Identification of the Human Melanoma-associated Chondroitin Sulfate Proteoglycan Antigen Epitope Recognized by the Antitumor Monoclonal Antibody 763.74 from a Peptide Phage Library

Martin Geiser,1 Delia Schultz, Agniesz Le Cardinal, Hans Voshol, and Carlos García-Echeverría

Novartis Pharma AG, Core Technology Area [M. G., D. S., A. L. C., H. V.] and Oncology Research [C. G.-E.], CH-4002 Basel, Switzerland

ABSTRACT

To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoproteins in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotype MK2–23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide adsorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

INTRODUCTION

The high-molecular weight melanoma-associated antigen (1), also identified as MCSP2 (2, 3), is a major marker for melanoma (4) and is highly expressed at the surface of the tumor cells (1, 5). The high immunogenicity of the MCSP molecule in mice has allowed the preparation of several mAbs (5–10). One of those, mAb 763.74, has been used to generate an anti-id mAb, MK2–23 (9). After conjugation to a protein carrier and administration with an adjuvant, this anti-id mAb induced a specific humoral response in patients with advanced melanoma (1, 11). The treatment significantly increased the survival of these patients (1, 11). The clinical results obtained render the identification of the antigenic structure of the proteoglycan MCSP as mimicked by MK2–23 and recognized by mAb 763.74 of great interest, especially because the antigen, despite being cloned, has not been expressed as yet (12). The epitope or a peptide mimetic for the former could advantageously replace the antigen in an ELISA to be performed on clinical samples obtained from patients immunized with the mAb MK2–23 conjugate.

In the last 5 years, the phage display technology has provided a new approach to exploring epitopes recognized by monoclonal or polyclonal antibodies (13–18). Libraries of random peptides can be expressed either as linear or as constrained structures at the NH2 terminus to the M13 minor coat protein III or major coat protein VIII and displayed at the surface of infectious bacteriophage M13 (19, 20). With the same technology, fragments generated after random DNase I digestion of a cDNA can be cloned and expressed as a fusion protein to one of the coat proteins of the bacteriophage (21–23). Thus, in the present study, we expressed random DNA fragments obtained from the complete coding sequence of the MCSP glycoprotein in phages and selected for binders to the murine mAb 763.74. In a parallel approach, we also selected linear peptides displayed by the minor coat protein III from a random heptapeptide phage library. For both libraries, we used the selection procedure we had developed and optimized earlier (24).

MATERIALS AND METHODS

Cell Lines, Bacterial Strains, MCSP Protein Fragments, and Heptapeptide Display Phage Libraries. The melanoma cell line A375smetS3.4, which expresses the MCSP antigen, is a derivative of the parental cell line A375-Met-Mix (25), and are hereafter designated A375. The S7 cells are subclones of the cell line SK-Mel-25 (26), and they do not express the antigen. The cells used in our experiments were obtained from Dr. J. Mestan and Dr. J. Brüggen (Novartis Pharma AG, Basel, Switzerland).

Plasmids encoding seven overlapping fragments covering the entire cDNA of the MCSP core glycoprotein were obtained as described (12) and kindly provided by M. Vanek (Novartis Pharma AG, Basel, Switzerland).

The phagemid pTK3552B used for displaying the MCSP-derived protein fragments at the surface of the bacteriophage M13 has been described earlier (27). The construction of the library is described below. The VSCM13 helper phage (Stratagene, La Jolla, CA) was used for phage rescuing as also described (27).

The library displaying the random linear heptapeptide at the surface of the M13 phage as fusion with the minor coat protein III was part of the Ph.D. kit system of New England Biolabs (Beverly, MA). The Escherichia coli host strain XL1-Blue (Stratagene) was used throughout the experiments presented in this study.

