Fas (APO-1/CD95) Signaling Pathway Is Intact in Radioresistant Human Glioma Cells

Garret L. Yount,1,2 Kiera S. Levine, Hiroko Kuriyama, Daphne A. Haas-Kogan,3 and Mark A. Israel4

Preuss Laboratory for Molecular Neuro-oncology, Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143

ABSTRACT

Radiation-induced apoptosis can be mediated through pathways initiated by either DNA damage or ceramide-induced Fas signaling. Glioblastoma multiforme is a primary brain tumor that is highly resistant to irradiation, and U-87 MG, SF126, and T98G are glioblastoma-derived cell lines that mimic this characteristic. We found that these radioresistant glioma cells are susceptible to Fas-mediated cell death induced by treatment with either anti-Fas antibody or exogenous ceramide. Fas-mediated cell death in these cell lines is p53-independent. These data demonstrate that apoptosis can be induced by ceramide and mediated through the Fas pathway in glioma cells, although high-dose ionizing radiation fails to trigger this pathway.

INTRODUCTION

Gliomas are the most common primary tumor of the adult human central nervous system (1). Despite current efforts to develop more effective clinical treatment strategies, median survival time for patients with WHO grade IV glioma, glioblastoma multiforme, remains approximately 1 year (1). An important factor contributing to this prognosis is the relative resistance of many gliomas to cytotoxic therapy in general and radiation therapy in particular (2). Nonetheless, radiation therapy is the most widely used modality in the management of gliomas (3). Radioresistance of tumor cells is frequently associated with defects in the pathways leading to apoptosis (4). For example, the product of the p53 tumor suppressor gene has been shown to be responsible for mediating apoptosis after DNA damage in several cell types, and the loss of wild-type p53 function can render cells resistant to radiation (5). Similarly, a relationship between resistance to radiation-induced apoptosis and defective ceramide signaling has been demonstrated in radioresistant tumor cells and in fibroblasts genetically deficient in ceramide synthesis (6, 7). Because activation of Fas signaling by ceramide mediates radiation-induced apoptosis in several cell types (8), we assessed the Fas signaling pathway as to whether it is responsible for mediating apoptosis after DNA damage in several cell lines, and the loss of wild-type p53 function can render cells resistant to radiation (5).

MATERIALS AND METHODS

Cell Culture and Infection. All cell lines were maintained as exponentially growing monolayer cultures in DMEM supplemented with 10% fetal bovine serum (Life Technologies, Inc.), penicillin, and streptomycin in a humidified incubator at 37°C and 8% CO2.

RESULTS

U-87 MG human glioma tumor cells were treated with a single dose of 0, 8, or 20 Gy ionizing radiation, and their viability was evaluated for approximately 16 days (Fig. 1). Unirradiated cells continued to grow exponentially, doubling about every 2 days. Irradiated cells, however, were growth-arrested. Cell viability and cell density remained unchanged throughout the 16 days of evaluation in cultures treated with 0 and 8 Gy, but decreased significantly in cultures treated with 20 Gy (Fig. 1A). These results are consistent with previous observations (2).

Received 9/9/98; accepted 1/20/99.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by NIH Grant CA 13525 and a Grant from the Betz Foundation (to M. A. L.); NIH Grant MO1RR01271 and a Grant from Radiological Society of North America (to D. A. H.-K.); and a Fellowship from the Robert Steel Foundation for Pediatric Cancer Research (to G. L. Y.).

2 Present address: Complementary Medicine Research Institute, California Pacific Medical Center Research Institute, 2330 Clay Street, Stern Building, San Francisco, CA 94115-1932.

3 Present address: Department of Radiation Oncology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0226.

4 To whom requests for reprints should be addressed, at Brain Tumor Research Center, Department of Neurological Surgery, University of California San Francisco, HSE 722, 513 Parnassus Avenue, San Francisco, CA 94143-0520. Phone: (415) 476-6662; Fax: (415) 476-6388; E-mail: israelc@cg1.ucsf.edu.

