Tamoxifen-DNA Adduct Formation in Rat Liver Determined by Immunoassay and \({^{32}}P\)-Postlabeling

Rao L. Divi, Martin R. Osborne, Alan Hewer, David H. Phillips, and Miriam C. Poirier

ABSTRACT

Tamoxifen (TAM), a nonsteroidal antiestrogen used as a chemotherapeutic and chemopreventive agent for breast cancer, induces liver tumors in rodents and covalent DNA adduct formation in hepatic DNA. Here, we report the development and validation of highly sensitive and specific immunoassays for the determination of TAM-DNA adducts. Rabbits were immunized with calf thymus DNA, chemically modified with \(\alpha \)-acetoxytamoxifen to 2.4 adducts per 100 nucleotides, and the resulting sera were characterized by competitive dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) and chemiluminescence immunoassay (CIA). Compared with DELFIA, the CIA has a much lower background and a 20-fold increase in sensitivity. For the immunogen TAM-DNA, 50% inhibition was at 2.0 \(\pm \) 0.11 (mean \(\pm \) SE, \(n = 18 \)) fmol of (E)-\(\alpha \)-(N\(^{2} \)-deoxyguanosinyl)tamoxifen (TAM-dG) adduct in TAM-DNA by DELFIA. For TAM-DNA modified to 4.8 adducts in 10\(^{6} \) nucleotides, 50% inhibition was at 20.6 \(\pm \) 6.6 (mean \(\pm \) SE, \(n = 8 \)) fmol of TAM-dG in TAM-DNA by DELFIA and at 0.92 \(\pm \) 0.11 (mean \(\pm \) SE, \(n = 10 \)) fmol of TAM-dG in TAM-DNA by CIA. No inhibition was observed in either assay with up to 20 \(\mu \)g (62.5 nmol of nucleotides) of unmodified DNA. The individual adducts TAM-dG and (Z)-\(\alpha \)-(N\(^{2} \)-deoxyguanosinyl)tamoxifen and the individual compounds TAM and 4-OH-TAM gave DELFIA 50% inhibitions at 828, 2229, 5440, and 8250 fmol, respectively. For assay validation, TAM-dG levels were determined by DELFIA, CIA, and \({^{32}}P \)-Postlabeling in TAM-DNA samples modified in vitro to different levels, and comparable values were obtained in all three assays. Further validation was obtained in vivo in rat liver. DNA adducts of TAM were measurable in rat liver 24 h after a single i.p. dose of 45 mg TAM/kg body weight and after daily p.o. dosing for 7 days with 5.0, 10.0, and 20.0 mg TAM/kg body weight. In addition, TAM-DNA adducts disappeared slowly over 21 days in rats on a control diet that were first given p.o. TAM at 45 mg/kg/day for 4 days. In the rat experiments, TAM-DNA adduct levels determined by CIA compared well with those determined by \({^{32}}P \)-Postlabeling, although the CIA gave an underestimation at the highest doses. For rat liver samples, the detection limit by CIA was 3 adducts per 10\(^{6} \) nucleotides (0.2 fmol of adducts per 20 \(\mu \)g of DNA).

INTRODUCTION

TAM\(^{2} \) is widely used as a chemotherapeutic drug for treating breast cancer, and it was recently approved as a prophylactic agent for preventing breast cancer, with a standard therapy duration of \(\geq \)5 years (1). In addition, TAM was evaluated in 13,888 healthy women at high risk for breast cancer in the Breast Cancer Prevention Trial, in which a dose of 20 mg/day TAM for 3 years decreased the incidence of breast cancer by \(\leq \)50% (2). Furthermore, TAM use has been associated with a \(\sim \)35% decrease in incidence of osteoporotic bone fractures (3) and a small but significant increase in the incidence of endometrial cancer (2, 4–7) and pulmonary embolism (2). In rats, chronic p.o. exposure to TAM has induced high incidences of hepatic adenomas and hepatocellular carcinomas (8–12). Consistent with tumorigenesis are findings of hepatic anaplasia and mitotic spindle disruption (13, 14) as well as DNA adduct formation in rat liver and kidney (15, 16). In mice, TAM exposure produced proliferative lesions in oviduct and uterus (17), followed by uterine carcinoma (18). In rodents, the weight of evidence suggests that TAM may be carcinogenic, at least partially, through genotoxic mechanisms. However, testing for TAM-induced mutagenicity in the Ames test was negative (5, 19), and the chromosomal aberration assay performed in vitro in human cells (5) showed no aberrations. In addition, because there is some controversy regarding the formation of TAM-DNA adducts in human tissues (20–27), it is not clear that the mechanisms elucidated in rodent models are directly applicable to the human.