Construction of a Phage Library Displaying Fragments of the MCSP Core Glycoprotein after Random DNase I Digestion of the Encoding cDNAs. Each of the seven plasmids encoding the cDNA for the MCSP was partially digested with DNase I in the presence of Mn2+ in three fragments: HindIII–HindIII–HindIII–HindIII and HindIII–HindIII–HindIII–HindIII (as described in the NovaTope digestion protocol (Novagen, Madison, WI). After digestion, the DNA was separated on a 1% agarose gel. DNA fragments between 100 and 700 bp were isolated and purified from a preparative agarose gel with the help of the QiAex II kit (Qiagen, Chatsworth, CA). After the digestion, the DNA was separated on a 2% agarose gel. DNA fragments between 100 and 300 bp were isolated and purified from a preparative agarose gel with the help of the QiAex II kit (Qiagen, Chatsworth, CA). The vector pTK3552B and the different fragments were digested to completion with XhoI and SpeI, and both the DNA of the vector and the DNase I-generated fragments were treated with 2 U of vent DNA polymerase (New England Biolabs) in 100 μl of the supplied buffer in the presence of 0.2 mM of the four deoxynucleotides for 20 min at 72°C. After several blunt end ligations, all done with the Boehringer rapid ligation kit, the DNA was electroporated into E. coli XL1-Blue cells. If the total number of transformants after titation was higher than 2 × 109 independent clones, the cells were inoculated into 200 ml of Luria Broth containing 50 μg/ml ampicillin and 10 μg/ml tetracycline. After overnight growth of the cells, phages were rescued with the helper phage VCSM13 and precipitated twice with 16.7% PEG 8000 and 3.3 M NaCl as described (28).
Biopanning of the Phage Libraries Displaying either the MCSP Protein Fragments or the Random Linear Heptapeptides. Coating, blocking, washing, and elution of the phages using 5-mL Maxisorb immunotubes (Nunc, Basel, Switzerland) was performed as published previously (24). The MCSP protein fragment phage library (1-4 x 10^10 phages) was first panned against mAb 763.74 coated at a concentration of 50 μg/mL. The coating concentration of the antibody was reduced to 1 μg/mL for the second round and to 100 ng/mL for the third round. Finally, a fourth round with a coating of 10 ng/mL mAb 763.74 was conducted. After elution, the phages were amplified, precipitated twice with PEG 8000/NaCl, and titered on E. coli XL1-Blue cells.

The linear heptapeptide library (10 μl; 2 x 10^11 phages) from the Ph.D. kit (Bioconcept Allschwil, Switzerland) with a diversity of 2 x 10^3 individual peptides, was added to tubes prepared as described above for the selection of phages containing MCSP fragments but with a coating concentration of 100 μg/mL, 1 μg/mL, and 2 ng/mL, respectively, for the three rounds of selection. The recovered phages were added to exponentially growing E. coli XL1-Blue cells at A600nm = 0.6-0.8. After the infection, the cells were grown at 37°C for 20 h, and the phages present in the growth medium were purified with PEG 8000/NaCl precipitation. The amplified phages were titered in E. coli XL1-Blue cells (28). From individual clones, we prepared phages from the supernatant of the growth medium. The phages were precipitated and concentrated with PEG 8000/NaCl.

Chemiluminescence ELISA. The wells of a Microtiter 2-immunoprint plate (Dynatech Laboratories, Chantilly, VA) were coated with 2 μg/well of mAb 763.74, BSA, or with irrelevant IgGl antibodies serving as negative controls in 50 mM Tris-HCl (pH 8.1). After the wells were blocked with Blotto (5% nonfat dry milk and 0.05% Tween 20 in TBS), the phages were added for 2 h at 37°C. The wells were washed 10 times with TBS containing 0.05% Tween 20, and anti-M13 antibody conjugated to horseradish peroxidase (Pharmacia, Uppsala, Sweden) was added at a 1:4000 dilution in Blotto. After incubation for 1 h at room temperature and the same washing steps as described above, luminol, a chemiluminescent substrate (BM Chemiluminescence ELISA Reagent, Boehringer Mannheim, Mannheim, Germany) was added. Readings of emitted light were recorded as relative units (Microlumat BINDING EPITOPE OF THE ANTI-MCSP MAB 763.74

RESULTS

Affinity Selection of a Phage Library Displaying Random MCSP Protein Fragments Using mAb 763.74. To identify the epitope recognized both by the primary mAb 763.74 and by its surrogate present in the anti-anti-id antibody response in immunized patients, we expressed random DNP1 fragments derived from the different cDNA clones encoding the MCSP core glycoprotein at the surface of the bacteriophage M13. At least 2 x 10^4 (1 x 10^3 x 18) independent transformants are necessary to create a library of expressed fragments large enough to isolate the epitope with a probability of 99.9% (28). This number is required because only 1 of 18 clones will be present in the library with a correct fusion between both the signal peptide and the minor coat protein III of the phages on both ends of the cloned DNP fragment, which themselves can be found in only one correct orientation (3 x 3 x 2 = 18). The library was converted to phages by rescuing with the helper phage VSCM13. After amplification, 1 x 10^6 copies of each individual fragment derived from the cloned MCSP core glycoprotein are present in the library. After the four rounds of selection, the amplified phage population was analyzed for binding to mAb 763.74 by chemiluminescence phase ELISA. There was no detectable binding signal, even with very high phage concentrations, implying that no phage was selected from the library (data not shown).

