Identification of the Human Melanoma-associated Chondroitin Sulfate Proteoglycan Antigen Epitope Recognized by the Antitumor Monoclonal Antibody 763.74 from a Peptide Phage Library

Martin Geiser, Delia Schultz, Agnès Le Cardinal, Hans Voshol, and Carlos García-Echeverría

Novartis Pharma AG, Core Technology Area [M. G., D. S., A. L. C., H. V.] and Oncology Research [C. G.-E.], CH-4002 Basel, Switzerland

ABSTRACT

To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoprotein in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2–23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

INTRODUCTION

The high-molecular weight melanoma-associated antigen (1), also identified as MCSP3 (2, 3), is a major marker for melanoma (4) and is highly expressed at the surface of the tumor cells (1, 5). The high immunogenicity of the MCSP molecule in mice has allowed the preparation of several mAbs (5–10). One of those, mAb 763.74, has been used to generate an anti-id mAb, MK2–23 (9). After conjugation to a protein carrier and administration with an adjuvant, this anti-id mAb induced a specific humoral response in patients with advanced melanoma (1, 11). The treatment significantly increased the survival of these patients (1, 11). The clinical results obtained render the identification of the antigenic structure of the proteoglycan MCSP as mimicked by MK2–23 and recognized by mAb 763.74 of great interest, especially because the antigen, despite being cloned, has not been expressed as yet (12). The epitope or a peptide mimetic for the former could advantageously replace the antigen in an ELISA to be performed on clinical samples obtained from patients immunized with a protein carrier and administration with an adjuvant, this anti-id mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2–23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

Received 8/31/98; accepted 12/8/98.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom requests for reprints should be addressed, at Novartis Pharma AG, CTA/BMP, Building K 681.546, CH-4002, Basel, Switzerland. Phone: 41-61-696-5316; Fax: 41-61-696-9301; E-mail: martin.geiser@pharma.novartis.com.

The abbreviations used are: MCSP, melanoma-associated chondroitin sulfate proteoglycan; mAb, monoclonal antibody; anti-id, anti-idiotypic; PEG, polyethylene glycol; TBS, Tris-buffered saline; aa, amino acid.© 1999 American Association for Cancer Research.
Biopanning of the Phage Libraries Displaying either the MCSP Protein Fragments or the Random Linear Peptidomimetics. Coating, blocking, washing, and elution of the phages using 5-mL Maxisorb immunotubes (Nunc, Basel, Switzerland) was performed as published previously (24). The MCSP protein fragment phage library (1 × 10^{10} phages) was first screened against mAb 763.74 coated at a concentration of 50 μg/mL. The coating concentration of the antibody was reduced to 1 μg/mL for the second round and to 100 ng/mL for the third round. Finally, a fourth round with a coating of 10 ng/mL mAb 763.74 was conducted. After elution, the phages were amplified, precipitated twice with PEG 8000/NaCl, and titrated on E. coli XL1-Blue cells.

The linear peptidomimetic library (10 μL; 2 × 10^{13} phages) from the Ph.D. kit (Bioconcept Allschwil, Switzerland), with a diversity of 2 × 10^{12} individual peptides, was added to tubes prepared as described above for the selection of phages containing MCSP fragments but with a coating concentration of 100 μg/mL, 1 μg/mL, and 2 ng/mL, respectively, for the three rounds of selection. The recovered phages were added to exponentially growing E. coli XL1-Blue cells at 10^{6} cam. After the infection, the cells were grown at 37°C for 20 h, and the phages present in the growth medium were purified with PEG 8000/NaCl precipitation. The amplified phages were titrated in E. coli XL1-Blue cells (28). From individual clones, we prepared phages from the supernatant of the growth medium. The phages were precipitated and concentrated with PEG 8000/NaCl.

