA assay (Pierce). The purification process was performed in the cold room (4°C). Recombinant soluble endostatin expressed from the Pichia system was used in all of the in vivo assays.

Cloning and Expression of His.endostatin into the Pichia Expression System. The coding region of the mouse endostatin construct in the pET expression vector is preceded by a His.Tag (10 histidine residues). By DNA-PCR, the coding region including the His.Tag sequence was shuttled into pPICZαA vector. Linearization and recombination into the yeast host strain GS115 were done as described before. The cell-free medium was precipitated with ammonium sulfate (70% saturation). Precipitated proteins were dissolved in 50 mM sodium phosphate buffer (pH 8.0) containing 300 mM NaCl and dialyzed in the same buffer at 4°C after three changes at 6–8-h intervals. A Ni-NTA column was used for purification of the His.endostatin recombinant protein, as described in the QIAexpressionist manual. Bound proteins were eluted with a step-wise gradient of imidazole (10, 25, 50, and 100 mM). The peak fractions from 50 and 100 mM imidazole elutions were pooled and dialyzed against PBS buffer (pH 7.4).

Characterization of Recombinant Yeast Endostatin and Polyclonal Antibody Generation. The purified protein from the yeast expression system was further characterized by NH2-terminal microsequencing for seven cycles. In addition, a polyclonal antiserum to mouse recombinant endostatin was raised by immunizing a rabbit with 10 µg of purified protein derived from the Pichia expression system. Recombinant endostatin expressed from bacteria and yeast systems were separated on 12% SDS-PAGE. The proteins were transferred to polyvinylidene difluoride membrane by semidry transfer (Transblot; Bio-Rad). The primary antiserum was diluted to 1:4000 in 1X TBS buffer containing 5% nonfat dry milk. Goat anti-rabbit IgG/horseradish peroxidase conjugate was used as a secondary antibody (1:5000). Immunoreactivity was detected by chemiluminescence (Pierce).

Endothelial Proliferation Assay. The antiproliferative effect of endostatin produced in the yeast system was tested using bovine pulmonary artery endothelial cells (C-PAE). The cells were plated in 24-well fibronectin (0.1 µg/ml)-coated plates at 12,500 cells/well in 0.5 ml of DMEM containing 2% FBS. After a 24-h incubation at 37°C, the medium was replaced with fresh DMEM and 2% FBS containing 3 ng/ml of bFGF (R & D Systems) with or without recombinant mouse endostatin. The cells were pulsed with 1 µCi of [3H]thymidine for 24 h. Medium was aspirated, cells were washed three times with PBS, and then solubilized by addition of 1.5 N NaOH (100 µl/well) and incubated at 37°C for 30 min. Cell-associated radioactivity was determined with a liquid scintillation counter.

Migration Assay. The ability of recombinant endostatin to block migration of ECV304 cells toward bFGF, a migration assay was performed using 12-well Boyden chemotaxis chambers (Neuro Probe, Inc.) with a polycarbonate membrane (25 × 80-mm, PVD free, 8-µm pores; Poretics Corp., Livermore, CA). The nonspecific binding of growth factor to the chambers was prevented by coating the chambers with a solution containing 1.0% gelatin, 1 mM CaCl2, and 150 mM NaCl at 37°C overnight. ECV304 cells were grown in 10% FBS containing 5 ng/ml 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiIC18; Molecular Probes, Eugene, OR) overnight and washed with PBS containing 0.5% BSA. After trypsinization, the cells were counted using a Coulter Counter Z1 (Luton, United Kingdom) and diluted to 300,000 cells/ml in Medium 199 containing 0.5% FBS. The lower chamber was filled with Medium 199 containing 25 ng/ml of bFGF. The upper chamber was seeded with 15,000 cells/ml with different concentrations of
recombinant endostatin. Cells were allowed to migrate for 4 h at 37°C. At that
time, the cells on the upper surface of the membrane were removed with a cell
craper, and the (migrated) cells on the lower surface were fixed in 3% formaldehyde and washed in PBS. Images of the fixed membrane were
obtained using fluorescence microscopy at 550 nm with a digital camera, and
the number of cells on each membrane was determined using the OPTIMAS
(version 6.0) software.

