A p21Waf1/Cip1 Carboxyl-terminal Peptide Exhibited Cyclin-dependent Kinase-inhibitory Activity and Cytotoxicity When Introduced into Human Cells

Masato Mutoh,1 Feng-Di T. Lung,2 Ya-Qiu Long, Peter P. Roller,3,4 Robert S. Sikorski,5 and Patrick M. O’Connor4,6

Laboratory of Molecular Pharmacology [M. M., P. M. O.], Laboratory of Medicinal Chemistry [F.-D. T. L., Y.-Q. L., P. P. R.], and Division of Basic Sciences [R. S. S.], National Cancer Institute, NIH, Bethesda, Maryland 20892

ABSTRACT

In the present study, we report the cyclin-dependent kinase (Cdk)-inhibitory activity of a series of p21Waf1/Cip1 (p21) peptide fragments spanning the whole protein against the cyclin D1/Cdk4 and cyclin E/Cdk2 enzymes. The most potent p21 peptide tested in our initial peptide series, designated W10, spanned amino acids 139 to 164, a region of p21 that has been found independently to bind to proliferating cell nuclear antigen and also to inhibit Cdk activity. We go on to report the importance of putative β-strand and 310-helix motifs in the W10 peptide for cyclin-dependent kinase-inhibitory activity. We also describe the cellular activity of W10 and derivatives that were chemically linked to an antennapedia peptide, the latter segment acting as a cell membrane carrier. We found that the W10AP peptide exhibited growth inhibition that resulted from necrosis in human lymphoma CA46 cells. Furthermore, regions in the W10 peptide responsible for Cdk-inhibition were also important for the degree of this cellular activity. These studies provide insights that may eventually, through further design, yield agents for the therapy of cancer.

INTRODUCTION

Cell cycle progression in mammalian cells is regulated by the sequential activation and subsequent inactivation of a series of serine-threonine protein kinases called the Cdns.7 Cdns are composed of two subunits: the regulatory unit, cyclin, and the catalytic unit, Cdk (1, 2). There are at least eight cyclin proteins, and they act at different points in the mammalian cell cycle. Cyclins D and E, and probably cyclin C, are required for progression from G1 to S phase (3–6). Cyclin A also seems to be required for S phase entry (7). Cyclin A and cyclin B, are nuclear antigens; GST, glutathione S-transferase; Rbc, carboxyl terminus of retinoblastoma protein; AP, antennapedia; AEBSF, 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride; Pl, propidium iodide; SSC, side scatter; FBS, fetal bovine serum.

Received 11/4/98; accepted 5/12/99.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 Present address: Department of Nutrition, China Medical College, Taichung, 400 Taiwan, Republic of China.

3 To whom requests for reprints should be addressed, at Laboratory of Medicinal Chemistry, National Cancer Institute, NIH, Building 37, Room 5C02, Bethesda, MD 20892-4325. Phone: (301) 496-3598; Fax: (301) 402-2275; E-mail: porll@helix.nih.gov.

4 Present address: Medsite Communications Corporation, Marblehead, MA 01945.

5 Present address: Oncology Research Division, Agouron Pharmaceuticals, Inc., 3550 General Atomics Court, La Jolla, CA 92031-1121.

6 The abbreviations used are: Cdk, cyclin-dependent kinase; PCNA, proliferating cell nuclear antigen; GST, glutathione S-transferase; Rbc, carboxyl terminus of retinoblastoma protein; AP, antennapedia; AEBFS, 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride; Pl, propidium iodide; SSC, side scatter; FBS, fetal bovine serum.

