


means to block VEGF receptor function. Anti-Flk-1 mAb effectively
inhibited neovascularization stimulated by growth factors (bFGF and
VEGF) added to Matrigel plugs and neovascularization stimulated by
tumor cells encapsulated in alginate beads. Previous studies in our
laboratory have demonstrated that addition of both bFGF and VEGF
to Matrigel significantly enhanced plug neovascularization compared
to either factor alone.3 Interestingly, in the present study we found that
anti-Flk-1 mAb inhibited neovascularization of Matrigel plugs con-
taining bFGF and VEGF. These data suggest that bFGF may induce
or modulate a VEGF-dependent stage of angiogenesis, possibly by
regulating expression of the Flk-1 receptor. In support of this hypoth-
esis, we have found that bFGF up-regulates expression of VEGF and
VEGF receptor (Flk-1/KDR) on endothelial cells.4 Furthermore, we
have found that anti-Flk-1 mAb also inhibits neovascularization of
Matrigel plugs containing only bFGF.3 Therefore, bFGF may up-

regulate VEGF and/or VEGF receptor expression on endothelial cells
in vivo, thus explaining inhibition of bFGF-induced neovasculariza-
tion of Matrigel plugs by a VEGF receptor-specific mAb. A similar
mechanism of inhibition most likely occurs during the process of
tumor cell-stimulated angiogenesis as well.

To examine tumor growth in response to anti-Flk-1 mAb therapy,
we chose the rapidly growing Lewis lung, 4T1, and B16 murine
tumors. Treatment with DC101 markedly slowed the growth of Lewis
lung, 4T1, or B16 primary tumors and significantly delayed the time
period when these tumors reached a large size and mice became
moribund. In addition, DC101 treatment inhibited the growth of
disseminated Lewis lung metastases following removal of the primary
tumor. These findings suggest that in addition to affecting the growth
of a localized primary tumor, anti-Flk-1 mAb is also able to inhibit the
dissemination and/or growth of distant metastases. It should be em-
phasized that anti-Flk-1 mAb therapy did not completely arrest pri-
mary tumor growth of these aggressive murine tumors. These tumors

3 W. O’Connor, unpublished data.
4 D. J. Hicklin, submitted for publication.

Fig. 6. Anti-Flk-1 mAb treatment reduces vessel density in tumors.A, A431 tumors from mice treated with control IgG or DC101 were resected after 1 week of antibody treatment,
fixed, paraffin-embedded and sectioned at 7 um. Vessels were stained with biotinylated anti-PECAM antibody and visualized using streptavidin-HRP and DAB substrate. Endothelial
cells and vessels (brown) were significantly reduced in DC101-treated tumors.3200.B, A431 tumors from mice treated with control IgG or DC101 were resected after 1 (M) and 2
(f) weeks of antibody treatment and stained with anti-PECAM as described above. Microvessel density was quantitated by image analysis of stained sections as described in “Materials
and Methods.” A significant reduction (P, 0.01versuscontrol) in microvessel density was observed in the DC101 group after 1 and 2 weeks of treatment.Columns,mean;bars,SE.
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may produce additional pro-angiogenic factors that allow their con-
tinued, albeit much reduced, growth in the presence of anti-Flk-1
blockade. DC101 did completely inhibit the growth of several human
tumor xenografts in athymic mice. Typically, treatment of epider-
moid, pancreatic, or renal tumors with DC101 resulted in cessation of
tumor growth with only rare tumor regression. However, treatment of
glioblastoma tumors with DC101 consistently resulted in tumor re-
gressions, suggesting that this tumor is more susceptible to anti-Flk-1
therapy. It should be noted that no relapse of tumors was observed
with continued administration of DC101 for up to 120 days (data not
shown). Withdrawal of DC101 treatment in the various models tested
resulted in regrowth of tumors with kinetics similar to that of control
groups. The results of the present study are consistent with results
obtained using a dominant-negative Flk-1 receptor (31), anti-VEGF
mAb (33), VEGF antisense (32), or VEGF receptor tyrosine kinase
inhibitors (39) and provide additional evidence for antiangiogenic and
antitumor effects by blocking the VEGF/VEGF receptor pathway.

Histological examination of tumors from DC101-treated animals
showed a decrease in microvessel density and an increase in apoptosis
in the tumor cell fraction within the tumor. These findings coincided
with a decrease in mitotic tumor cells within the tumor. The reduction
in microvessels occurred rapidly,i.e., after 1 week of treatment with
DC101 and reached a peak after 14–21 days of treatment. The loss of
microvessels within treated tumors suggests that VEGF stimulation of
Flk-1-expressing tumor vasculature acts as a survival mechanism for
proliferating tumor endothelium, which is inhibited by anti-Flk-1
therapy. This finding is consistent with previous studies that have
shown VEGF prevents apoptotic death of microvascular endothelial
cells (45, 46). Furthermore, Skobeet al. (47) have shown previously
in a malignant keratinocyte invasion model that anti-Flk-1 mAb
treatment inhibits endothelial cell proliferation and induces endothe-
lial cell apoptosis that leads to vessel regression. These previous