CAM Assay. The ability of mouse endostatin to block bFGF-induced
angiogenesis in vivo was tested using the CAM assay. Fertilized white Leghorn
chicken eggs (SPAFAS, Inc., Norwich, CT) were opened on 100-mm² Petri
dishes and allowed to grow until day 11 in a humidified incubator at 38°C. Pellets containing Vitrogen (Collagen Biomaterials, Palo Alto, CA) at a
concentration of 0.73 mg/ml and supplemented with: (a) vehicle alone; (b) VEGF (250 ng/pellet); (c) VEGF and endostatin (20 to 0.5 µg/pellet); (d) bFGF (50 ng/pellet); and (e) bFGF and endostatin (20 to 0.5 µg/pellet) were
allowed to polymerize at 37°C for 2 h. The pellets were placed on a nylon mesh
and oriented on the periphery of the CAM. Embryos were returned to the
incubator for 24 h. Invasion of new capillaries on the collagen mesh was
assessed by injection of FITC-dextran into the circulation of the chicken
embryo. At the end of the experiment, the meshes were dissected, and eval-
uation of vascular density was done using the program NIH Image 1.59, as
described previously (36). Assays were performed in triplicate, and four
independent experiments were conducted.

Neutralization of the Inhibitory Effect of Endostatin. The specificity of the
inhibitory effect of endostatin was demonstrated by neutralization studies
using endothelial proliferation and CAM assays. Briefly, in the endothelial
proliferation assay, the endostatin was preincubated with polyclonal antisera
or purified antibody (IgG) and then added to the C-PAE cells. Preimmune
serum was used as negative control. In addition, purified IgG and endostatin
antibody alone were also used as a control. The cells were then pulsed with
[3H]thymidine for 24 h, and cell-associated radioactivity was measured as
described before. For the CAM assay, endostatin (10 µg) and antiserum (50 µg)
were preincubated overnight end-over-end at 4°C prior to preparation of
the pellets. Controls for these experiments included IgG alone and preimmune
serum alone. Evaluation of the angiogenic response was determined as indi-
cated above.

RCC Tumor Model. Male nude mice, 6–8 weeks of age, received injec-
tions s.c. in the right flank with 2 million 786-O cells in a 100-µl volume.
Tumors appeared ~2 weeks after implantation. Tumor size was measured
using calipers, and tumor volume was calculated using a standard formula (22).
The tumor volume ranged from 350 to 400 mm³. The animals were random-
ized, and each group had five mice with comparable tumor size within and
among the groups. Treatment was started with recombinant endostatin (bact-
erial or yeast versions), with each mouse receiving 10 mg/kg body weight of
recombinant protein daily, administered for a period of 10 days via i.p.
injection. Control animals received PBS each day. Tumor size in all groups
was measured on alternate days, and tumor volume was calculated. The
treatment was terminated on day 10, and animals were sacrificed; tumors from
each mouse were removed and fixed in 10% buffered formalin.

For the mutant study, each mouse received 20 mg/kg body weight of
the protein daily for 2 weeks i.p. The initial tumor volume was 150–200 mm³.
Wild-type endostatin, also produced in the pET28(a) vector, was given at 20
µg/kg daily for 2 weeks i.p. The initial tumor volume was 150–200 mm³.
Large deletions, reasoning that larger deletions may destroy activity.

dostatin are strikingly conserved at the COOH terminus, we made two
small deletions, reasoning that larger deletions may destroy activity.

EM 1, a M₅ 19,000 protein, was generated with an 9-amino acid
deletion from the COOH terminus, leaving all of the four cysteine residues intact. EM 2 was an additional 8-amino acid deletion that
omitted the most COOH-terminal cysteine.

Purification and Characterization of Yeast-derived Soluble End-
ostatin. P. pastoris, a methanotrophic yeast strain, has many advan-
tages of a higher eukaryotic expression system: (a) the presence of α
factor signal sequence facilitates secretion of the expressed protein
into the medium; (b) the yeast strain (GS115) secretes only very low
levels of endogenous host protein, which further simplifies the puri-

RESULTS

Mouse Endostatin and Its Mutants Can Be Expressed and
Purified from a Bacterial Expression System. The gene encoding
mouse endostatin was amplified from the pBACpk8 plasmid and
expressed initially in the pET28a vector, which was given at 20
mg/kg body weight for the experiment as a positive control, and PBS
was given as a negative control.

ENDOSTATIN AND RENAL CELL CARCINOMA
fication process; (c) endotoxin contamination is not an issue; and (d) glycosylation can occur. The pPICZαA vector was selected for expression of mouse endostatin. Initial screening was used to identify yeast clones with high levels of expression. Endostatin was expressed as a soluble protein (M, 20,000), with a peak level of expression noted on the second day after induction.