3480
MATERIALS AND METHODS

Recombinant Proteins. High-performance liquid chromatography purified recombinant p21 protein was a kind gift from Drs. Wade Harper and Steve Elledge (Baylor College of Medicine, Houston, TX). p21 was prepared in bacteria before being stored in 50 mM Tris (pH 7.5), 400 mM NaCl, 2 mM EDTA, 10% glycerol, 1 mM DTT, 5 μg/ml leupeptin, and 5 μg/ml antipain (12). A plasmid-encoding recombinant GST-Rbc (amino acids 792–928) was kindly provided by Drs. Liang Zhu and Ed Harlow (Massachusetts General Hospital Cancer Center, Charlestown, MA). The GST-Rbc protein was prepared in bacteria before being purified on glutathione Sepharose beads (Pharmacia Biotech). GST-Rbc was stored in distilled water with 10 mM EDTA, 10% glycerol, 1 mM DTT, 10 μg/ml aprotinin, 10 μg/ml leupeptin, and 500 μM AEBSF. Five μl of insect cell lysate and 5 μl of the peptide solution (10–1000 μM) were coincubated at 30°C for 30 min. Then 10 μl of a kinase reaction mixture that contained 0.3 μg of GST-Rbc, 30 mM HEPES, 600 mM DTT, 6 mM MgCl2, 6 μg/ml aprotinin, 6 μg/ml leupeptin, and 1.2 mM AEBSF, 7 μM ATP and 10 μCi [γ-32P]ATP (600 Ci/mmol, NEN) was added. After fifteen min at 30°C, samples were boiled in SDS-gel loading buffer for 5 min and then subjected to electrophoresis on 10% SDS-polyacrylamide gels. After autoradiography, quantitation of 32P, incorporated into substrate, was achieved using a Phosphorimager (Molecular Dynamics, CA).

Synthesis of Peptides. The preparation of the 10 peptides (W1–W10; Fig. 1), spanning the complete amino acid sequence of the human p21 protein, were synthesized and reported previously (50). The COOH-terminal 26-mer mutant peptides, H1M to AM1 (Table 1) were synthesized using Fmoc-chemistry-based methodology using an ABI/Perkin-Elmer Model 433A synthesizer. Analogous methods were used to prepare the following agents:

(a) peptide W11, corresponding the p21 (141–160)-20-mer sequence, previously synthesized and evaluated in kinase-inhibitory assays (46);

(b) peptide AP, 16-mer COOH-terminal segment (amino acids 43–58) of the AP homopeptide protein (47), which acts as a trans-membrane carrier of our peptides, sequence: RQIKIWFQNRRMKWKK; and

(c) peptide W10AP, the W10 peptide bound at the COOH terminus to AP, sequence: GRKRRQTSMDFYHSDKRRIFSKRKP-RQIKIWFQNRRMKWKK.

Two W10AP-mutant peptides were synthesized. These are:

(a) HM1AP, GRKRRQTSGSGHSDKRRIFSKRKP-RQIKIWFQNRRMKWKK; and

(b) AM2AP, GRKRRQTSMDFYHSDKAAIFSKRKP-RQIKIWFQNRRMKWKK.

The underlined amino acids are the mutated sequence, above. All of the synthetic peptides were purified by high-performance liquid chromatography on a Vydac C18 column and a gradient of water/acetonitrile containing 0.05% trifluoroacetic acid. The identity of each synthetic peptide was confirmed by fast atom bombardment mass spectrometry and amino acid analysis. Mass spectra were measured in a glycerol or DTT/dithioerythritol matrix on a VG 7070E-HF double focusing mass spectrometer (VG Analytical, Manchester, England). Amino acid analyses were performed at the Protein Structure Laboratory, University of California (Davis, CA).

Cdk Assays. Baculoviral vectors encoding Cyclin D1 and Cdk4 or Cyclin E and Cdk2 were kindly provided by Dr. Gregory Hannon (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). These vectors were used to infect insect Sf9 cells, and cells were subsequently lysed in 50 mM HEPES (pH 7.5), 1 mM DTT, 10 μg/ml aprotinin, 10 μg/ml leupeptin, and 500 μM AEBSF. Five μl of insect cell lysate and 5 μl of the peptide solution (10–1000 μM) were coincubated at 30°C for 30 min. Then 10 μl of a kinase reaction mixture that contained 0.3 μg of GST-Rbc, 30 mM HEPES, 600 mM DTT, 6 mM MgCl2, 6 μg/ml aprotinin, 6 μg/ml leupeptin, and 1.2 mM AEBSF, 7 μM ATP and 10 μCi [γ-32P]ATP (600 Ci/mmol, NEN) was added. After fifteen min at 30°C, samples were boiled in SDS-gel loading buffer for 5 min and then subjected to electrophoresis on 10% SDS-polyacrylamide gels. After autoradiography, quantitation of 32P, incorporated into substrate, was achieved using a Phosphorimager (Molecular Dynamics, CA).

