Identification of the TCLI/MTCP1-like 1 (TMLI) Gene from the Region Next to the TCLI Locus

Jun Sugimoto, Toyomasa Hatakeyama, Maria Grazia Narducci, Giandomenico Russo, and Masaharu Isobe

Department of Materials and BioSystem Engineering, Faculty of Engineering, Toyama University, Toyama City, 930-8555 Japan [J. S., T. H., M. I.]; and IDI-IRCCS, Research Laboratories, 00167 Rome, Italy [M. G. N., G. R.]

Abstract

The region on chromosome 14q32.1 is frequently involved in chromosomal translocations and inversions with one of the T-cell receptor loci in human T-cell leukemias and lymphomas. The breakpoints of the different rearrangements segregate into two clusters: inversion on the centromeric side and simple balanced translocations on the telomeric side. If the target gene activated by these different types of chromosomal rearrangements is the same, the gene must reside between the two clusters of breakpoints in a region of ~160 kb. By screening of a placenta cDNA library using genomic probes from the vicinity of TCLI locus, we have identified a gene coding for a 1.7-kb transcript that is expressed in leukemic cells carrying a t(14;14)(q11;q32) chromosome translocation. The cognate cDNA sequence reveals an open reading frame of 384 nucleotides encoding a 15,000 protein with ~30% of homology with both p14TCL1 and p13MTCP1 oncoproteins. The genomic organization of the TCLI locus was characterized, with three exons located 15 kb from and tail-to-tail in relation to TCLI locus. Because of its location and sequence similarity with TCLI and MTCP1 oncoproteins, this gene, named TMLI (TCLI/MTCP1-like 1) is a candidate gene that is potentially involved in leukemogenesis.

Introduction

Nonrandom chromosomal translocations are characteristic of most human hematopoietic malignancies (1). In B and T cells, chromosomal translocations and inversions often occur as a consequence of mistakes during the normal process of recombination of the genes for immunoglobulins or TCRs. These rearrangements juxtapose enhancer elements of the immunoglobulin or TCR genes to oncogenes, the expression of which is then deregulated (2). In T-cell tumors, the TCR genes located on chromosomes 14q11 (TCRA/D; Refs. 3 and 4), 7q35 (TCRB; Ref. 5), and 7p15 (TCRG; Ref. 6) occasionally cause translocations or inversions as a consequence of the faulty joining of genes during the physiological process, leading to VDJ recombination. Chromosome region 14q32.1 is commonly involved in chromosomal rearrangements with TCR loci in several T-cell neoplasms. Chromosome abnormalities, such as the inversion inv(14)(q11q32) and translocations t(14;14)(q11q32) and t(7;14)(q35;q32), are frequently observed in: T-cell prolymphocytic leukemia, a rare form of mature T-cell proliferations; chronic and acute T-cell leukemias arising in patients with the immunodeficiency syndrome AT; and non-malignant clonal expansion of T cells of patients with AT. We and others have cloned numerous breakpoints at 14q32.1 involved in T-cell neoplasms (7–11). By placing these breakpoints on the map of the region, we found that the breakpoints involve a chromosomal segment of ~400 kb and cluster in two regions (12). The centromeric region is mainly involved in inversions, whereas the telomeric region is involved in simple translocations. These two regions enclose a segment of ~160 kb. We postulated that, if the oncogene activated by these different rearrangements is the same, it must reside between these two clusters of breakpoints. Within this region, we have previously identified a gene named TCL1 (13) that is activated and deregulated by the chromosomal translocations and inversions. The sequence of the TCLI gene revealed that it is highly homologous to that of the MTCP1 (B1) gene, which has been isolated from the breakpoint of t(X;14)(q28;q11) translocation, found in rare cases of AT (14). The TCLI (B1) gene at Xq28 was also activated by juxtaposing with TCRα/β region at 14q11. The TCLI and MTCP1 genes encode two homologous proteins, p14TCL1 and p13MTCP1, which share no similarities with any other known proteins. Both TCLI and MTCP1 transgenic mice developed T-cell leukemia at an old age (15, 16). In contrast to AT patients, who develop evident clonal expansion of T cells by the age of 20 years, the occasional clonal expansion of T cells in Tcell transgenic mice was not observed until at least 12 months after birth. Furthermore, the size of region affected by translocations with TCR loci (160 kb) is far larger than that of TCLI locus (~10 kb). These results suggested that there might be an additional gene that contributes to the development of clonal expansion of T cells at a younger age. Thus, we screened human cDNA libraries to look for genes in this affected region. By using a cosmid clone derived from this region as a probe, we were able to identify a novel gene that has significant homology with the TCLI and MTCP1 genes and is expressed in T-cell leukemias carrying the translocation t(14;14)(q11; q32.1).