A heparin-agarose column was used for purification, based on data of O’Reilly et al. (23). Fig. 2 shows the elution profile and SDS-PAGE analysis of purified protein. Two distinct peaks were obtained with increasing concentration of NaCl (Fig. 2A). The first peak at 0.3 M NaCl was small when compared with the major peak at 0.6 M NaCl. Most of the endostatin protein bound to the column as shown by the lack of the protein in the flow-through fraction (Fig. 2B). The recombinant protein bound tightly, and washing with the low-salt Tris buffer removed other yeast-derived proteins. Protein eluted from the 0.3 M NaCl fraction had a trace amount of endostatin but was contaminated with other host-derived, high molecular weight protein. The purified protein migrated at M, 20,000, which upon reduction migrated at M, 22,000. The protein fractions eluted at 0.6 M and 1 M NaCl were pooled, concentrated, and dialyzed against PBS (pH 7.4). The purified protein was further separated by FPLC using a Superose 12 size separation column. The elution profile from this column showed a single peak (data not shown). SDS-PAGE analysis showed the presence of single discrete band corresponding to endostatin (data not shown). The level of expression was estimated to be in the range of 15–20 mg/l culture.

To further characterize the recombinant protein, NH₂-terminal microsequencing was carried out at the Harvard microsequencing facility. It showed that the yeast α factor signal peptide was processed and cleaved at alanine. The first seven residues (EFHTHQD) of the purified protein after signal peptide cleavage matched exactly the published sequence of endostatin protein (data not shown), with the first two residues (EF) derived from linker sequence.

Generation of a Soluble His-tagged Endostatin (His.endostatin) in Yeast. The elution profile of His.endostatin from the Ni-NTA column showed that the recombinant protein bound tightly (Fig. 3). The yeast-derived host proteins in the culture supernatant did not bind to the column and were removed during the wash. Bound proteins were eluted by a stepwise gradient of imidazole (10, 25, 50, and 100 mM) was used to elute the bound proteins from the column. Concentration of imidazole; ○, absorbance at 280 nm. B, 12% nonreducing SDS-PAGE of selected fractions. Left, low molecular weight standards (in thousands). Purified recombinant His.endostatin migrated as a single band corresponding to M, 22,000–24,000 in 50 mM imidazole, whereas 100 mM elution showed a trace amount of higher molecular weight complexes corresponding to M, 44,000–46,000.

![Fig. 2. A, purification of soluble mouse endostatin expressed in yeast using a heparin-agarose column. Concentrated supernatant from a one liter culture was loaded in batches. Step-wise gradient of NaCl from 0.3, 0.6, 1, and 2 M was used to elute bound endostatin from the column. Two ml of eluted fractions were collected per tube. ○, concentration of NaCl; ○, absorbance at 280 nm. B, electrophoretic analysis of purified recombinant soluble mouse endostatin from heparin-agarose column by 12% SDS-PAGE. Left, low molecular weight standards (in thousands). The purified protein migrated as a single band corresponding to M, 20,000. A 10-μl aliquot of selected fractions was used for analysis of purity of the eluted protein.](cancerres.aacjournals.org)
along with a smaller amount of protein corresponding to \(M_r 44,000 \) – 46,000. The concentration of purified protein was determined by the BCA method. The level of expression was estimated at 15 mg/l culture.

Western Blot Analysis. A polyclonal antibody was raised against purified mouse endostatin derived from the yeast expression system. The purified endostatin expressed from the bacterial and yeast expression systems were run under reducing and nonreducing conditions. Fig. 4 shows immunoreactive bands corresponding to endostatin. The size of the protein estimated from the Western blot ranges from \(M_r 22,000 – 24,000 \). In addition, the recombinant His.endostatin from yeast and bacteria was probed with a Penta His.monoclonal antibody (Qiagen, Santa Clarita, CA). The monoclonal antibody showed positive response only with the His.endostatin, whereas native endostatin did not show any immunoreactivity (data not shown). This data confirmed the presence of the His.Tag in the recombinant protein. The antiserum did not show any cross-reactivity to human or mouse angiostatin, demonstrating some degree of immunoreactivity specific to endostatin (data not shown). Immunoreactivity of the polyclonal antibody was also observed with EM 1 and EM 2 proteins (data not shown).