Chemiluminescence ELISA. The wells of a Microtiter 2-immunoassay plate (Dynatech Laboratories, Chantilly, VA) were coated with 2 μg/well of mAb 763.74, BSA, or with irrelevant IgG1 antibodies serving as negative controls in 50 mM Tris-HCl (pH 8.1). After the wells were blocked with Blotto (5% nonfat dry milk and 0.05% Tween 20 in TBS), the phages were added for 2 h at 37°C. The wells were washed 10 times with TBS containing 0.05% Tween 20, and anti-M13 antibody conjugated to horseradish peroxidase (Pharmacia, Uppsala, Sweden) was added at a 1:4 000 dilution in Blotto. After incubation for 1 h at room temperature and the same washing steps as described above, luminol, a chemiluminescent substrate (BM Chemiluminescence ELISA Reagent, Boehringer Mannheim, Mannheim, Germany) was added. Readings of emitted light were recorded as relative units (Microumat LB96P Berthold, Regensdorf, Switzerland).

In competitive assays with phages displaying mAb 763.74-binding peptides, the phages were incubated either with a decreasing concentration of the competitor anti-id mAb MK2-CHy1 or one of two different irrelevant antibodies for 1 h at room temperature prior to their addition to wells coated with 0.5 μg/well of mAb 763.74. The competitor mAb MK2-CHy1 referred to here is a chimera mouse:human antibody derivative of the original MK2–23 (29). The binding of phages in the presence of the competitor antibody was monitored with an anti-M13 antibody conjugated to horseradish peroxidase as described above. In other competitive ELISA experiments, we first coated the wells of the microtiter plate with 1 × 10^{13} phages. The preincubation mix, composed of the mAb 763.74 (10 μg/mL) and either the different competitor peptides or the competitor anti-id mAb MK2-CHy1, was added to the coated and blocked wells. In some experiments, we coated the wells with 0.5 μg of streptavidin. After the wells were blocked with Blotto and washed, 0.016 μg/well of the VHLNYEH-SGSGK(biotin) peptide in Blotto was added for 1 h at room temperature. The binding of mAb 763.74 to the peptide was monitored by ELISA with an antimouse antibody conjugated to horseradish peroxidase.

In other experiments, the mAb 763.74 was coated at 0.5 μg/well and preincubated with different varying concentrations of competitor melanoma A375 cells expressing the MCSP protein or with MCSP-negative S7 cells for 1 h at 37°C. After the washing step described above, 5 μM of the VHLNYEH-SGSGK(biotin) peptide in Blotto was added to the wells. We measured the binding of the peptide to mAb 763.74 with a 1:100 dilution of a stock solution (1 mg/mL) of streptavidin conjugated to horseradish peroxidase in Blotto by ELISA.

DNA Sequence Analysis. After the third round of selection, the recovered peptide phages were titrated on E. coli XL1-Blue cells. Thirty independent binding clones were analyzed by chemiluminescence phage ELISA, and 18 individual phages were chosen for DNA sequence analysis. After centrifugation, the replicative form of the phage DNA was isolated from the cells with the Qiagen miniprep kit. The DNA templates were used for automatic dideoxy-DNA sequencing with a Li-COR sequencing machine Model 4000 (MWG-Biotech, Ebersberg, Germany) and the Labstation Thermo Sequenase labeled primer cycle sequencing kit with 7-deaza-dGTP (Amersham, Zurich, Switzerland). The oligonucleotide primer 5′-CCC TCA TAG TTA GCG TAA CG-3′ with the suitable fluorescent dye was found at position 96 downstream of the region encoding the random peptides in the library and was obtained from MWG-Biotech.

Peptide Synthesis. Peptides were synthesized on a Milligen 9050 Plus automated peptide synthesizer (continuous flow), using chemical protocols based on the fluorenylmethoxycarbonyl strategy. In all cases, the crude peptides were purified by reversed-phase medium-pressure liquid chromatography on a C_{18} column (46 × 3.6 cm, 15–25 mm bead size; Lichraprep C-18) eluted with an acetonitrile-water gradient containing 0.1% trifluoroacetic acid. The purity of the final compounds was verified by reversed-phase analytical high-performance liquid chromatography, and the identity was assessed by mass spectrometric analysis.