Materials and Methods

Cell Lines and Lymphocytes. The majority of the cell lines used in this study were obtained from American Type Culture Collection (Manassas, VA). The SupT1 cell line was derived from patient NL (17). PBLS were isolated from whole blood by centrifugation on a Ficoll-Hypaque gradient, followed by a 1-h adherence to Petri dishes to remove the monocytes. Stimulation with PHA at a final concentration of 0.1% was carried out for 3 days.

Isolation of Cosmid Clones Surrounding the TCLI Locus. A YAC clone, 964D10, was identified from the CEPH mega YAC library (Centre dʼEtude du Polymorphisme Humain, France) by screening with PCR using primers corresponding to TCLI locus. DNA from YAC 964D10 was partially digested with the Sau3AI restriction enzyme and fractionated into 40–50-kb fragments by sucrose gradient ultracentrifugation. The resulting DNA fragments were ligated into pMFG2 cosmid vector, which was constructed by introduction of bacteriophage T3 and T7 promoters on both sides of a BamHI site and two NotI sites on both sides of a BamHI site in a pHSG274 vector. The ligated DNA was transformed into Escherichia coli HB101 after in vitro...
Identification of the TML1 Gene Near the TCL1 Locus

Direct cDNA Library Screening. The human placenta cDNA library constructed in Agt10 vector was purchased from Clontech (Palo Alto, CA). Cosmid DNA that was used as a probe was prepared by a standard alkaline lysis method, purified by ethidium bromide-CsCl centrifugation to eliminate any E. coli DNA contamination, and then labeled by nick translation using [\(^{32}\)P]dCTP. The labeled cosmid DNA was precipitated with 20 \(\mu\)g of human Cot DNA (Roche Biochemicals, Basel, Switzerland) and 10 \(\mu\)g of pMFG2 vector in ethanol and dissolved in 10 \(\mu\)l of 5\% formamide, 4M SSC, 5\% Denhardt’s solution, and 125 \(\mu\)g/ml denatured salmon sperm DNA at 37\(^\circ\)C overnight. Filters were washed twice at 3\% SSC, followed by denaturation for 1 min at 95\(^\circ\)C, and then exposed to Kodak X-ray film for 48 h.

RT-PCR. First-strand cDNA synthesis was performed using 1 \(\mu\)g of total RNA with Superscript II reverse transcriptase (Life Technologies, Inc, Gaithersburg, MD) and oligo(dT) as a primer; 10\% of the reaction mixture was subsequently used for each single PCR amplification. Amplification of each cDNA from human cell lines and human normal tissues was carried out under the following conditions: denaturing for 1 min at 95\(^\circ\)C, annealing for 1 min at 55\(^\circ\)C, and elongation for 2 min at 72\(^\circ\)C for 20–30 cycles. The amplified products were subcloned into a pNotA/T7 vector using Prime PCR Cloner kit (5\(^\prime\)-CGAGGGATT-3\(^\prime\)). The condition for both PCRs was 95\(^\circ\)C for 30 s, 55\(^\circ\)C for 30 s, and 68\(^\circ\)C for 4 min for 20–30 cycles. The amplified products were detected by staining with ethidium bromide after fractionation of a 6\% polyacrylamide gel or a 1.5\% agarose gel. The specificity of each amplified product was confirmed by hybridization with digoxigenin-labeled gene-specific oligonucleotide.

In Vitro Translation. A plasmid, pTML1 ORF, containing full-length TML1 cDNA was linearized by digestion with XhoI and transcribed and translated in vitro using a high-yield in vitro transcription kit (Ambion, Austin, TX). The TML1- and TCL1-specific primers TCL1 12S (5\(^\prime\)-TCCACCACCCTGTGTA-3\(^\prime\)) and TCL1 386AS (5\(^\prime\)-CGAGGGATT-3\(^\prime\)) were used for the amplification. Amplification with the TCL1-specific primers TCL1 14S (5\(^\prime\)-GACCGCATGACGAGGAGG-3\(^\prime\)) and TML1 137AS (5\(^\prime\)-CGAGGGATT-3\(^\prime\)) was performed as a control. The resulting products were detected by staining with ethidium bromide after fractionation of a 6\% polyacrylamide gel or a 1.5\% agarose gel. The specificity of each amplified product was confirmed by hybridization with digoxigenin-labeled gene-specific oligonucleotide.