Yeast-produced Endostatin Has Antiproliferative Effects on Endothelial Cells. The antiproliferative effect of endostatin produced in the yeast system was tested using C-PAE cells. We initially experimented with different endothelial cell types and tested various parameters [time of “starvation,” serum concentration, concentration and type of mitogenic stimulus (VEGF versus bFGF)]. C-PAE cells gave the most reproducible response. A dose-dependent inhibition of bFGF-induced proliferation was seen (Fig. 5A). The inhibition range (30% – 94% of control) was seen with increasing concentrations of endostatin (0.1 – 10 \(\mu g/ml \), with an ED_{50} in the range of 600 – 700 ng/ml. A similar inhibitory effect on C-PAE cells was seen when His.endostatin from yeast was tested in the above assay (Fig. 5A). The recombinant protein did not inhibit the proliferation of the RCC cells (786-O and A498) at concentrations ranging from 0.5 to 10 \(\mu g/ml \) (Fig. 5B), nor did it have an effect on IMR90 and NIH3T3 fibroblasts (data not shown).

Yeast-produced Endostatin Blocks Endothelial Cell Migration. Because C-PAE cells do not migrate in response to bFGF and VEGF, ECV304 cells were used with different concentrations of endostatin using bFGF as a stimulus. Addition of endostatin resulted in a dose-dependent inhibition of migration (Fig. 6). At a concentration <1 \(\mu g/ml \), marginal inhibition of migration was noted, whereas at 10 \(\mu g/ml \), 60% inhibition of endothelial cell migration was observed. These studies are the first to show the effect of endostatin on cell migration. The action of endostatin on migration of two non-endothelial cell lines was also assessed. No effect was seen on inner medullary collecting duct renal cells, and some effect (15% at 5 \(\mu g/ml \) and 50% at 20 \(\mu g/ml \)) was noted in the IC-21 macrophage precursor cell line (data not shown), suggesting that at high concentration, endostatin may block cell migration in some cell types.

Yeast-produced Endostatin Has a Dramatic Effect in the CAM Assay. Endostatin was able to suppress the angiogenic response mediated by both bFGF and VEGF (Fig. 7). The inhibition was dose dependent. Blocking of the VEGF response was somewhat more effective (47%) than the suppression of the bFGF response (39%), both at 20 \(\mu g/mesh \).

Neutralization of Endostatin Activity. The ability of our polyclonal antiserum to neutralize the biological activity of endostatin was tested in both endothelial proliferation and CAM assays. Fig. 8 demonstrates that the inhibitory effect of endostatin can be suppressed by incubation with specific antiserum. Anti-endostatin antiserum blocked the suppressive effect by 95% (data not shown). The preim-
mune serum and endostatin antibody alone did not have stimulatory effect nor did normal rabbit IgG.

Inhibition of Primary 786-O RCC Tumors in Nude Mouse Model. Recombinant endostatin was administered daily at 10 mg/kg/day when the tumor size was ~350–400 mm³. On the fifth day after treatment, there was a difference between control (963 mm³) and treated (Endo yeast, 405 mm³; endo bacteria, 442 mm³; and His.endo, 462 mm³) groups. A 2.5-fold decrease in tumor volume was observed on the fifth day after treatment between control and treated groups (Fig. 9, A and B). The growth of the tumor was suppressed in all of the treatment groups: a slower growth rate was seen compared with the control group. Bacterial (His.Tag) or yeast-derived (with or without His.Tag) endostatin at a dose of 10 mg/kg all worked equally well. On the tenth day after treatment, the tumor volume in the control animals was 1490 mm³, whereas in the treated group, it was in the range of 480–570 mm³ (P < 0.005). Endostatin administration did not inhibit tumor growth completely: the growth of the tumors slowed, with a marginal increase in volume during the treatment period.

Two Closely Related COOH Terminus Endostatin Mutants Generated in E. coli Show Markedly Differing in Vivo Activity in RCC. A second set of experiments with endostatin and mutants EM 1 and EM 2 at a dosage of 20 mg/kg body weight were conducted in a RCC model, as a first step in exploring structure-function relationships. Nine days after treatment, the difference between groups was apparent (Fig. 9C). On the eleventh day after treatment, the tumor volume in the control group (397 mm³) was approximately twice that of the two treated groups: endostatin (182 mm³) or EM 1 (259 mm³). However, on the same day, the tumor volume of the EM 2-treated group (389 mm³) was similar to that of the control group (397 mm³). Significance was at the 90% confidence level between the EM 2 and endostatin groups and 95% confidence level between endostatin and control groups. Dropping the value of the largest and smallest tumors on day 11 in each group increased the confidence level to 95% between EM 2 and EM 1 and between EM 2 and endostatin. Therefore, EM 1 protein retained the native biological activity of endostatin, whereas EM 2 with an additional 8 amino acids deleted did not. Also, of note, two of the five mice in the endostatin group and one of five in the EM 1 group had no detectable tumor at the end of the treatment period.