To understand the potential role of TAM-DNA adducts in induction of genetic alterations and cancer, it is necessary to monitor the formation and persistence of these adducts in susceptible target tissues of exposed animals and humans. The \({^{32}}P \)-postlabeling assay, currently in widespread use for measuring TAM-DNA adduct levels (16, 28–30), is excellent for in vitro modified DNA samples and cultured cells or tissues of animals exposed to a single agent. Unfortunately, because this assay is not specific and cannot select only the adduct of interest, it, therefore, produces equivocal results when applied to human samples, in which complex chemical exposures occur and multiple different adducts are present. In response to the need for a specific TAM-DNA adduct assay, polyclonal antisera were elicited against highly modified TAM-DNA, and two highly sensitive and specific immunoassays, with different end points, were developed. Validation of these assays and their application in the measurement of TAM-DNA adducts in rat liver are presented here.

MATERIALS AND METHODS

Chemicals. TAM, CT DNA, tricaprylin, and casein were obtained from Sigma Chemical Co. (St. Louis, MO). Proteinase K, RNase A, and RNase T1 were from Boehringer Corp. (Lewes, Sussex, United Kingdom). Water-saturated phenol was from Rathburn Chemicals (Peeblesshire, United Kingdom). DEAE-dextran was from Pharmacia Fine Chemicals (Burlingame, CA). Opaque 96-well microtiter plates for DELFIA, Eu-labeled streptavidin, and enhancement solution were from Wallac (Gaithersburg, MD). Biotinylated antirabbit IgG used for the DELFIA was obtained from Vector Laboratories (Burlingame, CA). Opaque 96-well plates for CIA were purchased from Corning Costar Corp. (Cambridge, MA). Reagents used in the CIA including biotinylated antirabbit IgG, streptavidin-alkaline phosphatase, 1 block (casein), and CDP-Star with Emerald II were obtained from Tropix (Bedford, MA). All other chemicals used were of analytical grade from commercial sources.

Preparation of Immunoagen. TAM-DNA was prepared as described previously (16). Briefly, \(\alpha \)-acetoxytamoxifen (12 mg) in ethanol (20 ml) was added to CT DNA (50 mg) in water (40 ml), and the mixture was incubated at 37\(^{\circ} \)C for 4 h. After addition of 1 g of sodium acetate, the free \(\alpha \)-hydroxytamoxifen was removed by extraction 7 times with 20 ml of ethyl ether. The TAM-DNA was subsequently precipitated with 2.5 volumes of ethanol; washed; dried; resuspended in sterile, distilled deionized water; sheared with a 20-gauge needle; and stored at \(\sim \)20\(^{\circ} \)C until use. The resulting TAM-DNA, used as the immunogen, was found to be modified to 2.4 adducts per 100
nucleotides by UV-Vis spectroscopy (using molar absorption coefficient of 19,000 at 270 nm in a 1-cm path length cuvette) after hydrolysis and HPLC purification. TAM-DNA samples modified to −0.1-3880 adducts/106 nucleotides were obtained by using essentially the same protocol and varying the concentration of α-acetoxytamoxifen or the duration of incubation. The modification levels were estimated using UV-Vis spectroscopy after hydrolysis and adduct separation by HPLC for highly modified TAM-DNA samples or 32P-postlabeling for low modified TAM DNA samples (16).