Cell Culture and Growth Inhibition Assays. The human Burkitt’s lymphoma cell line, CA46, which contains mutant-p53 (51), was grown at 37°C in 95% air/5% CO2 in RPMI 1640 (Life Technologies, Inc., Gaithersburg, MD) containing 15% FBS (Intergen, Purchase, NY), 2 mM L-glutamine, 50 units of penicillin, and 50 μg/ml streptomycin (Life Technologies, Inc.). For growth inhibition assays, 50,000 cells in exponential growth phase were seeded in a volume of 975 μl RPMI without serum in 24-well plates (Costar, Cambridge, MA) and then 25 μl of distilled water containing increasing concentrations of W10AP peptide was added. After thorough mixing, the plate was incubated at 37°C for 3 h, and then 150 μl of FBS was added to each well. Cells were then incubated for 3 days at 37°C, and, subsequently, cells were counted on a Coulter Counter (Coulter Electronics, Hialeah, FL). Values shown are mean ± SD of three independent experiments that contained duplicate samples within each experiment.

Flow Cytometry. Exponentially growing CA46 cells were incubated with 6.3 μM of AP or W10AP peptide for 3 h without serum, followed by 72-h incubation with medium containing serum. After this time, cells were analyzed by flow cytometry. Flow cytometry was performed essentially as described previously (51). Briefly, cells were fixed in ice-cold 70% ethanol, washed with PBS (pH 7.4), treated with RNase (Sigma, 50 units/ml) at 37°C for 15 min, and then stained with PI (Sigma, 50 μg/ml). Cell cycle analysis was performed using a Becton Dickinson FACScan flow cytometer. The Cell-Quest software
RESULTS

Effect of Recombinant p21 Protein and p21 Peptide Fragments on Cyclin D1/Cdk4 and Cyclin E/Cdk2 Kinase Activity. We assessed the ability of recombinant p21 protein and p21 peptide fragments covering the complete p21 sequence (Fig. 1) to inhibit cyclin D1/Cdk4 and cyclin E/Cdk2 kinases. In these assays, we used GST-Rhc (Rb amino acids 792–928) as a substrate for each kinase (Fig. 2). Consistent with previous results (52), the p21 protein inhibited both cyclin D1/Cdk4 and cyclin E/Cdk2 to similar degrees (Fig. 2). The concentration of p21 protein required to inhibit kinase activity to 50% of the control value (IC50) was 0.4 and 0.3 μM for cyclin D1/Cdk4 and cyclin E/Cdk2, respectively (Table 1). Each p21 peptide fragment (W1 to W10) was initially assayed against each kinase at a concentration of 1 μM, and the results were compared with the p21 full-length protein (0.4 μM; Table 1). Each p21 peptide fragment was titrated in 10-fold increments to establish the relative degree of Cdk-inhibitory potency (Fig. 2). For these active peptides, we performed dose-response curves to establish the relative degree of Cdk-inhibitory potency for each peptide. The most potent peptide in this series was W10 (p21 amino acids 139–164), which contained the PCNA-binding site of p21 (amino acids 152–160) bound to PCNA (Ref. 53; Fig. 3A). In this previous study, the COOH-terminal amino acid residues 152–160 formed a β-strand and interacted with PCNA through ion-pairing and hydrogen-bonding (Fig. 3A). Amino acid residues 146–151 adopted a 310-helix conformation and interacted with PCNA through hydrophobic bonding. Using this analogy, we disrupted the potential 310-helix and β-strand sequences in the W10 peptide by synthesizing mutant peptides. The 310-helix mutant, HM1 (147MTDFY/GSGSG151) exhibited markedly reduced Cdk-inhibitory activity compared with the native W10 sequence. For cyclin D1/Cdk4, the IC50 value for the HM1 peptide was 116 μM compared with 16 μM for the W10 peptide (7-fold reduced activity). For cyclin E/Cdk2, the IC50 value for the HM1 peptide was 25 μM; and for the W10 peptide, the IC50 value was 7 μM (4-fold reduced activity; Fig. 4 and Table 1).