DISCUSSION

In the present study, we have shown that biologically active mouse endostatin can be expressed at high levels in the P. pastoris yeast expression system. This system has all of the advantages of an eukaryotic expression system and generally gives higher expression levels (34, 37). It has the added advantage of inducible expression, leading to 10–100-fold higher heterologous protein expression levels compared with other eukaryotic systems (baculovirus or mammalian) with values as high as 1–10 g/l culture when optimized in a fermenter (38). Moreover, endostatin expressed from the Pichia system was secreted into the medium with a molecular weight of Mₐ 20,000, in agreement with the size obtained from other sources (23), and was biologically active in vitro and in vivo.

The recombinant protein bound to a heparin-agarose column and was eluted at 0.6–1 M NaCl concentration. These data suggested that the yeast expressed protein was folded properly, because the ED₅₀ was comparable with that obtained with baculovirus-expressed protein (ED₅₀ ~600–700 ng/ml; Ref. 23). Also, endostatin at high doses (>100 µg/ml) did not inhibit the growth of the 786-O cell line. Microsequence analysis confirmed the processing of the signal peptide, and the NH₂-terminal amino acids matched with published sequence. In the CAM assay, endostatin at 20 µg/disc inhibited angiogenesis induced by bFGF. Similar findings have also been reported as data not shown using baculovirus-expressed endostatin (23). The effect of endostatin on the CAM assay showed more potency on a molar basis than the inhibitors thrombospondin-1 (36), fumagillin (AGM 1470), or antibodies against the integrin α₅β₃. Our studies on endothelial cell migration provide an additional mechanism of action for endostatin and a new in vitro assay for its efficacy.

In vivo, both E. coli-derived protein and yeast-produced soluble protein gave comparable inhibitory profiles. Moreover, the presence of a His.Tag sequence in the yeast-derived protein did not affect biological activity. O’Reilly et al. (23) reported that endostatin at 10 mg/kg inhibited tumor growth by 97%. In our first study, we failed to see such a dramatic response. Although there was significant difference in tumor volume between control and treated mice, the tumors in the treated group continued to grow slowly. On the tenth day after treatment, when administration of endostatin was stopped, the tumor grew rapidly, and within a week, the average size of the tumors was comparable with controls (data not shown). Subsequently, we tested the effects of endostatin (and its mutants) on tumors ranging from 150 to 200 mm³ and also increased the endostatin dosage to 20 mg/kg body weight. Three of 10 mice in the combined endostatin and EM 1 groups showed regression. Possible explanations for our differences with O’Reilly et al. (23) include: (a) protein was given i.p. (our data)
versus s.c. (23); and (b) the response of this tumor (RCC) to antiangiogenic treatment may be different from that of other tumor types (23) in that RCC may secrete either higher levels or different types of angiogenic proteins. To obtain greater efficacy, it may be possible in the future to tailor the treatment option (e.g., type of antiangiogenic therapy), depending upon the angiogenic stimulator secreted by the tumor. Additionally, other modalities, such as chemotherapy and radiation (not efficacious as single agents in RCC), or biologicals

Fig. 7. A, inhibition of angiogenic response mediated by VEGF (250 ng/pellet) in the presence of endostatin. Fifty µl of purified recombinant endostatin (20 µg) were added to an aliquot of Vitrogen, and the mixture was placed on a nylon mesh. After polymerization, meshes were placed on the chick embryo and incubated at 37°C for 24 h. New vessel growth was assessed after injecting the vessel with FITC-dextran. a, negative control; b, positive control (VEGF); c, endostatin plus VEGF. B, inhibition of VEGF (left) and bFGF (right) mediated angiogenic response by endostatin in the CAM assay. Different concentrations of endostatin were added on the nylon mesh, and vessel growth was determined as described before. All of the counts were normalized to the negative control. Bars, SD.