Immunization. Three female New Zealand White rabbits (5 months old), purchased from Covance (Denver, PA), were immunized with TAM-DNA electrostatically coupled to methylated BSA. For the initial immunization, TAM-DNA (0.46 mg), methylated BSA (0.46 mg) in 0.16 M NaCl, and Freund’s complete adjuvant were emulsified and injected i.m. into each hind leg of each rabbit (0.65 ml per injection). The rabbits were bled at the same intervals as the samples were, and the antibodies were assayed by ELISA.

Administration of TAM to Rats and Liver DNA Extraction. Female Fischer 344 rats were bred on site and were allowed access to food and water *ad libitum*. Rats were 6 weeks old (120–130 g) at the start of treatment. For the single-dose study, groups of four animals received TAM dissolved in tricaprylin (0.1–0.15 ml), by p.o. gavage, at 0, 0.5, 1.0, 5.0, 10.0, and 20.0 mg TAM/kg bw, whereas control animals received an equivalent amount of tricaprylin vehicle only. The rats were euthanized by cervical dislocation 24 h after dosing.

For dosing up to 7 days, groups of four rats received TAM dissolved in tricaprylin (0.1–0.15 ml), by p.o. gavage, at 0, 0.5, 1.0, 5.0, 10.0, and 20.0 mg TAM/kg bw, whereas control animals received an equivalent amount of tricaprylin vehicle only. The rats were euthanized by cervical dislocation 24 h after the final TAM dose.

To study the persistence of adducts, we gave groups of four rats 45 mg TAM/kg bw by p.o. gavage for 4 days, followed by 21 days on control diet. Animals were euthanized on days 5, 7, 10, 14, and 21. Control animals in this study were euthanized on days 5, 7, 10, 14, and 21. Control animals in this experiment received equivalent doses of tricaprylin vehicle alone.

Livers were removed from the experimental animals and stored at −70°C until further processing. DNA was isolated from tissue by the method of Gupta (31) using proteinase K digestion, phenol/chloroform extraction, and ethanol precipitation, followed by digestion with RNase A and T1.

Processing of DNA for Analysis. Aliquots (1.0 ml) of DNA (100 μg) in PBS were sonicated for 15 s using a Sonifier Cell Disruptor (Heat Systems-Ultrasonics, Inc., Plainview, NY), heat-denatured at 90°C for 5 min, cooled immediately on ice, and centrifuged at 3000 rpm. Supernatants were saved for analysis of TAM-DNA adducts by immunoaassays. For 32P-postlabeling analysis, aliquots of DNA (4 μg) were digested to nucleoside 3'-monophosphates with micrococcal nuclease (0.14 unit) and spleen phosphodiesterase (0.6 milliunit), followed by nuclelease P1, as described previously (32, 33).

DELFIA. Microtitration plates were coated with 18 ng of DEAE-dextran in water (300 μl) at 4°C for 24 h and washed with three cycles of PBS using an automated plate washer (Ultra Wash Plus; Dynatech Laboratories, Gaithersburg, MD). Plates were coated with 660 μg of sonicated CT DNA or immunogen TAM-DNA (2.4% modified) in 0.1 ml of PBS and evaporated to dryness at 37°C. Plates were washed with three cycles of PBST, 0.05% of NaN3, and stored frozen until use.

During the execution of the DELFIA, after each incubation, plates were washed three times with PBST. Nonspecific binding was reduced by incubating the wells with 300 μl casein (2.5 mg/ml) in PBST for 1 h at 37°C. Equal volumes (50 μl) of anti-TAM-DNA (diluted to 1:150,000) in PBST and serially diluted TAM-DNA standard (modified either to 2.4% or to 4.8 adducts per 108 nucleotides) or test sample in PBS were mixed and incubated at 37°C for 30 min prior to adding to the wells. The DNA content in the standard curve wells was maintained at 3 μg by addition of appropriate amounts of sonicated and denatured carrier CT DNA to normalize the matrix effect. The mixture containing TAM-DNA antibody and TAM-DNA standard or biological sample was transferred to the microtiter plate and incubated for 90 min. After washing, biotinylated antirabbit IgG (1:2500 dilution in PBST) was added and incubated for a further 90 min. After washing again, Eu-labeled streptavidin (100 μl, 1:2000 dilution in assay buffer; Wallac) was placed on the wells and incubated at room temperature for 1 h. Finally, the plates were washed, and 100 μl of enhancement solution (Wallac) was added to the wells. After a 1-h incubation at room temperature, the fluorescence was measured using the DELFIA 1234 Research Fluorometer.