The AM2 peptide (155RL/GAA157) also exhibited markedly reduced Cdk-inhibitory activity compared with the W10 peptide. For cyclin D1/Cdk4, the IC50 value for the AM2 peptide was 90 μM; and for the W10 peptide, the IC50 value was 16 μM (6-fold reduced activity). For cyclin E/Cdk2, the IC50 value for the AM2 peptide was 128 μM; and for the W10 peptide, the IC50 value was 7 μM (18-fold reduced activity). On the other hand, the single-alanine mutants, AM3 (155RL/147A), AM4 (155RL/157A), and AM5 (155RL/157A) were found to be nearly equivalent to W10 in their ability to inhibit cyclin D1/Cdk4 and cyclin E/Cdk2 (Table 1). The AM1 peptide (155RRQ/GAA157) also exhibited decreased Cdk-inhibitory activity when compared with the W10 peptide. Fig. 4 serves for comparison within each set, in determining the relative effect of various mutations in W10, when assayed with the two separate Cdk kinase activities.

Effect of W10AP-related Peptides on the Growth of Human Lymphoma CA46 Cells and Cdk Activity. To assay the effect of W10 and its mutant peptide analogues on cells, we chemically linked the W10, AM2, and HM1 peptides to a peptide fragment from the homeodomain of AP to act as a cell membrane carrier (Fig. 5A; Ref. 47). The entry of such an AP peptide into cells has been elegantly shown using a fluorescein-labeled AP peptide (48, 54). We assayed the effects of these peptides on the growth of human lymphoma CA46 cells. We initially used a continuous exposure of peptide in the

Table 1 Inhibitory potency of recombinant p21 protein and related p21 peptide fragments against the cyclin D1/Cdk4 and cyclin E/Cdk2 kinases

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino acid position</th>
<th>Amino acid sequence</th>
<th>Cyclin D1/Cdk4 IC50 (μM)</th>
<th>Cyclin E/Cdk2 IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p21</td>
<td>1–164</td>
<td>Full length p21 protein</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>W1</td>
<td>1–16</td>
<td>MSEFGDVRQNPCGSK</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>W2</td>
<td>15–40</td>
<td>SKACRRLGFVPDSEQSLRDCDMLAMG</td>
<td>570</td>
<td>540</td>
</tr>
<tr>
<td>W3</td>
<td>21–45</td>
<td>LFGDPSEQSLRDCDMLASMQ1EA</td>
<td>780</td>
<td>650</td>
</tr>
<tr>
<td>W4</td>
<td>42–61</td>
<td>IQEARWNNFDVTYTPELLEG</td>
<td>610</td>
<td>445</td>
</tr>
<tr>
<td>W5</td>
<td>58–71</td>
<td>PLEGDFAMERVRLGLPKLY</td>
<td>>1000</td>
<td>750</td>
</tr>
<tr>
<td>W6</td>
<td>74–93</td>
<td>FKLYLPFGPRGDELIGGQR</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>W7</td>
<td>90–109</td>
<td>GGGRRPGTSLALLQTAED</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>W8</td>
<td>106–125</td>
<td>AEDDVDDLSSLCTLVPRSE</td>
<td>745</td>
<td>650</td>
</tr>
<tr>
<td>W9</td>
<td>122–142</td>
<td>RSGEQAGPGGGDSQKRKR</td>
<td>740</td>
<td>480</td>
</tr>
<tr>
<td>W10</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSKRLLIFSKKRP</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>-HMT1a</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSKRLLIFSKKRP</td>
<td>116</td>
<td>25</td>
</tr>
<tr>
<td>-AM1a</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSKRLLIFSKKRP</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>-AM2</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSAIFSKKRP</td>
<td>90</td>
<td>128</td>
</tr>
<tr>
<td>-AM3</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSRIFSKKRP</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>-AM4</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSRIFSKKRP</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>-AM5</td>
<td>139–164</td>
<td>GRKRRQTSMTDFYHSSRIFSKKRP</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>W11</td>
<td>141–160</td>
<td>RKRQTSMTDFYHSSKRLLIFS</td>
<td>22</td>
<td>6</td>
</tr>
</tbody>
</table>

a Single letter amino acid code.

b Concentration required to inhibit kinase activity by 50% of control value.

c IC50 value was not reached at maximum concentration used.

W10 peptide with alanine mutation (underlined amino acid sequence).

W10 peptide with mutation disrupting a potential 310-helix moiety (underlined amino acid sequence).