Identification of the TML1 Gene Near the TCL1 Locus

Fig. 1. Genomic and cDNA organization of the TML1 and TCL1 genes. A, restriction map of the TML1 and TCL1 loci on chromosome 14q21.1 (11). Vertical arrows, cloned breakpoints in the literature (7, 9, 17, 23, 24). Horizontal arrows with open arrowheads, orientation of TCR region with respect to breakpoints. Horizontal bars, positions of P1 clones 7-4 and 20-7 (11) and cosmid clone cos231. b, close-up of restriction map corresponding to both loci. c, organization of three exons of the TML1 gene and four exons of the TCL1 gene are indicated. Arrows, direction of the transcripts. ■, 5\(^\prime\) and 3\(^\prime\) untranslated regions; ▲, coding sequences.

Northern Blot Analysis. Poly(A) RNA was isolated by using PolyATtract system 1000 kit (Promega, Madison, WI). Ten mg of poly(A) RNA were electrophoresed on a 1% agarose gel. RNA was then transferred to nitrocellulose and hybridized with a [32P]dCTP-labeled pTML1 cDNA probe overnight at 37°C in 50% formamide, 5×SSC, 5×Denhardt’s solution, 0.1% SDS, and 20 mg/ml denatured salmon sperm DNA. This was followed by one wash in 2×SSC-0.1% SDS at room temperature for 10 min, two washes in 0.1×SSC-0.1% SDS at room temperature for 10 min, and one wash in 1×SSC-0.1% SDS at 50°C for 10 min. The filter was wrapped and subjected to autoradiography using Kodak X-ray films (Eastman Kodak, Rochester, NY).

Results

Cloning and Sequence Analysis of the TML1 Gene. To identify transcribed sequences between the two clusters of breakpoints as illustrated in Fig. 1, we first isolated cosmid clones from YAC clone (964B10) encompassing TCL1 locus. We obtained total of 250 human cosmid clones from YAC 964D10. We then used them for the direct screening of several human cDNA libraries. When we screened a placenta cDNA library with one of the cosmid clones, cos231 containing TCL1 locus as a probe, one positive clone was obtained and designated pPL1. Sequence analysis of cDNA clone pPL1 revealed the presence of an ORF lacking translation initiation codon. Thus, we further proceeded to 5’ RACE experiments using mRNAs from placenta to obtain cDNA clone corresponding to the 5’ region and yielded many overlapping cDNA clones of 0.3 kb. One of the longest cDNA clones was named pMPLB4.

All cDNA clones were entirely sequenced, and the complete nucleotide sequences of pPL1, and pMPLB4 produced a combined sequence of 1753 bp, followed by 30-bp poly(A) tail, as shown in Fig. 2. Sequence analysis showed the presence of two long ORFs. Frame 1 contains an ORF of 384 nucleotides with a starting ATG codon at position 32 in a stretch of sequence GCCATGG that matches Kozack consensus sequence [(A/G)NNATG(A/G)] and a stop codon at position 416 (Fig. 2). This ORF potentially encodes for a protein of 128 amino acids, with a predicted molecular mass of 15 kDa. Frame 2 contains an ORF with a starting ATG codon at position 1089 in a stretch of sequence TTCATGT and a stop codon at position 1520, to give a putative protein with a mass of 15.8 kDa. However, the sequence surrounding ATG in frame 2 does not match Kozack consensus and the ORF in frame 2 only presents in the last exon. Thus, it is less likely that the ORF in frame 2 is translated. To confirm the presence of the ORF and its ability to encode a protein, the cDNA containing either a frame 1 or frame 2 sequence was subcloned, and an in vitro translation was performed. The specific product of a Mr 15,000 protein was only detected in transcript coding for frame 1 (data not shown). Interestingly, the homology search of the deduced amino acid sequence from frame 1 revealed a significant homology with p14TCL1 and p13 MTCP1 , as shown in Fig. 3. The sequence has identities of 29 and 32% and similarities of 36 and 36% with human p14 TCL1 and p13 MTCP1 , respectively. Thus, we designated this gene and its deduced product as TCL1/MTCP1 like 1 (TML1) gene and p15 TML1 protein.

Genomic Structure of the TML1 Gene. To study the genomic structure of TML1 gene, we isolated and sequenced subclones corresponding to the entire TML1 gene from P1 clones (P1 7-4 and P1 20-7). The map and structure of the TML1 gene are shown together with those of the TCL1 gene in Fig. 1. The TML1 locus maps 15 kb centromeric to the TCL1 locus with a tail-to-tail orientation. Thus, the TML1 and TCL1 genes use independent promoter regions. The TML1 gene is composed of three small exons with a 3’ untranslated region of 1338 nucleotides. Donor and acceptor signal sequences are in good agreement with the consensus signal sequences, except for the exon-intron boundary of exon 2 (AG/gc instead of AG/gt) (18).
Expression of the TML1 Gene in Tumors and Normal Human Tissues. To determine whether the isolated gene is deregulated in cells with the t(14;14)(q11;q32) translocation, we carried out a Northern blot analysis comparing the amount of TML1 transcript present in resting PBLs, PHA-activated PBLs, and SupT11 cells [a cell line established from a patient with acute T-lymphocytic leukemia with a resting PBLs, PHA-activated PBLs, and SupT11 cells [a cell line established from a patient with acute T-lymphocytic leukemia with a