5 The abbreviation used is: ICE, interleukin lβ converting enzyme.
radiation but are susceptible to Fas-mediated cell death. U-87 MG cells are resistant to the cytotoxic effects of high doses of ionizing radiation; data not shown). In two independent experiments, U-87 MG cells exhibited a relatively radioresistant phenotype (less than 2 log kill after treatment with 8 Gy) as described previously (9), but treatment with anti-Fas antibody and cycloheximide underwent approximately 43% cell death. Cell death increased as the concentration of cycloheximide was increased. The combination treatment of anti-Fas antibody with 10 μg/ml cycloheximide induced cell death in 90% of cells 24 h after a 5-h incubation. The potentiation of Fas-mediated cell death by cycloheximide has been reported previously and suggests that short-lived cytoprotective proteins synthesized by glioma cells confer resistance to Fas-mediated cell death (12). Combining radiation treatment with cycloheximide treatment did not alter the response of U-87 MG cells to radiation (5 h cycloheximide treatment beginning 2 h before or at the time of irradiation; data not shown).

We evaluated two additional glioma cell lines, SF126 and T98G, for susceptibility to Fas-mediated cell death. Like U-87 MG, these glioma cell lines were previously determined by clonogenic assays to be highly radioresistant (9, 10). These cell lines were incubated with anti-Fas antibody and cycloheximide for 5 h, washed with fresh medium, and 24 h later evaluated for cell viability. Each cell line treated with anti-Fas antibody underwent extensive cell death (Fig. 2). Both SF126 and T98G have been previously characterized and are known to express a mutant p53 protein (13). Although the U-87 MG cell line expresses wild-type p53 protein (13), the response of SF126 and T98G to anti-Fas antibody suggested that wild-type p53 function is not required for Fas-induced cell death in glioma-derived cells. To explore this possibility more critically, we used the U-87 MG clonal derivatives U87–175.4 and U87–175.13, which express an exogenously introduced, dominant negative mutant p53 that functionally inactivates endogenous wild-type p53 protein function (11). U87-LUX.6 and U87-LUX.8 are clonal isolates that express a control vector. We previously verified the effectiveness of dominant negative mutant p53 expression in these cell lines by demonstrating a greatly diminished cell cycle arrest after DNA damage in the U87–175.4 and U87–175.13 cells compared with the U-87 MG parent cells and the U87-LUX.6 and U87-LUX.8 clonal derivatives (11). Parental U-87 MG cells and the clonal derivatives of U-87 MG were examined as described above for anti-Fas antibody-induced cell death. Each of these cell lines underwent significant Fas-mediated cell death with approximately 55–95% of cells dying (Fig. 2). These data indicate that anti-Fas antibody treatment kills radioresistant glioma cells in a p53-independent manner. None of the cell lines examined in Fig. 2 exhibited evidence of cell death when a nonimmune IgG was substituted for anti-Fas antibody (data not shown).

The Fas signaling pathway can trigger apoptotic cell death in susceptible cells (14). In the experiments shown in Fig. 2, we used Fig. 1. U-87 MG glioma cells are susceptible to Fas-mediated cell death. U-87 MG glioma cells were exposed to ionizing radiation, 8 Gy (□) and 20 Gy (○), or incubated with anti-Fas antibody in combination with cycloheximide (●), and the total number of viable cells was assessed every 4 days for 16 days using the trypan blue exclusion assay. Untreated cells (▲) were assessed only at days 0 and 4. Data points, the mean of triplicate determinations; bars, SE.

Fig. 2. Anti-Fas antibody induces cell death of glioma-derived cell lines. SF126 (p53 mutant), T98G (p53 mutant), U-87 MG (p53 wild-type), and four independent clonal derivatives of U-87 MG were seeded in 96-well plates and treated with anti-Fas antibody and cycloheximide. Cell viability was assessed 24 h later using an acid phosphatase assay. The histogram plots percent cell death relative to control cultures treated only with cycloheximide. Solid bars, the mean of four determinations in a single experiment representative of 2 comparable experiments; bars, SE.
morphological examination and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling analysis to confirm that these cells died of apoptosis (data not shown). To further characterize apoptosis mediating the anti-Fas antibody-induced glioma cell death, we examined U-87 MG cells after antibody treatment for biological changes characteristic of apoptosis. Early in the apoptotic process phosphatidylserine becomes exposed on the cell surface by moving from the inner to the outer surface of the plasma membrane. This alteration in plasma membrane structure can be detected using Annexin V-FITC, which binds to phosphatidylserine and is detectable by fluorescence spectroscopy. We observed a dramatic increase in phosphatidylserine detectable on the surface of U-87 MG cells 5 h after treatment with anti-Fas antibody and cycloheximide relative to cells treated with anti-Fas antibody alone or with ionizing radiation (up to 20 Gy) either in the presence or absence of cycloheximide (Fig. 3).