G, glycine; R, arginine; Q, glutamine; T, threonine; S, serine; M, methionine; L, leucine; F, phenylalanine; V, valine; I, isoleucine; D, aspartic acid; E, glutamic acid; H, histidine; S, serine; K, lysine; R, arginine; P, proline; G, glycine; Q, glutamine; R, arginine; L, leucine; I, isoleucine; D, aspartic acid; E, glutamic acid; H, histidine; S, serine. See Ref. 53 for a reported crystal structure of a similar p21 peptide (amino acids 139–160) bound to PCNA (Ref. 53; Fig. 3A).
presence of medium containing 15% serum and did not observe any cell growth inhibition of CA46 cells (data not shown). However, when we incubated peptides with CA46 cells in serum-free medium for 3 h followed by complete medium we observed a dose-dependent inhibition of growth with the W10AP and the AP peptides (GI50 values of 0.8 μM and 29.5 μM, respectively; Fig. 5B and Table 2). Consistent with intracellular action, the W10 peptide did not show any growth inhibition of CA46 cells up to a concentration of 100 μM (Fig. 5A).

We also found that the AM2AP and HM1AP peptides showed reduced cell growth-inhibitory activity compared with the W10AP peptide (Fig. 5B).

We next verified the in vitro cyclin E/Cdk2-inhibitory activity of the W10AP, AM2AP, HM1AP, and AP peptides using GST-Rbc as substrate (Table 2, second column). The AP peptide by itself exhibited a relatively weak Cdk-inhibitory activity, with an IC50 value of 18.5 μM, in comparison with an IC50 of 0.6 μM for W10AP. Interestingly, conjugation to the carrier peptide, AP, potentiates the inhibitory activity in comparison with the W10 peptide alone (IC50 = 7 μM; Table 1). However, a similar phenomenon was observed also for NH2-terminal p21 peptides conjugated to the AP peptide, by Bonfanti et al. (48). In comparison with W10AP, the two mutant peptide conjugates, AM2AP and HM1AP, exhibited reduced cyclin E/Cdk2 kinase-inhibitory activity. The IC50 values for these peptides were 3.8 μM and 1.8 μM, respectively. Thus, the ratio of the in vitro kinase-inhibitory IC50 values for the W10AP, AM2AP, and HM1AP peptides was 1.0:0.2:0.3, respectively. This ratio is very similar to the ratio of the cell growth-inhibitory effectiveness (GI50) of the same set of three peptide conjugates (1.0:0.3:0.4; Table 2).

Effect of W10AP and AP Peptides on CA46 Cells As Assayed by Flow Cytometry and Electron Microscopy. To further assess the effects of the AP and W10AP peptides on CA46 cells, we performed flow cytometric analysis of cells that had been treated with each peptide at a concentration of 6.3 μM for 75 h. The 6.3-μM peptide concentration was chosen as an intermediate value, above the GI50 for W10AP (0.8 μM) and below the GI50 value of the carrier peptide AP (29.5 μM). We found that the W10AP-treated cells exhibited a dramatic change in their SSC profile compared with AP-treated or control cells. This shift in SSC has previously been reported to reflect changes in internal cell granularity consistent with necrosis (55, 56). Supporting the view of necrosis in the treated culture, we found that the degree of PI staining in the SSC-shifted population was also shifted (Fig. 6), most likely reflecting greater chromatin accessibility to PI in the necrotic cells (56). To confirm whether these flow cytometry changes were indeed reflecting necrosis, we assayed the morphology of the cells using electron microscopy (Fig. 7). We indeed found that almost
all of the cells treated with W10AP showed classical features of necrosis, such as plasma membrane rupture, cell swelling and electron-light cytoplasm, disruption of cytoplasmic organelles, and diffuse open chromatin structures. Indeed, the majority of W10AP-treated cells were positive for trypan blue at this time, which confirmed the loss of cell-membrane integrity.

DISCUSSION

We describe our findings using a series of p21 peptide fragments covering the complete p21 sequence. We report Cdk-inhibitory activity in p21 peptides spanning amino acids 15–71 (W2, W3, W4, W5) and 106–164 (W8, W9, W10). The most potent peptide tested in our initial peptide series, designated W10, spanned amino acids 139–164, a region of p21 normally bound to PCNA. We go on to report the importance of putative β-strand and 3_{10}-helix motifs in the W10 peptide for Cdk-inhibitory activity and describe the cellular activity of W10 and derivatives that were chemically linked to an AP peptide sequence to act as cell-membrane carrier (47). We found that the W10AP peptide exhibited potent cytotoxicity in the form of necrosis in human lymphoma CA46 cells and that regions important for Cdk-inhibition were also important for this cytotoxicity.