CIA. Opaque microtiter plates were coated with DEAE-dextran, as described for the DELFIA, followed by 20 pg of unmodified CT-DNA or 2.4% modified TAM-DNA. Plates were coated, washed, and stored as described above for the DELFIA. The special reagents used in this assay were obtained from Tropix. To perform the CIA, we washed plates and blocked void spaces using 0.25% 1 Block in PBST. Equal volumes of antisera (diluted to 1:1,500,000 in PBST) and serially diluted TAM-DNA standard or biological sample were mixed and incubated for 30 min at 37°C. 100-μl aliquots of the mixtures were transferred to microtiter plate wells and incubated for 90 min at 37°C. After washing, biotinylated antirabbit IgG antibody (100 μl, 1,5000 dilution in PBST) was added and incubated at 37°C for 90 min. After washing, streptavidin-alkaline phosphatase (100 μl, 1,600 pg in PBST) was added and incubated at room temperature for 60 min, followed by washing with three cycles of PBST and two cycles of Tris buffer (20 mM Tris-1 mM MgCl2, pH 9.5). Finally, CDP-Star containing Emerald II enhancer (100 μl) was added and incubated at room temperature for 30 min. Light emission was measured at 542 nm using a TR7171 Microplate Luminometer (PE Applied Biosystems, Foster City, CA).

32P-Postlabeling. 32P-postlabeling was carried out as described previously (32), but with a new solvent system (16). Briefly, 4-μg aliquots of digested DNA were incubated with 50 μCi of [γ-32P]ATP (ICN Biomedicals, High Wycombe, United Kingdom; specific activity, 4000 Ci/mmol) and 6 units of polynucleotide kinase (Advanced Biotechnologies, Leatherhead, Surrey, United Kingdom). Resolution of the 32P-labeled adducts was then carried out on polyethyleneimine-cellulose TLC plates (Machery-Nagel, Camlab, Cambridge, United Kingdom) with the following solvents: D1, 2.3 μl sodium phosphate (pH 5.8); D2, 2.28 mM lithium formate and 5.52 mM urea (pH 3.5); and D3, 0.52 mM lithium chloride, 0.32 mM Tris-HCl, and 5.52 mM urea (pH 8.0). The DNA adducts were visualized by autoradiography of chromatograms at ~85°C and quantified from Cerenkov counting of the excised areas of the chromatograms. The radioactivity present in the adduct spots and the specific activity of the ATP (33) were used to calculate adduct levels, which were expressed as total adducts/106 nucleotides. The values obtained are based on labeling efficiency of ≥90%.

RESULTS

Characterization of the TAM-DNA Antiserum by Competitive Immunoassays. TAM-DNA (2.4% modified), prepared by chemical modification of CT DNA with α-acetoxytamoxifen, was used to immunize rabbits and the resulting antiserum used to develop two immunoassays. Characterization of the TAM-DNA antiserum by both DELFIA and CIA showed that the sera from three rabbits contained high titers, allowing dilutions of 1:30,000 and 1:3,000,000 for DELFIA and CIA, respectively. Competitive DELFIAs were performed to elucidate antibody specificity (Table 1). In addition to