Earlier data suggested that the epitope should be a linear peptide (1, 30). According to the size distribution of the fragments expressed and displayed by the phage library, we would have expected to identify the linear peptide corresponding to the epitope after our selection procedure. We thus rechecked the possibility that the epitope or part of it is located on the oligosaccharide moiety of the MCSP molecule.

Solubilization of MCSP Molecule from Melanoma Cells and Endoglycosidase Treatment. After detergent lysis of the A375 cells, virtually all of the MCSP had been solubilized as indicated from Western blotting and staining with mAb 763.74. The antibody revealed a strong band at M, ~250,000. The material from the MCSP-negative S7 cells did not show, as expected, reactivity with the antibody (data not shown).

The lysates were treated with N-glycosidase F to remove the N-Asn-linked oligosaccharides from the protein. Staining of the blots
revealed that after the digestion, the mAb 763.74-reactive MCSP band shifted to a lower apparent molecular weight, suggesting the removal of one or more N-linked oligosaccharides. The treatment of the lysate with chondroitinase ABC showed no effect on mobility or immunoreactivity of the MCSP band consistent with the idea that this band represents the core protein (data not shown and Ref. 1). These results demonstrate and confirm earlier results that the epitope recognized by mAb 763.74 is associated with the core protein but is not found on N-linked oligosaccharides.

Selection of a Linear Random Peptide Phage Library on mAb 763.74. Prompted by the negative results obtained with the MCSP protein fragments expressed and displayed by phages, we decided to pan a heptapeptide phage display library against mAb 763.74 in the search for a peptide mimetic of the epitope. After two rounds of selection, phages displaying peptide specifically binding to mAb 763.74 were enriched (Fig. 1). The phage population bound neither to BSA nor to other negative control antibodies. However, as observed previously for the gene fragment phage library, the heptapeptide phage bound to the negative control mAb ACA125. ACA125 is an anti-id mAb mimicking an epitope of the tumor-associated antigen CA-125 (31). In additional control experiments (data not shown), we could show that mAb ACA125 binds to the VSCM13 helper phage as well as to the pBCsk(+) phage (Stratagene). A panning round performed in the presence of an excess of soluble ACA125 did not change the binding characteristics of the phages to ACA125 bound to the microtiter plate (data not shown). Hence, the antibody is binding nonspecifically to the phage particles and not to the displayed peptides. This nonspecific binding was, however, useful as an internal experimental marker for the phage particles and not to the displayed peptides. The DNA encoding the peptides subsequently synthesized and further analyzed.

In a competitive chemiluminescence phage ELISA, an increasing amount of the anti-id mAb MK2-CH1-Y was added to a constant amount of the peptide phages. After the preincubation, the phages were added to the wells coated with mAb 763.74, and we found that the binding of the selected phage population to the paratope was inhibited by mAb MK2-CH1-Y but not by two irrelevant isotype-matched antibodies to mAb 763.74 (data not shown). After a third and final round of selection on mAb 763.74, individual phages were propagated on E. coli cells, and clones were selected for DNA sequence analysis.

Identification and Characterization of the Heptapeptides Encoded by the Phage Selected on mAb 763.74. The DNA encoding the heptapeptide displayed by 18 different phages was sequenced, and the consensus sequence VHLNYEH was deduced (Fig. 2). These results demonstrate that the antigen is a competitor for the peptide-binding site of mAb 763.74. The binding of phage 5 bound to mAb 763.74 was similar to the binding of the original phage population from which it was isolated (data not shown). Furthermore, it bound to the site on mAb 763.74 that is required for the binding of anti-id mAb MK2-CH1-Y (Fig. 3A). The VHLNYEHSGSGK peptide was synthesized and biotinylated on the side chain of the lysine at the COOH terminus of the peptide. The residues SGSG were designed as a linker to allow the spatial separation of the epitope from the coupled biotin molecule. The same results were obtained in competitive ELISA experiments in which mAb 763.74 was incubated with different concentrations of the anti-id mAb MK2-CH1-Y before addition to the biotinylated VHLNYEHSGSGK peptide coated in streptavidin-containing wells (data not shown). Melanoma A375 cells, but not the MCSP-negative cell line S7, were able to inhibit the binding of the VHLNYEHSGSGK-biotin peptide to coated mAb 763.74 in a concentration-dependent manner (Fig. 3B). These results demonstrate that the antigen is a competitor for the peptide-binding site of mAb 763.74.

The aa consensus sequence derived from the selected phage library was used to scan the known aa sequence of the MCSP protein for homology. The best match was found between positions 289 and 294 of the antigen (Fig. 2). The major discrepancy was that the two His were only three residues apart within the antigen, whereas they were always separated by four residues in the selected sequences displayed by phages. Peptides corresponding to several of the selected phage peptide sequences or to the hexapeptide identified on the MCSP...