Although the NH₂ terminus of p21 (amino acids 15–71) was known to contain the Cdk-binding and -inhibitory domain of p21 (40–43, 57, 58), we found that the most potent Cdk-inhibitory peptide tested in our initial p21 peptide series spanned amino acids 139–164 (W10). The Cdk-inhibitory potency of W10 was approximately 35-fold higher than any of the other peptides tested in this series but approximately 23-fold less potent than full-length p21 protein. This region can also bind to PCNA (57, 58); therefore, at first we were surprised by our finding. However, Ball et al. (46) have also found that a p21 peptide fragment spanning amino acids 141–160 was indeed a potent inhibitor of the cyclin D1/Cdk4 kinase. To directly compare our W10 peptide (amino acids 139–164) to the peptide of Ball et al. (46), we synthesized the latter peptide (W11; amino acids 141–160) and assayed it along with W10 against the cyclin D1/Cdk4 and cyclin E/Cdk2 kinases. We found very similar inhibitory activities for the two peptides. Our results agree with Ball et al. (46) and provide new data on their cyclin E/Cdk2 kinase-inhibitory potency. Chen et al. (44) and Adams et al. (45) have also reported that a COOH-terminal peptide of p21 (amino acids 152–158) exhibited Cdk-inhibitory activity. The relative activity of this peptide compared with a complete series of p21 peptides was, however, not fully established in these earlier studies. The fact that the COOH terminus of p21 contains a potential Cdk-inhibitory motif is interesting. However, such a region would be expected to be bound to PCNA in exponentially growing cells, titrating out the influence of this region for Cdk inhibition. Whether this COOH-terminal domain of p21 becomes more important for Cdk inhibition in quiescent and/or senescent cells (in which PCNA levels are lowered) remains to be explored.

We went on to investigate the effect of amino acid substitutions on the Cdk-inhibitory activity of the W10 peptide to better define its functionally important region(s). Our mutations were based partly on the reported crystal structure of PCNA bound to a similar p21 peptide (amino acids 139–160; Ref. 53). We found that the most potent Cdk-inhibitory peptide tested in our initial p21 peptide series spanned amino acids 139–164 (W10). The Cdk-inhibitory motif is interesting. However, such a region would be expected to be bound to PCNA in exponentially growing cells, titrating out the influence of this region for Cdk inhibition. Whether this COOH-terminal domain of p21 becomes more important for Cdk-inhibition in quiescent and/or senescent cells (in which PCNA levels are lowered) remains to be explored.
motif (53, 60). We hypothesized that, in our studies, the W10 peptide was adopting a structure similar to that seen in the PCNA-p21 peptide crystal structure when it bound to the cyclin E/Cdk2 and cyclin D1/Cdk4 kinases. Indeed, we found peptides with substitutions that disrupted a potential 3_10-helix motif (147SMTDFY151 changed to SGSGSG) and a potential β-strand motif (153SKRRLIF159 changed to SKAAAIF), and exhibited significantly reduced Cdk-inhibitory activity compared with the native segment W10 peptide (Fig. 4). Less predictably, triple alanine mutation at amino acid positions 142–144 in W10 (mutant peptide AM1) also affected inhibitory potency, possibly destroying ionic interactions with the cyclin/Cdk complex. Our results extend beyond the observations reported in the work of Ball et al. (46) who, using single alanine substitutions, found that the integrity of the 155RRLIF159 sequence was important for retention of cyclin D1/Cdk4-inhibitory activity. Our data show for the first time that disruption of a potential 3_10 helix in the W10 peptide with amino acid substitutions can markedly affect Cdk-inhibitory activity against both cyclin E/Cdk2 and cyclin D1/Cdk4. This region in the W10 peptide was not uncovered in the studies of Ball et al. (46), probably because these workers only used single amino acids substitutions. One possibility is that such single amino acid substitutions may not efficiently disrupt the 3_10-helix motif. Again, solution of the X-ray crystal structure of this peptide bound to Cdk would help address this tantalizing possibility.