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of adducts/no. of nucleotides</th>
<th>DELFIA (fmol) TAM equivalent at 50% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM-DNA (immunogen)</td>
<td>2.4/100</td>
<td>2.0 ± 0.11 (n = 18)</td>
</tr>
<tr>
<td>TAM-DNA (low modified)</td>
<td>4.8/106</td>
<td>20.6 ± 6.60 (n = 8)</td>
</tr>
<tr>
<td>α,4-Diaceotoxytamoxifen-DNA</td>
<td>0.4/100</td>
<td>24.6 ± 1.20</td>
</tr>
<tr>
<td>α,4-Dihydroxytamoxifen-DNA</td>
<td>0.4/100</td>
<td>522.0 ± 16.37</td>
</tr>
<tr>
<td>α-Acetoxytamoxifen-DNA</td>
<td>0.18/100</td>
<td>ND</td>
</tr>
<tr>
<td>TAM-DG</td>
<td>827.5 ± 42.90</td>
<td></td>
</tr>
<tr>
<td>(Z)-α-(N2-deoxyguanosinyl)tamoxifen</td>
<td>8229.0 ± 114.78</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>5440.0 ± 100.23</td>
<td></td>
</tr>
<tr>
<td>4-OH TAM</td>
<td>8250.0 ± 128.42</td>
<td></td>
</tr>
<tr>
<td>Unmodified DNA</td>
<td>180 ± 10</td>
<td></td>
</tr>
</tbody>
</table>

*Unless otherwise noted, values are mean ± SE (n ≥ 3).
ND, not detectable; there was no cross-reactivity with 27.3 pmol of α-acetoxydioxifene-DNA.
There was no inhibition with 20 μg of unmodified DNA per well, and 180 μg/well gave 50% inhibition.
strong recognition of the immunogen DNA, the antibody showed significant recognition of TAM-DNA modified to 0.00048% or 4.8 adducts per 10⁶ nucleotides (Table 1). To determine antibody recognition of the individual adducts, we digested TAM-DNA enzymatically, isolated adducts by HPLC, and assayed them by DELFIA, trans and cis forms of the TAM-dG adducts showed very low cross-reactivity, with 50% inhibition at 827 and 2229 fmol, respectively. Even lower cross-reactivity was observed with TAM and 4-OH-TAM, and up to 20 μg of unmodified CT DNA per well did not give inhibition of antibody binding. When unmodified CT DNA was subjected to every step of the immunogen preparation procedure in the absence of α-acetoxytamoxifen, the resulting DNA was not recognized by the antibody. The results indicate that the antibody has high affinity for TAM-dG adducts when it is present in intact DNA but not for the individual adduct, the parent compound, or unmodified DNA.

To validate the two new immunoassays by comparison with an established assay, we analyzed samples of TAM-DNA, modified chemically to different levels, by DELFIA, CIA, and ³²P-postlabeling. As shown in Table 2, in seven of the nine samples, similar results were obtained with all of the methods. However, for two samples, the ³²P-postlabeling values were much lower than those determined by CIA and/or DELFIA. At present, it is unclear whether this discrepancy is due to a problem of one assay or the other, and there is insufficient DNA to repeat them. The correlation coefficient for the comparison between CIA and ³²P-postlabeling was 0.99 and was calculated including all nine samples. The data suggest that both CIA and DELFIA are likely to measure TAM-DNA adducts accurately and specifically.

Methodologies for the DELFIA and CIA are compared in Table 3. The CIA has several advantages, including a requirement for smaller amounts of coating antigen, higher dilution of primary and secondary antibodies, good reproducibility for the standard curve, and a much higher signal:noise ratio. In addition, using the TAM-DNA standard modified to 4.8 adducts per 10⁶ nucleotides, 50% inhibition occurred at 0.92 fmol in the CIA and 20.5 fmol in the DELFIA (Fig. 1), demonstrating that the CIA is ~20-fold more sensitive than the DELFIA, with detection limits of 2.6 and 75 adducts per 10⁶ nucleotides, respectively (Table 3).

Experimental Studies in Rats. For groups of four rats given a single i.p. dose of 4.5 or 45.0 mg TAM/kg bw and euthanized 24 h later, liver DNA was examined by TAM-DNA DELFIA. No adducts were detected at the lower dose, but animals given the higher dose had 20.3 ± 1.7 (mean ± SE) TAM-DNA adducts per 10⁶ nucleotides. Although linearity in adduct formation would be expected, the predicted adduct level, 2 TAM-DNA adducts per 10⁶ nucleotides, would be below the detection limit for the DELFIA using 20 μg of DNA. Because the CIA is more sensitive than the DELFIA, this assay was used for subsequent analysis of TAM-DNA adducts in rat liver samples.