RESULTS

Affinity Selection of a Phage Library Displaying Random MCSP Protein Fragments Using mAb 763.74. To identify the epitope recognized by the primary mAb 763.74 and by its surrogate present in the anti-anti-id antibody response in immunized patients, we expressed random DNase I fragments derived from the different cDNA clones encoding the MCSP core glycoprotein at the surface of the bacteriophage M13. At least 2 × 10^{4} (1.1 × 10^{3} × 18) independent transformants are necessary to create a library of expressed fragments large enough to isolate the epitope with a probability of 99.9% (28). This number is required because only 1 of 18 clones will be present in the library with a correct fusion between both the signal peptide and the minor coat protein III of the phages on both ends of the cloned DNase fragments, which themselves can be found in only one correct orientation (3 × 3 × 2 = 18). The library was converted to phages by rescuing with the helper phage VSCM13. After amplification, 1 × 10^{6} copies of each individual fragment derived from the cloned MCSP core glycoprotein are present in the library. After the four rounds of selection, the amplified phage population was analyzed for binding to mAb 763.74 by chemiluminescence phage ELISA. There was no detectable binding signal, even with very high phage concentrations, implying that no phage was selected from the library (data not shown).

Earlier data suggested that the epitope should be a linear peptide (1, 30). According to the size distribution of the fragments expressed and displayed by the phage library, we would have expected to identify the linear peptide corresponding to the epitope after our selection procedure. We thus rechecked the possibility that the epitope or part of it is located on the oligosaccharide moiety of the MCSP molecule.

Solubilization of MCSP from A375 Melanoma Cells and Endoglycosidase Treatment. After detergent lysis of the A375 cells, virtually all of the MCSP had been solubilized as indicated from Western blotting and staining with mAb 763.74. The antibody reactivity was reduced to 1–2% of the MCSP (M_{r} ~ 250,000). The material from the MCSP-negative S7 cells did not show, as expected, reactivity with the antibody (data not shown).

The lysates were treated with N-glycosidase F to remove the N-Asn-linked oligosaccharides from the protein. Staining of the blots

906
revealed that after the digestion, the mAb 763.74-reactive MCSP band shifted to a lower apparent molecular weight, suggesting the removal of one or more N-linked oligosaccharides. The treatment of the lysate with chondroitinase ABC showed no effect on mobility or immunoreactivity of the MCSP band consistent with the idea that this band represents the core protein (data not shown and Ref. 1). These results demonstrate and confirm earlier results that the epitope recognized by mAb 763.74 is associated with the core protein but is not found on N-linked oligosaccharides.

Selection of a Linear Random Peptide Phage Library on mAb 763.74. Prompted by the negative results obtained with the MCSP protein fragments expressed and displayed by phages, we decided to pan a heptapeptide phage display library against mAb 763.74 in the search for a peptide mimetic of the epitope. After two rounds of selection, phages displaying peptide specifically binding to mAb 763.74 were enriched (Fig. 1). The phage population bound neither to BSA nor to other negative control antibodies. However, as observed previously for the gene fragment phage library, the heptapeptide phage bound to the negative control mAb ACA125. ACA125 is an anti-id mAb mimicking an epitope of the tumor-associated antigen CA-125 (31). In additional control experiments (data not shown), we could show that mAb ACA125 binds to the VSCM13 helper phage as well as to the pBCsk(+) phage (Stratagene). A panning round performed in the presence of an excess of soluble ACA125 did not change the binding characteristics of the phages to ACA125 bound to the microtiter plate (data not shown). Hence, the antibody is binding nonspecifically to the phage particles and not to the displayed peptides. This nonspecific binding was, however, useful as an internal experimental marker for the binding affinity of the selected phages. As expected, the third round of panning performed at a higher stringency of selection allowed the identification of phages binding more strongly to the antibody offered in the ELISA wells (Fig. 1). We have not tried to increase the selection stringency beyond the third round, which used a capture concentration of 2 ng/ml mAb 763.74 in the immunotubes.

In a competitive chemiluminescence phage ELISA, an increasing amount of the anti-id mAb MK2-CHy1 was added to a constant amount of the peptide phages. After the preincubation, the phages were added to the wells coated with mAb 763.74, and we found that the binding of the selected phage population to the paratope was inhibited by mAb MK2-CHy1 but not by two irrelevant isotype-matched antibodies to mAb 763.74 (data not shown). After a third and final round of selection on mAb 763.74, individual phages were propagated on E. coli cells, and clones were selected for DNA sequence analysis.