In our previously published work (50), we failed to observe any cyclin E/Cdk2-inhibitory activity with a number of p21 peptide fragments when using histone H1 as the kinase substrate. The maximum peptide concentration used previously was 30 μM, for which clear cyclin E/Cdk2 inhibition was observed in the present studies using GST-Rbc as the kinase substrate. We, therefore, compared at the same time the W10 peptide in assays using histone H1 and GST-Rbc as substrates and found that the inhibitory activity of the W10 peptide was 15-fold higher when GST-Rbc was used as the substrate compared with histone H1 (IC50: GST-Rbc < 6 μM; IC50: histone H1 = 90 μM; data not shown). Chen et al. (44) found that their p21 peptide fragments were poor kinase inhibitors using histone H1 as a kinase substrate, in accord with our results. Our results and those of others suggest that the substrate used in determining Cdk-inhibitory activity is an important factor in assessing at least peptides in such assays.

In the present study, we also go on to report the effects of the W10 peptide on cell growth of CA46 human lymphoma cells. Amino acid sequence of the W10AP peptide. A peptide fragment from the homeodomain of the Drosophila AP protein was linked to W10 to act as a cell-membrane carrier (47). Amino acids in the HM1AP box were replaced with GSGSG to disrupt a potential 3_10-helix sequence and amino acids in the AM2AP box were replaced with AAA to disrupt a potential β-strand sequence (53). B, effect of the W10, AP, and W10AP peptides on CA46 cell growth; b, effect of W10AP, AM2AP, and HM1AP peptides on CA46 cell growth. Exponentially growing CA46 cells were incubated for 3 h with the absence or presence of increasing concentrations of peptides without serum, after which complete medium was added, and cells were incubated for 3 days. Cell numbers were then counted on a Coulter Counter, and the values shown are the mean ± SD of three or more independent experiments that contained duplicate samples within each experiment. The broken lines in B, a and b indicate the 50% cell growth inhibition level as a result of peptide treatment.
peptide in human cells. To do so, we linked the W10 peptide to the AP peptide sequence of Drosophila to act as a cell membrane carrier (47). We found that the W10AP peptide inhibited the growth of CA46 cells and that substitutions in the W10AP peptide that reduced Cdk-inhibitory activity also reduced growth-inhibitory activity to a similar degree (see Table 2).

These findings suggested that the growth-inhibitory activity of the W10AP peptide series might reflect Cdk inhibition in cells. We performed flow cytometry on the cells and found that the majority of the W10AP-treated culture underwent necrosis after treatment with W10AP. The dominant response of CA46 cells to W10AP at the time of measurement (necrosis) disguised the cell cycle effects of W10AP in CA46 cells. However, earlier studies have shown an accumulation of cells in G1 phase, and in some cases G2 phase also, before cell death with p21 peptides (46, 48, 49, 61) and Cdk inhibitors such as flavopiridol (62–64). Our studies are complemented by similar studies of Bonfanti et al. (48) using flow cytometric DNA analysis of human ovarian cancer cell lines treated with NH2-terminal Cdk-inhibitory peptide segments conjugated to AP carriers. They used, however, different cell treatment protocols and much higher concentrations of peptides for cell treatment. Flow cytometric DNA analysis did not bring to light any phase-specific arrest induced by active concentrations of the NH2-terminal peptide conjugates but, rather, a blockade of the cell cycle progression in all of the phases. This is consistent with the generalized block of activity of the various Cdk isoforms by p21 that act

<table>
<thead>
<tr>
<th>Peptide</th>
<th>IC50</th>
<th>GI50</th>
<th>IC50 of W10AP</th>
<th>GI50 of W10AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10AP</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>AM2AP</td>
<td>3.8</td>
<td>2.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>HM1AP</td>
<td>1.8</td>
<td>1.8</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>AP</td>
<td>18.5</td>
<td>29.5</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

IC50 value is the quantity of peptide (μM) required to reduce cyclin E/Cdk2 kinase activity to 50% of the untreated control.

GI50 value is the quantity of peptide (μM) required to inhibit CA46 cell growth to 50% of the untreated control.

X represents each p21 peptide tested (W10, AM2, HM1, W10AP, AM2AP, HM1AP, or AP).