Dose-dependent accumulation of hepatic TAM-DNA adducts in rats given TAM for 7 days by gavage is shown in Fig. 2. Rats were given 0, 0.5, 1.0, 5.0, 10.0, and 20.0 mg TAM/kg bw daily for 7 days and were euthanized 24 h after the last dose. As determined by CIA, hepatic TAM-DNA adduct levels increased with dose (Fig. 2, ○). Similar results were obtained when the samples were analyzed by ³²P-postlabeling (Fig. 2, ●), although at the highest TAM dose, CIA appeared to underestimate the adduct level.

The persistence of TAM-DNA adducts in rat liver DNA was determined by measuring adduct concentrations in rats given 45 mg TAM/kg bw by p.o. gavage for 4 days and euthanized at 1, 7, 10, 14, and 21 days after last TAM dose. There was a time-dependent loss of adducts from rat liver DNA (Fig. 3), but the values determined by CIA were lower than the values obtained by ³²P-postlabeling. It is possible that some adducts determined by ³²P-postlabeling, particularly those formed after chronic dosing at high TAM concentrations, are not recognized by the anti-TAM-DNA. Despite a discrepancy in the two assays at this high dose, both assays demonstrated a relatively slow rate of hepatic DNA adduct removal during a 21-day time period after 4 days of p.o. TAM administration.
the drug from 4 to 7 days when assayed by both methods. In general, adducts after a single i.p. TAM dose, and comparable dose response and beling and CIA. The data demonstrated detectable TAM-DNA ad-

bars animals; 10.0, and 20.0 mg TAM/kg bw by gavage daily for 7 days. TAM/kg bw, but at higher doses, the CIA gave an underestimation liver, the correlation was quite good at doses lower than 20 mg coefficent between the two assays was 0.99. With DNA from rat formed from compounds other than TAM and in which the correlation was considered an important correlate and early biomarker of cancer risk assessment. The TAM-DNA CIA, which is specific for TAM-DNA adducts and detects 2.6 adducts per 10⁹ nucleotides, may become the method of choice for determination of TAM-specific adducts in humans because the current literature in this area is associated with some controversy. Martin et al. (20) found that levels of unidentified adducts with TLC mobilities similar to TAM-related adducts were similar in livers from TAM-treated women compared with untreated women. Carmichael et al. (21, 22), in two separate studies involving a total of 38 patients, have reported no evidence of TAM-DNA adduct formation, determined by ³²P-postlabeling, in endometrial biopsies from women undergoing daily p.o. TAM dosing for months to years. These investigators used ³²P-postlabeling with a detection limit of 8 adducts per 10³⁰ nucleotides (22). In addition, Phillips et al. (23) found no ³²P-postlabeled DNA adducts with the chromatographic properties of known TAM-DNA adducts in leukocytes from seven women receiving TAM therapy for breast cancer. However, Hemminki et al. (24), using ³²P-postlabeling followed by HPLC with detection of radioactivity, showed that leukocytes from four of six breast cancer patients receiving TAM therapy had evidence of a peak appearing at the same location as the TAM-dG standard, with a median adduct value of 5.5 adducts per 10⁹ nucleotides. The same investigators also showed an average of 2.9 adducts per 10⁹ nucleotides in endometrial DNA from five of seven women and determined the TAM-DNA adducts by ³²P-postlabeling and HPLC with further chromatographic confirmation using appropriate standards (25). The interpretation of these results has been discussed in a correspondence by Orton and Topham (26). Finally, Shibutani et al. (27) have also reported finding TAM-DNA adducts in human endometrial samples using a combination of ³²P-postlabeling and HPLC. The question of whether or not TAM-DNA adducts are formed in human tissues is important because it relates to issues of potential mutagenicity and tumorogenicity. However, there is evidence that TAM exposure may enhance formation of oxidative damage in DNA (38–40) and, thereby, increase the mutagenic potency of the compound beyond what might be expected from direct TAM-DNA binding. The TAM-DNA CIA, with a detection limit of 2.6 adducts per 10⁹ nucleotides, may be a useful tool to elucidate TAM genotoxicity. In addition, concentration of TAM-containing oligonucleotides by immunoaffin-