findings are consistent with the reduction in tumor vessel density in
response to DC101 treatment found in the present study and suggest
that similar mechanisms are involved. After 2 weeks of DC101
treatment, areas of necrosis developed in tumors that gradually in-
creased as antibody treatment was continued. The mechanisms re-
sponsible for tumor cell apoptosis in DC101-treated tumors are not
known. The decrease in tumor cell proliferation and necrosis in
DC101-treated tumors likely reflects the lack of new vasculature that
is needed to supply the rapidly growing tumor mass and may also
indicate the lack of tumor cell survival factors provided by the tumor
vasculature.

Angiogenesis inhibitors used as antitumor agents may need to be
administered for longer periods than cytotoxic agents (48). It should
be noted that we observed no toxicity associated with long-term
treatment of tumor bearing animals. Autopsy of DC101-treated mice
revealed no abnormalities in the organs of these mice, including the
heart, intestine, kidney, liver, lung, and spleen. These findings are
important, because low levels of Flk-1 expression are expected to be
present on the endothelium of some normal tissues. The turnover of
endothelial cells in normal adult tissues is very low (years) except in
those tissues that undergo normal angiogenic processes, such as
proliferation of the corpus luteum, pregnancy, and wound healing
(13). Therefore, the lack of toxicity observed during anti-Flk-1 mAb
therapy may be due to the limited dependence of resting endothelium
for Flk-1/KDR stimulation. In contrast, tumor angiogenesis is ex-
pected to be more dependent on up-regulation and function of Flk-1/
KDR on tumor vasculature and thus more susceptible to anti-Flk-1
blockade. The lack of toxicity associated with anti-Flk-1 mAb treat-
ment can also be attributed to the high specificity of an antibody
antagonist. It is conceivable that Flk-1/KDR blockade will have an
impact on angiogenesis associated with reproduction, wound healing,
or other normal processes involving angiogenesis, such as bone for-

Fig. 7. Tumors treated with anti-Flk-1 mAb have increased tumor cell apoptosis, reduced tumor cell proliferation, and increased tumor necrosis. s.c. A431 tumors after 2 weeks of
antibody therapy were resected, fixed, embedded in paraffin or frozen, and sectioned onto glass slides. Shown are representative sections from the DC101 group (A–C) and for the
control IgG group (D–F).A andD, H&E staining of paraffin sections showed extensive areas of necrosis and fibrosis in tumors from DC101-treated animals.B andE, sections were
immunostained with a mAb to PCNA (brown) and counterstained with eosin Y. The number of mitotic A431 tumor cells was significantly greater in tumors from control mice compared
to tumors from DC101-treated animals.C andF, frozen sections of tumor tissue were assayed for apoptosis using a TUNEL kit that labels apoptotic nuclei with a fluorescent marker
(green). A markedly higher frequency of apoptotic A431 tumor cells was found in tumors from DC101-treated animals.3200.
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mation. We are currently conducting studies to address these ques-
tions.

Combination therapy with anti-Flk-1 mAb and radiation or chemo-
therapeutic drugs may be a useful strategy because the use of these
therapies alone are not able to completely eradicate tumors. In this
regard, other antiangiogenic therapies have recently been used in
combination with radiation (49) or chemotherapeutic drugs (50)
showing an enhanced antitumor effect. Anti-Flk-1 therapy in combi-
nation with other antitumor agents may also provide an additive or
synergistic effect. It could be argued that anti-Flk-1 treatment may
actually reduce the efficacy of radiation or chemotherapeutics by
reducing oxygenation of tumor tissue or permeability of tumors (51,
52). However, anti-Flk-1 therapy may increase drug delivery to a
tumor, possibly by several mechanisms including lowering interstitial
pressure, unpacking the mass of tumor cells, or transforming tumor
vasculature to that of a “normal” vascular phenotype (51). Treatment
with anti-Flk-1/KDR mAb also has the potential for increasing che-
mosensitivity or radiosensitivity of tumor vasculature. Because VEGF
has been shown to act as a survival factor for endothelial cells in
response to radiation or antineoplastic drugs (53, 54), anti-Flk-1/KDR
therapy may block this protective effect on proliferating tumor vas-
culature. Studies are currently ongoing in our laboratory to address
these questions.

In summary, we have demonstrated that anti-Flk-1 mAb DC101
effectively inhibits angiogenesis and tumor growthin vivo. These
results suggest that blockade of the Flk-1/KDR receptor may be a
useful strategy for treatment of human cancer. Furthermore, the use of
anti-KDR therapy in combination with conventional cytotoxic, radi-
ation, immunotherapy, or other antiangiogenic agents may improve
the efficacy of these anticancer therapies. In this respect, Phase I trials
are planned to evaluate anti-KDR therapy as a treatment for human
cancer in a clinical setting.
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