Fig. 6. Effect of the W10AP and AP peptides on cell cycle progression of CA46 cells. Exponentially growing CA46 cells were incubated with W10AP or AP peptide (6.3 μM) without serum for 3 h, followed by an additional 72 h of incubation with medium containing serum (15% FBS). Cells were prepared for flow cytometric analysis as described in “Materials and Methods.” A, laser scattering dot-plots of CA46 cells treated with the AP or W10AP peptide. The ordinate represents SSC and the abscissa represents forward scatter. Gates R1 and R2 were set to isolate, for analysis, the two distinct cell populations shown. B, DNA histograms of CA46 cells treated with the AP or W10AP peptides. Upper panel, the DNA histograms of the total population of cells; the other panels, cells in either Gate R1 or in Gate R2. The broken line at 200 designates 2N (diploid) DNA content and the broken line at 400 represents 4N, or doubling of DNA content, in untreated cells.
at various phases of cell cycle progression, and, thus, block cells in both G₁ and G₂ phases.

Necrosis induced by the W10AP peptide in our study may be attributable to Cdk-inhibition because a correlation was uncovered between the degree of Cdk-inhibitory activity and cell death using a series of the W10AP mutant peptides (Table 2). However, other mechanisms must be considered because the same W10 peptide also binds to PCNA. More recent results suggest that p21 may inhibit cell cycle progression by two independent mechanisms: (a) inhibition of cyclin/Cdk complexes; and (b) inhibition of PCNA function resulting in both G₁ and G₂ arrest (34, 49). Also, the COOH-terminal p21 domain may function to capture PCNA and, therefore, to disassemble it from DNA repair sites after DNA repair has been accomplished (65). Furthermore, Chuang et al. (66) recently reported that a peptide with a similar sequence to the COOH-terminal region of p21 protein disrupts the interaction of PCNA with DNA-(cytosine-5) methyltransferase, an enzyme involved in DNA replication and DNA repair. Thus, at the present time, we are cautious about ascribing the necrosis induced by the W10AP peptide solely to Cdk inhibition. Additional studies would be necessary to prioritize the importance of each mechanism in the cytotoxicity observed.

In summary, we describe our findings using a series of p21 peptide fragments covering the complete p21 sequence. We report that the most potent peptide tested in our initial peptide series, designated W10, spanned amino acids 139–164 of p21. We go on to report the importance of putative β-strand and 3₁₀-helix motifs in the W10 peptide for Cdk-inhibitory activity and describe the cellular activity of W10 and derivatives that were linked to an AP peptide sequence to act as cell membrane carrier. We found that the W10AP peptide exhibited potent cytotoxicity in the form of necrosis in human lymphoma CA46 cells and that regions important for Cdk inhibition were also important for this cytotoxicity. The actions of the COOH-terminal domain of p21 are thus complex, with PCNA binding influencing a potential Cdk-inhibitory sequence that requires further exploration. Indeed, these studies provide insights into the actions of a peptide derived from p21 that may, through further design, potentially yield additional Cdk-inhibitory molecules.

ACKNOWLEDGMENTS

We thank Drs. Wade Harper and Steve Elledge for the kind gift of recombinant p21 protein and Drs. Liang Zhu and Ed Harlow for the kind gift of a plasmid-encoding GST-Rbc. We are also sincerely grateful to Dr. Gregory Hannon for the kind gift of the cyclin/Cdk constructs. Finally, we thank Dr. Kurt W. Kohn for helpful discussions and advice.

REFERENCES

17. Gu, Y., Turck, C. W., and Morgan, D. O. Inhibition of CDK2 activity

18. Zhang, H., Xiong, Y., and Beach, D. Proliferating cell nuclear antigen and p21 are

13. El-Deiry, W. S., Tokino, T., Velculescu, V., Levy, D., Parsons, R., Trent, J., Lin, D.,

34. Arguello, F., Alexander, M., Sterry, J. A., Tudor, G., Smith, E. M. Kalavar, N. T.,

A p21Waf1/Cip1 Carboxyl-terminal Peptide Exhibited Cyclin-dependent Kinase-inhibitory Activity and Cytotoxicity When Introduced into Human Cells

Masato Mutoh, Feng-Di T. Lung, Ya-Qiu Long, et al.