Identification and Characterization of the Heptapeptides Encoded by the Phage Selected on mAb 763.74. The DNA encoding the heptapeptide displayed by 18 different phages was sequenced, and the consensus sequence VHLNYEH was deduced (Fig. 2). The VHLNYEH sequence from phage 5 was found eight times, whereas the other sequences were found only once or twice. This strongly suggests that VHLNYEH represents the optimal sequence binding to mAb 763.74. The binding of phage 5 bound to mAb 763.74 was similar to the binding of the original phage population from which it was isolated (data not shown). Furthermore, it bound to the site on mAb 763.74 that is required for the binding of anti-id mAb MK2-CHy1 (Fig. 3A). The VHLNYEHSGSGK peptide was synthesized and biotinylated on the side chain of the lysine at the COOH terminus of the peptide. The residues SGSG were designed as a linker to allow the spatial separation of the epitope from the coupled biotin molecule. The same results were obtained in competitive ELISA experiments in which mAb 763.74 was incubated with different concentrations of the anti-id mAb MK2-CHy1 before addition to the biotinylated VHLNYEHSGSGK peptide coated in streptavidin-containing wells (data not shown). Melanoma A375 cells, but not the MCSP-negative cell line S7, were able to inhibit the binding of the VHLNYEH-SGSGK-biotin peptide to coated mAb 763.74 in a concentration-dependent manner (Fig. 3B). These results demonstrate that the antigen is a competitor for the peptide-binding site of mAb 763.74.

The aa consensus sequence derived from the selected phage library was used to scan the known aa sequence of the MCSP protein for homology. The best match was found between positions 289 and 294 of the antigen (Fig. 2). The major discrepancy was that the two His were only three residues apart within the antigen, whereas they were always separated by four residues in the selected peptides displayed by phages. Peptides corresponding to several of the selected phage sequences or to the hexapeptide identified on the MCSP...
antigen were synthesized. These peptides were the MCSP-derived peptide (VHINAH); its derivative VHLNAH; the peptide PHEVS-VHINAH-RLEIS, which encompasses five aa upstream and downstream of the putative MCSP antigen epitope; and the peptides encoded by phages 5 (VHLNYEH), 11, 13, and 22, (see Fig. 2 for the definition of these peptides). Clearly, all of the peptides derived from the phage library and the three peptides derived from the antigen were able to inhibit the binding of mAb 763.74 to the coated phage 5 in a concentration-dependent manner (Fig. 4). The peptides defined by phages 5, 11, 13, and 22 displayed very similar properties (results not shown). As expected, the random peptide control sequence (LQDVHNF) did not compete. By comparing the inhibition pattern of the interactions between phage 5/mAb 763.74 and the different peptides, we found minor differences; however, we consistently observed that the VHINAH peptide inhibited the interactions better than the consensus peptide VHLNYEH. These results demonstrate that the epitope for mAb 763.74 is VHINAH, which corresponds to the sequence between positions 289 and 294 of the MCSP antigen.

To demonstrate that the peptide identified as the epitope for mAb 763.74 can be used as a surrogate for the MCSP antigen in ELISA experiments, we immobilized the biotinylated peptide to streptavidin-coated microtiter plates and added the antibody at different concentrations in 10% human serum obtained from normal blood donors and measured the presence of the antibody by ELISA. We were able to measure the presence of the antibody down to a concentration of 40 ng/ml. The response was blocked completely by preincubation of the serum to which the antibody had been added with 20 μg/ml of the anti-id mAb MK2-CH1 (Fig. 5). Similar results were obtained by addition of the murine mAb 763.74 into a nonimmune mouse serum (results not shown).