Fig. 2. Dose-response for formation of TAM-DNA adducts in rat liver as measured by CIA (○) and ³²P-postlabeling (●) in female Fischer rats given TAM at 0, 0.5, 1.0, 5.0, 10.0, and 20.0 mg TAM/kg bw by gavage daily for 7 days. Data points, means for three animals; bars, SD. Inset, adduct levels at low doses (expanded).

Fig. 3. Persistence of TAM-DNA adducts in liver DNA of rats during 21 days after cessation of dosing with 45 mg TAM/kg for 4 days. In DNA samples obtained at 1, 7, 10, 14, and 21 days after withdrawal of dosing, adduct levels were measured by CIA and ³²P-postlabeling. Data points, mean CIA (○) and ³²P-postlabeling (●) values for three animals; bars, SD.

DISCUSSION

A high-titer antiserum has been elicited against TAM-DNA modified to 2.4% with α-acetoxytamoxifen. The TAM-dG adduct formed by this modification is the predominant DNA adduct found in livers of rats exposed to this drug. The antiserum has been used to develop two immunoassays, DELFIA and CIA, with a detection limit for the CIA at 2.6 adducts per 10⁹ nucleotides. By competitive DELFIA, the antiserum has been demonstrated to be specific for TAM in DNA, with cross-reactivities for the individual adduct, the drug or its metabolites, and unmodified DNA occurring only at ~1000-fold higher concentrations or not at all. The immunogen adduct, TAM-dG, was the first TAM-DNA adduct characterized in livers of TAM-exposed rats (16). Recently, another major TAM-DNA adduct, the product of a N-desmethylated TAM metabolite, has been demonstrated in rat liver (34–37). Preliminary results indicate that TAM-DNA antiserum may recognize DNA modified with N-desmethyl-TAM-dG similarly to the immunogen DNA, in the assays described here. The TAM-DNA CIA has been validated in a rat liver model, in which TAM-DNA adducts have been determined by both ³²P-postlabeling and CIA. The data demonstrated detectable TAM-DNA adducts after a single i.p. TAM dose, and comparable dose response and persistence of TAM-DNA adducts in rats given p.o. administration of the drug from 4 to 7 days when assayed by both methods. In general, both the TAM-DNA CIA and ³²P-postlabeling methods showed the same results. This was demonstrated clearly with DNA samples modified in vitro, in which no adducts would be expected to be formed from compounds other than TAM and in which the correlation coefficient between the two assays was 0.99. With DNA from rat liver, the correlation was quite good at doses lower than 20 mg TAM/kg bw, but at higher doses, the CIA gave an underestimation compared with the ³²P-postlabeling, suggesting that some TAM-DNA adducts may not be recognized by the antiserum or that other adducts induced as a result of TAM exposure are being detected by ³²P-postlabeling.

A large body of literature supports the associations among DNA damage, mutagenesis, and carcinogenesis. The probability that a DNA adduct can cause a mutation is related to the extent of DNA adduct formation and persistence as well as considerations of tissue speci-

3 R. L. Divi et al., unpublished data.
ity chromatography with further analysis by an alternative method, may significantly increase TAM-DNA adduct detection capacity.

REFERENCES

Tamoxifen-DNA Adduct Formation in Rat Liver Determined by Immunoassay and 32P-Postlabeling

Rao L. Divi, Martin R. Osborne, Alan Hewer, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/59/19/4829

Cited articles

This article cites 36 articles, 28 of which you can access for free at:
http://cancerres.aacrjournals.org/content/59/19/4829.full.html#ref-list-1

Citing articles

This article has been cited by 17 HighWire-hosted articles. Access the articles at:
/content/59/19/4829.full.html#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.