Fig. 1. Selection of phages binding to antimelanoma mAb 763.74 from a heptapeptide phage library. Microtiter plates were coated with the antibodies or BSA and incubated with the heptapeptide phage population obtained after the second (●) and third (▼) round of selection on mAb 763.74. Phages bound nonspecifically to mAb ACA125 independently of the stringency of the selection [second (□) and third (▼) round]. The phages from the third round of selection do not bind to other negative controls used in the experiments (■, BSA; □, control mAb 1; and ▼, control mAb 2). The binding phages are detected by phage ELISA in relative units (RF).

Fig. 2. Consensus aa sequence derived from the DNA sequence of individual phage clones and identification of the putative MCSP epitope recognized by mAb 763.74. The five aa up- and downstream of the MCSP epitope are also indicated. The arrows indicate the peptides subsequently synthesized and further analyzed.

<table>
<thead>
<tr>
<th>consensuse</th>
<th>V H L N Y E H</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCSP</td>
<td>289- v h l n a - h - 294</td>
</tr>
<tr>
<td>phec</td>
<td>v h l n a - h - h</td>
</tr>
</tbody>
</table>
antigen were synthesized. These peptides were the MCSP-derived peptide (VHINAH); its derivative VHLNAH; the peptide PHEVS-VHINAH-RLEIS, which encompasses five aa upstream and downstream of the putative MCSP antigen epitope; and the peptides encoded by phages 5 (VHLNYEH), 11, 13, and 22, (see Fig. 2 for the definition of these peptides). Clearly, all of the peptides derived from the phage library and the three peptides derived from the antigen were able to inhibit the binding of mAb 763.74 to the coated phage 5 in a concentration-dependent manner (Fig. 4). The peptides defined by phages 5, 11, 13, and 22 displayed very similar properties (results not shown). As expected, the random peptide control sequence (LQDVHNF) did not compete. By comparing the inhibition pattern of the interactions between phage 5/mAb 763.74 and the different peptides, we found minor differences; however, we consistently observed that the VHINAH peptide inhibited the interactions better than the consensus peptide VHLNYEH. These results demonstrate that the epitope for mAb 763.74 is VHINAH, which corresponds to the sequence between positions 289 and 294 of the MCSP antigen.

To demonstrate that the peptide identified as the epitope for mAb 763.74 can be used as a surrogate for the MCSP antigen in ELISA experiments, we immobilized the biotinylated peptide to streptavidin-coated microtiter plates and added the antibody at different concentrations in 10% human serum obtained from normal blood donors and measured the presence of the antibody by ELISA. We were able to measure the presence of the antibody down to a concentration of 40 ng/ml. The response was blocked completely by preincubation of the serum to which the antibody had been added with 20 \(\mu \)g/ml of the anti-id mAb MK2-CH\(_{\text{g1}}\) (Fig. 5). Similar results were obtained by addition of the murine mAb 763.74 into a nonimmune mouse serum (results not shown).

DISCUSSION

To prove the concept of an anti-id therapeutic vaccine based on mAb MK2–23 conjugated to keyhole limpet hemocyanin (1, 11), one prerequisite is to measure the specific antiantigen response within the general anti-anti-id response directly in the sera of immunized patients or animals. Obviously, to be of use, an immune response against the anti-id antibody should be directed against the MCSP and have a specificity similar to the anti-MCSP mAb 763.74. Hence, an assay format that uses the antigen directly, either as purified antigen or with antigen-positive cells, is needed for the evaluation of the clinical sera. Because the high-molecular weight MCSP antigen is not available in a purified state, the detection of the reaction of the specific anti-anti-id antibodies with the antigen presently is performed in technically demanding cell-based ELISAs. At the present time, the nonspecific binding of antibodies in the serum of animals or humans to melanoma cells is a serious problem in these assays. Cancer patients are known to develop antibodies against many cancer-associated antigens (32). In cell-based ELISAs, these antibodies will obscure the evaluation of the anti-anti-mAb response after vaccination. For these reasons, we decided to identify and characterize the epitope recognized by anti-MCSP mAb 763.74 from phage display libraries.

Because it is known that the antibody binds to the MCSP antigen after separation on SDS-PAGE (Refs. 1, 30, and our own results), we decided initially to select MCSP protein fragment displayed by the phages after the cloning of random DNase I-treated cDNA fragments.
antibody-binding activity in the serum was also measured (E).