Fig. 8. A, neutralization of the inhibitory effect of mouse endostatin by polyclonal antiserum in the endothelial proliferation assay. A 24-well, fibronectin-coated plate was seeded with C-PAE cells at 12,500 cells/well. Recombinant endostatin (10 and 5 µg/ml) was mixed with excess of polyclonal antiserum to endostatin or preimmune or control IgG for 1 h at room temperature. The mixture was then added to C-PAE cells in the presence of 3 µg/ml bFGF. DNA synthesis was measured by adding 1 µCi/well [3H]thymidine. Each value is a mean from triplicate culture; bars, SD. B, neutralization of endostatin inhibitory activity by polyclonal antiserum. The angiogenic response induced by VEGF (250 ng/pellet) was inhibited by preincubating recombinant protein with polyclonal antiserum against endostatin. The incubation with antiserum was done at 4°C overnight, and the mixture was added to a nylon mesh containing Vitrogen. a, VEGF and endostatin (10 µg/pellet); b, endostatin (10 µg/pellet) plus polyclonal antiserum plus VEGF.
(IL-2, IFN) could be combined with endostatin to provide synergism, as has been demonstrated recently for angiostatin (39).

Our data with neutralizing antibody and the two mutant endostatin proteins (with markedly differing efficacy) provide further evidence that endostatin and not a possible contaminant is the active molecule giving an antiangiogenic effect. Moreover, the mutant protein data point to the importance of eight residues surrounding and including the last cysteine as critical for endostatin activity. Given our present lack of knowledge of the protein conformation of the E. coli-generated proteins used in this study, it is not possible to conclude whether disulfide bonding (between cysteines 1 and 4; Ref. 40) is critical. Additional studies are in progress to address this issue.

At present, the origin of endostatin is not known. Collagen XVIII reported as a member of a family of collagen-like proteins is localized mainly in the perivascular portion of blood vessels (41, 42). Collagen XVIII by itself is not inhibitory to endothelial cells but when processed by as yet unknown mechanisms may lead to the release of the COOH-terminal portion (23). The proteases involved in the generation of endostatin is not clear, and how these may be regulated is also not known. The mechanism of endostatin-mediated tumor regression is unknown. Is there a receptor for endostatin on endothelial cells, and how does binding of endostatin to a putative endothelial cell-specific receptor initiate a cascade of events resulting in the inhibition of endothelial cell proliferation and migration? It is conceivable that endostatin may compete with binding of angiogenic stimulators such as bFGF and VEGF to its appropriate receptors? Alternatively, it is possible that proliferating endothelial cells up-regulate \(\alpha_\beta_3 \), an endothelial integrin, and endostatin may act by disrupting the interaction of proliferating endothelial cells to matrix protein, thus driving endothelial cells to undergo apoptosis. It has been well documented that lack of attachment of endothelial cells to matrix protein may result in programmed cell death (43). Such mechanistic issues can now be addressed with our biologically active soluble version of yeast endostatin.

REFERENCES

ENDOSTATIN AND RENAL CELL CARCINOMA

The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress
5639, 1997.

Oldfield, E. H., Klauser, R. D., and Linchau, W. M. Post-transcriptional regulation of
vascular endothelial growth factor mRNA by the product of the VHL tumor

6. Siemeister, G., Weindel, K., Mohrs, K., Barleon, B., Martiny-Baron, G., and Marme,
D. Revision of deregulated expression of vascular endothelial growth factor in human

7. Ilipousalo, O., Kibel, A., Gray, S., and Kaelin, W. G. Jr. Tumour suppression by the

10. Fan, T. P., Jaggar, R., and Bicknell, R. Controlling the vasculature: angiogenesis,
anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol. Sci., 16:

11. Thorpe, P. E., and Burrows, F. J. Antibody-directed targeting of the vasculature of

1996.

H. F., and Sharpe, R. J. Inhibition of angiogenesis by recombinant human platelet

proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4.

Kleimian, H. K., Reaman, G. H., and Tosato, G. Human interferon-inducible protein

Interferon gamma-inducible protein 10 (IP-10), a member of the CX-C chemokine family, is an inhibitor of angiogenesis. Biochim. Biophys. Res. Commun., 210:

Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with

Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. Angiostatin: a novel angiogenesis
inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see

23. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vaisos, G., Lane, W. S., Flynn, E.,
Birkhead, J. R., Olsen, B. R., and Folkman, J. Endostatin: an endogenous inhibitor of
Endostatin: Yeast Production, Mutants, and Antitumor Effect in Renal Cell Carcinoma

Mohanraj Dhanabal, Ramani Ramchandran, Ruediger Volk, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/59/1/189

Cited articles
This article cites 40 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/59/1/189.full#ref-list-1

Citing articles
This article has been cited by 64 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/59/1/189.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.