<table>
<thead>
<tr>
<th>Lane</th>
<th>Sample Description</th>
<th>Expression Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PBLs stimulated with PHA</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>PBLs unstimulated</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>SupT11 cells</td>
<td>Low</td>
</tr>
</tbody>
</table>

The expression profiles of the TML1 and TCL1 genes were observed in PHA-stimulated PBLs, Burkitt's lymphoma, and a T-cell leukemia carrying t(14;14)(q11;q32.1) translocation, whereas expression of neither TCL1 nor TML1 was observed in PHA-stimulated PBLs, Burkitt's lymphoma, and a T-cell leukemia carrying t(14;14)(q11;q32.1) translocation, whereas expression of neither TCL1 nor TML1 was observed in RNA isolated from a variety of normal human tissues, including kidney, muscle, liver, lung, brain, heart, small intestine, and colon. The solo expression of the TML1 gene was only detected in placenta and testis within the normal tissues examined.

Discussion

The TML1 gene is located in a chromosomal region banded by two clusters of breakpoints. In its strategic position, between the two clusters of breakpoints, the TML1 gene becomes juxtaposed to TCR-Cα regulatory elements in both types of rearrangements involving 14q32.1. The TML1 gene can be activated by the control elements of the TCR gene, where they are positioned 5’ to the TML1 gene, as in inversions, or 3’ to TML1, as in translocations. A similar situation has been observed in the TCL1 gene because of its proximity to the TCL1 gene (19). The expression of the TML1 gene in leukemic T cells with the t(14;14) translocation but not in leukemic T-cell lines with other types of chromosomal rearrangements suggested that this gene becomes deregulated as a consequence of its juxtaposition to the TCRα/δ locus.

The sequence analysis of the deduced protein of the TML1 gene revealed that p15TML belongs to the third member of TCL1/MTCP1 family. The results of crystal structure analysis indicated that p14TCL1 and p13MTCP1 consist of an eight-stranded antiparallel β barrels with novel topologies (20, 21). Because the sequences in the regions that formed β strands in p14TCL1 and p13MTCP1 are also well conserved in p15TML1, this protein probably forms structures that are similar to those of the other two proteins. Moreover, it has been reported that purified recombinant p14TCL1 forms dimers in solution (22). Although further studies are required, it is possible that p15TCL1 also forms homodimers with itself or heterodimers with p14TCL1 in tumor cells coexpressing TML1 and TCL1 gene such as endemic Burkitt’s or T-cell tumors with 14q32.1 involvement. To date, no information is available to imply the molecular function of TML1/MTCP1 family. The amino acid sequence similarities among p15TML1, p14TCL1, and p13MTCP1 suggest that their function may be analogous, and they are most probably involved in the control of lymphoid cell proliferation and/or survival.

Except for the expression of TML1 in placenta and testis, the expression pattern of the TML1 gene is well correlated with that of TCL1. This suggests that concomitant expression of both genes may play an important role in the clonal expansion of T cells and leukemogenesis. Thus, it would be interesting to know whether the TML1 gene is capable of forming tumors by itself in transgenic mice or accelerating the clonal expansion and/or tumor formation in combination of double transgenic mice harboring both the TML1 and TCL1 genes, as in clonal T cells and leukemic T-cells with t(14;14) translocations in AT patients.

In conclusion, the TML1 gene is a strong candidate for an oncogene because it is deregulated by translocation with TCR locus, and the deduced protein of TML1 gene has a striking homology with the p14TCL1 and p13MTCP1 oncoproteins.
Acknowledgments

We thank Makiko Toko for valuable technical assistance.

Note Added in Proof

During submission of this paper, a new gene called TCL1b was reported from the region centromeric to the TCL1 locus (26). The sequence of TCL1b was almost identical to that of TML1. Thus, we conclude that TCL1b is the same gene as TML1.

References

Identification of the TCL1/MTCP1-like 1 (TML1) Gene from the Region Next to the TCL1 Locus

Jun Sugimoto, Toyomasa Hatakeyama, Maria Grazia Narducci, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/59/10/2313

Cited articles
This article cites 26 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/59/10/2313.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/59/10/2313.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.