The phages present the peptides with free NH₂ termini. It cannot be ruled out that the selection might have been influenced by this free NH₂ terminus. Because the MCSP bona fide epitope is expected to be

found within a protein sequence, the NH₂ terminus will not be free. By adding the five aa present on both ends of the peptide identified in the MCSP sequence, we attempted to obtain a peptide that matches the original situation of the epitope in its natural environment more closely. The longer peptide indeed binds to the paratope of mAb 763.74 and inhibits the binding of the mAb to phage 5 coated to ELISA wells.

At this point we do not have any good explanations for our negative results with the selection of protein fragments displayed by the gene fragment library. We should have been able to identify the same epitope because the number of clones available for the selection was theoretically large enough to allow the cloning of the linear epitope.

In summary, these results combined with the N-glycosidase data show that the MCSP epitope recognized by mAb 763.74 consists of a peptide sequence, without evidence for the involvement of carbohydrates.

The detection of the binding of mAb 763.74 added into human and murine sera to VHLNYEH-SGSGK(biotin) peptide microtitre plates demonstrates that an immunosorbent assay based on the defined MCSP epitope can be an advantageous alternative and can replace the demanding cell-ELISA for the evaluation of clinical trials of an anti-id antibody. In particular, the results obtained with the addition of the anti-MCSP mAb 763.74 into sera make us confident that the identified MCSP epitope peptide will be suitable for the detection of the immune responses of patients against the MCSP in clinical trial samples.

ACKNOWLEDGMENTS

We thank Drs. J. Mestan and J. Bruiggen for the supply of all of the melanoma cells and Drs. T. Hawthorne, H. Towbin, and N. Cerletti for the generous gift of all of the antibodies used during this study. We also thank Drs. H. Towbin, T. O’Reilly, and U. Regenass for critical reading of the manuscript.

REFERENCES

13. Yao, Z. J., Chan, M. C., Kao, M. C. C., and Chung, M. C. M. Linear epitopes of sperm
whales myoglobin identified by polyclonal antibody screening of random peptide
Suresh, M. R. Epitope mapping of prostate-specific antigen with monoclonal anti-
epitopes by phage-displayed peptides, II. Selection of clones recognized by a protec-
tive monoclonal antibody against the Bordetella pertussis toxin from phage peptide
17. Stephen, C. W., Helminen, P., and Lane, D. P. Characterisation of epitopes on human
p53 using phage-displayed peptide libraries: insights into antibody-peptide interac-
Identification of a heptapeptide that mimics a conformation-dependent binding site
of acetylcholine receptor by use of a phage-epitope library. Proc. Natl. Acad. Sci. USA,
19. Parmley, S. F., and Smith, G. P. Antibody-selectable filamentous fd phage vectors:
20. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned
21. Bluethner, M., Bautz, E. K. F., and Bautz, F. A. Mapping of epitopes recognized by
22. Petersen, G., Song, D., Hu¨gle-Do¨rr, B., Oldenburg, I., and Bautz, E. K. Mapping of
linear epitopes recognized by monoclonal antibodies with gene-fragment phage
gene-targeted phage display random epitope library to map an antigenic determinant
on the bluetongue virus outer capsid protein VP5. J. Immunol. Methods, 178: 1–12,
1995.
24. Kretzschmar, T., Zimmermann, C., and Geiser, M. Selection procedures for nonma-
tured phage antibodies: a quantitative comparison and optimization strategies. Anal.
heterogeneous with respect to metastatic capacity in athymic nude mice. J. Natl.
27. Kretzschmar, T., and Geiser, M. Evaluation of antibodies fused to minor coat protein
Identification of a heptapeptide that mimics a conformation-dependent binding site
of acetylcholine receptor by use of a phage-epitope library. Proc. Natl. Acad. Sci. USA,
30. Kantor, R. R., Albino, A. P., Ng, A. K., and Ferrone, S. Biosynthesis and intracellular
processing of four human melanoma associated antigens. Cancer Res., 46: 5223–5228,
1986.
Immunological responses to the tumor-associated antigen CA125 in patients with
advanced ovarian cancer induced by the murine monoclonal anti-idiotype vaccine
32. Luzzago, A., Felici, F., Tramontano, A., Pessi, A., and Cortese, R. Mimicking of
discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H
33. Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J. A family of
34. Gaynor, B., Putterman, C., Valadon, P., Spatz, L., Scharff, M. D. Peptide
libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus
35. Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J. A family of
libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus
37. Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J. A family of
Identification of the Human Melanoma-associated Chondroitin Sulfate Proteoglycan Antigen Epitope Recognized by the Antitumor Monoclonal Antibody 763.74 from a Peptide Phage Library

Martin Geiser, Delia Schultz, Agnès Le Cardinal, et al.