We sought to further evaluate the involvement of apoptosis in the Fas-mediated death of U-87 MG cells by evaluating cells treated with anti-Fas antibody and cycloheximide in the presence of a tetrapeptide that inhibits caspases, acetyl-Tyr-Val-Ala-Asp-chloromethylketone (YVAD-CMK). This synthetic peptide is able to inhibit apoptotic cell death mediated by the ICE in other cell systems. Analysis of cell viability 24 h after treatment revealed that anti-Fas antibody treatment of cycloheximide-treated U-87 MG cells incubated with the ICE inhibitor sustained a level of cell viability comparable to the level observed in cells treated with cycloheximide alone, whereas the viability of cells exposed to anti-Fas antibody without the ICE inhibitor decreased approximately 77% compared with these same control cells (data not shown).

Ionizing radiation rapidly induces the production of ceramide, which in turn can activate the Fas signaling pathway leading to apoptosis (8). We sought to determine whether the addition of exogenous ceramide would induce apoptosis in these glioma cells. We quantitated the induction of apoptosis after the addition of C2-ceramide to U-87 MG cells in the absence of serum. Treatment with ceramide for 24 h induced extensive apoptosis as demonstrated by an increase in the percentage of cells with a subdiploid DNA content (Fig. 4). We found that the subdiploid population increased from approximately 9% in untreated control samples to approximately 45% in samples treated for 24 h with ceramide (100 μM). U-87 MG cells cultured in the presence of serum exhibited a decreased basal level of apoptosis but remained susceptible to ceramide-induced apoptosis. The subdiploid population of U87 MG cells cultured in 10% serum increased from approximately 4% in untreated cultures to nearly 30% in cultures treated with 100 μM ceramide (data not shown). Similarly, when treated with 100 μM ceramide, 20% of SF126 cells and 55% of T98G cells underwent apoptosis (data not shown).

DISCUSSION

Radiation-induced apoptosis may be initiated by signals originating in the nucleus (15) or in the plasma membrane (16, 17). Ultimately the molecular pathways that mediate apoptosis lead to the activation of caspases whose substrates direct the terminal events of apoptosis (18). Ionizing radiation initiates the generation of ceramide by hydrolysis of sphingomyelin in the plasma membrane (16), which causes an activation of the Ced-3/ICE-like cysteine protease, CPP32, followed by apoptosis (18). Recently, ceramide was shown to mediate the enhanced expression of the pro-apoptotic molecule, Fas ligand, during radiation- and drug-induced apoptosis of cancer cells (8). Activation of Fas signaling is thought to be the mechanism of ceramide-induced apoptosis (8).
The Fas (APO-1/CD95) receptor-ligand system plays a key role in the regulation of apoptosis. Fas belongs to the nerve growth factor/tumor necrosis factor receptor superfamily and initiates apoptosis on binding to Fas ligand or anti-Fas antibodies. The Fas receptor is expressed in primary astrocytic brain tumors, with an increasing incidence of expression in higher-grade tumors (19). We investigated whether Fas-mediated apoptosis could be triggered in highly radioresistant human glioma cell lines (9, 10) by assessing the susceptibility of these cells to anti-Fas antibody treatment. We found that U-87 MG, SF126, and T98G cells are killed by treatment with anti-Fas antibody in a p53-independent manner. The ability of cancer cells to undergo apoptosis may be a critical determinant of the outcome of therapy. We found evidence for an intact apoptotic program in radioresistant glioma cells that could be triggered by treatment with either anti-Fas antibody or exogenous ceramide. Thus, the radioresistance of these glioma cells cannot be explained by a general inability of these cells to undergo apoptosis as has been suggested for other radioresistant cells (20). The radioresistance of gliomas may result from an inability of these tumor cells to hydrolyze sphingomyelin and to produce ceramide in response to radiation. This possibility is consistent with preliminary observations from our laboratory indicating that ionizing radiation induces ceramide production in some radiosensitive central nervous system tumors but not in any cell lines derived from glioblastoma multiforme that we have examined to date.6 The results of this study suggest that therapeutic approaches that are aimed at enhancing ceramide production or triggering the Fas receptor-ligand system in tumor cells may contribute to the successful treatment of radioresistant glioma tumors.

REFERENCES

6 H. Kuriyama and M. A. Israel, unpublished data.
Fas (APO-1/CD95) Signaling Pathway Is Intact in Radioresistant Human Glioma Cells

Garret L. Yount, Kiera S. Levine, Hiroko Kuriyama, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/59/6/1362

Cited articles
This article cites 19 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/59/6/1362.full.html#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
/content/59/6/1362.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.