DISCUSSION

To prove the concept of an anti-id therapeutic vaccine based on mAb MK2–23 conjugated to keyhole limpet hemocyanin (1, 11), one prerequisite is to measure the specific antiantigen response within the general anti-anti-id response directly in the sera of immunized patients or animals. Obviously, to be of use, an immune response against the anti-id antibody should be directed against the MCSP and have a specificity similar to the anti-MCSP mAb 763.74. Hence, an assay format that uses the antigen directly, either as purified antigen or with antigen-positive cells, is needed for the evaluation of the clinical sera. Because the high-molecular weight MCSP antigen is not available in a purified state, the detection of the reaction of the specific anti-anti-id antibodies with the antigen presently is performed in technically demanding cell-based ELISAs. At the present time, the nonspecific binding of antibodies in the serum of animals or humans to melanoma cells is a serious problem in these assays. Cancer patients are known to develop antibodies against many cancer-associated antigens (32). In cell-based ELISAs, these antibodies will obscure the evaluation of the anti-anti-mAb response after vaccination. For these reasons, we decided to identify and characterize the epitope recognized by anti-MCSP mAb 763.74 from phage display libraries.

Because it is known that the antibody binds to the MCSP antigen after separation on SDS-PAGE (Refs. 1, 30, and our own results), we decided initially to select MCSP protein fragment displayed by the phages after the cloning of random DNase I-treated cDNA fragments

Fig. 3. Inhibition of the binding of the peptidic epitope to mAb 763.74 by anti-id mAb MK2-CH1 and melanoma cells. A, mAb 763.74 was preincubated in the presence of competitor anti-id mAb MK2-CH1 before addition to microtiter wells coated with the phage 5. Binding of mAb 763.74 was detected by ELISA. B, melanoma A375 (○) or S7 cells (□) were preincubated in wells coated with mAb 763.74. After washing, the VHINAH-SGSGK(biotin) peptide was added to the wells and its binding to the antibody detected by ELISA with streptavidin conjugated to horseradish peroxidase. A375 cells express the MCSP antigen, whereas S7 cells do not.

Fig. 4. Inhibition of the binding of mAb 763.74 to the peptidic epitope by soluble peptides. The microtiter plates were coated with the phage 5. mAb 763.74 was preincubated with the different peptides at the concentrations indicated and added to the wells (100 μl/well). Binding of mAb 763.74 to phage 5 was detected by ELISA.
found within a protein sequence, the NH₂ terminus will not be free. By adding the five aa present on both ends of the peptide identified in the MCSP sequence, we attempted to obtain a peptide that matches the original situation of the epitope in its natural environment more closely. The longer peptide indeed binds to the paratope of mAb 763.74 and inhibits the binding of the mAb to phage 5 coated to ELISA wells.

At this point we do not have any good explanations for our negative results with the selection of protein fragments displayed by the gene fragment library. We should have been able to identify the same epitope because the number of clones available for the selection was theoretically large enough to allow the cloning of the linear epitope. In summary, these results combined with the N-glycosidase data show that the MCSP epitope recognized by mAb 763.74 consists of a peptide sequence, without evidence for the involvement of carbohydrates.

The detection of the binding of mAb 763.74 added into human and murine sera to VHLNYEH-SGSGK(biotin) peptide microtiter plates demonstrates that an immunosorbent assay based on the defined MCSP epitope can be an advantageous alternative and can replace the demanding cell-ELISA for the evaluation of clinical trials of an anti-id antianimala vaccination with the MK2-CH₅ anti-id mAb. In particular, the results obtained with the addition of the anti-MCSP mAb 763.74 into sera make us confident that the identified MCSP epitope peptide will be suitable for the detection of the immune responses of patients against the MCSP in clinical trial samples.

ACKNOWLEDGMENTS

We thank Drs. J. Mestan and J. Brüggen for the supply of all of the melanoma cells and Drs. T. Hawthorne, H. Towbin, and N. Cerletti for the generous gift of all of the antibodies used during this study. We also thank Drs. H. Towbin, T. O’Reilly, and U. Regeless for critical reading of the manuscript.

REFERENCES

Identification of the Human Melanoma-associated Chondroitin Sulfate Proteoglycan Antigen Epitope Recognized by the Antitumor Monoclonal Antibody 763.74 from a Peptide Phage Library

Martin Geiser, Delia Schultz, Agnès Le Cardinal, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/59/4/905

Cited articles This article cites 32 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/59/4/905.full#ref-list-1

Citing articles This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/59/4/905.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/59/4/905.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.