A Region of Deletion on Chromosome 22q13 Is Common to Human Breast and Colorectal Cancers

Antoni Castells, James F. Gusella, Vijaya Ramesh, and Anil K. Rustgi

Abstract

Chromosomal allelic losses have varying frequency in breast cancer, with key regions including chromosomes 1, 3p, 7q, 9p, 16q, 17, and 22q. Recently, we have been able to map a new target region of allelic loss on chromosome 22q involved in colorectal cancer. The aim of the current investigation was to determine whether this target region may also be involved in human breast carcinogenesis. Thirty-six pairs of matched normal and tumor specimens from breast cancer patients, as well as eight breast cancer-derived cell lines, were genotyped using 17 microsatellite markers spanning chromosome 22q. Allelic deletion was found in 19 of 36 tumors (53%), and the pattern observed in those cases with partial losses was consistent with a region flanked by D22S171 and D22S928. This interval overlaps that identified in colorectal cancer and comprises nearly 1.1 Mb. This study provides evidence of a common region of deletion on chromosome 22q13 involved in both breast and colorectal cancers and underscores the existence of putative tumor suppressor gene(s) at this location.

Introduction

Breast cancer is the most common malignancy among women, and it represents the cause of death in approximately 20% of all females who succumb to cancer in developed countries (1). Many investigations have led to the elucidation of some of the genetic mechanisms involved in carcinogenesis. Inactivation of tumor suppressor genes, usually by point mutation in one allele and deletion of the other allele, seems to play a critical role (2). Identification of such genes has been carried out through initial determination of allelic loss in tumor samples. In this context, chromosomal allelic losses have varying frequency in breast cancer, with key regions including chromosomes 1, 3p, 7q, 9p, 16q, 17, and 22q (3).

Allelic loss on 22q is a common event in breast cancer, with a frequency varying between 11% and 66% (3–8). However, no tumor suppressor gene on chromosome 22q involved in this neoplasm has been identified thus far. NF2, the gene whose mutant forms are responsible for the neurofibromatosis type 2 syndrome, maps to 22q12 (9). Its role in the acoustic form of neurofibromatosis has made it a tumor suppressor gene in these neoplastic processes. As part of this effort, identifications have led to the elucidation of some of the genetic mechanisms involved in carcinogenesis. Inactivation of tumor suppressor genes, usually by point mutation in one allele and deletion of the other allele, seems to play a critical role (2). Identification of such genes has been carried out through initial determination of allelic loss in tumor samples. In this context, chromosomal allelic losses have varying frequency in breast cancer, with key regions including chromosomes 1, 3p, 7q, 9p, 16q, 17, and 22q (3).

Materials and Methods

Tissues and Cell Lines. Thirty-six paired normal and breast tumor specimens were obtained from the Massachusetts General Hospital Tumor Bank. Tumors were classified as invasive ductal carcinoma in 28 patients, invasive lobular carcinoma in 4 patients, ductal carcinoma in situ in 3 patients, and medullar carcinoma in the remaining patient. Genomic DNA was obtained from frozen tissues by phenol-chloroform extraction and ethanol precipitation (17).

Additionally, eight breast cancer-derived cell lines obtained from the National Cancer Institute (HS-578, MDA-MB-231, MDA-MB-453, MCF7-ADR, DU4475, SK-Br-3, ZRB, and MCF7) were grown under standard conditions. Thereafter, genomic DNA was obtained from each cell line, according to standard procedures (17).

Microsatellite DNA Analysis. Evaluation of chromosome 22q allelic loss was carried out by a PCR-based DNA polymorphism analysis at 17 loci distributed across chromosome 22q (D22S268, D22S274, D22S276, D22S282, D22S283, D22S284, D22S420, D22S421, D22S928, D22S1140, D22S1153, D22S1160, D22S1168, D22S1169, D22S1170, and D22S1171). These loci correspond to dinucleotide (CA), repeats, and their location was based on the GeneBank linkage map (18). PCR was performed with normal and tumor DNA templates as described previously (11). Sense and antisense
primers for these loci are available in the Genome Database.\(^3\) PCR products were separated in denaturing 6% polyacrylamide sequencing gels at 70 W for 2 h. Gels were dried and exposed to X-OMAT AR film (Kodak, Rochester, NY) overnight without an intensifying screen. Alleles were scored as described previously (11).

All breast cancer-derived cell lines, with the exception of HS-578, were analyzed for homozygous deletions. For HS-578, DNA from the normal counterpart was available, and DNA polymorphism analysis was performed in a manner similar to that described for tissue samples.

Physical mapping of polymorphic markers involved in the minimal region of deletion was done in accordance with the DNA sequence of human chromosome 22\(^4\) (16).

**Results and Discussion**

Microsatellite DNA analysis identified 19 of 36 tumors (53%) displaying allelic loss in at least one marker (Fig. 1). Of the 19 tumors, 10 cases exhibited losses in all informative loci, suggesting that one copy of chromosome 22 had been completely lost. The remaining nine tumors showed variable patterns of partial loss on 22q with overlap.

![Fig. 1. Chromosome 22q deletion mapping. Microsatellite marker names are on the Genethon linkage map and on the ideogram. Clinical case numbers are depicted above each map: ●, allelic loss; ○, retention of both alleles; no circles, noninformative. Rectangle, minimal overlap region.](image)

- D22S420
- D22S421
- D22S266
- D22S283
- D22S284
- D22S276
- D22S272
- D22S1171
- D22S1140
- D22S1168
- D22S274
- D22S928
- D22S1153
- D22S1141
- D22S1160
- D22S1170
- D22S1169

![Fig. 2. DNA polymorphism analysis. Representative autoradiograms from two clinical cases with partial losses are shown for those microsatellite loci limiting the deletion region. For case number 20, D22S1171 exhibits retention of both alleles, whereas D22S1140 exhibits allelic loss, thereby defining the centromeric boundary. For case number 27, D22S1168 exhibits allelic loss, whereas D22S928 exhibits retention of both alleles, thus defining the telomeric boundary. N, normal DNA; T, tumor DNA. Arrowhead, the deleted allele position.](image)

Fig. 2. DNA polymorphism analysis. Representative autoradiograms from two clinical cases with partial losses are shown for those microsatellite loci limiting the deletion region. For case number 20, D22S1171 exhibits retention of both alleles, whereas D22S1140 exhibits allelic loss, thereby defining the centromeric boundary. For case number 27, D22S1168 exhibits allelic loss, whereas D22S928 exhibits retention of both alleles, thus defining the telomeric boundary. N, normal DNA; T, tumor DNA. Arrowhead, the deleted allele position.
specific microsatellite markers are not found, as noted in our previous analysis of colorectal cancer cell lines (11). The lack of homozygous deletion may suggest alternative inactivating mechanisms of putative tumor suppressor genes.

When the breast tumors were classified histologically, allelic deletion on 22q was observed in 15 of 28 (54%) invasive ductal carcinomas, 3 of 4 (75%) invasive lobular carcinomas, and in the single medullar carcinoma. By contrast, none of the three ductal carcinomas in situ exhibited allelic loss in any loci. Although the relatively small number of cases corresponding to some of these histological subtypes precludes definitive conclusions, it is tempting to hypothesize that candidate gene(s) in this region may be involved in advanced stages of tumor progression, especially for ductal carcinoma. This notion may be supported by other studies in which allelic loss on 22q was rarely observed in ductal carcinoma in situ (23) but was observed in a high proportion of either invasive ductal (up to 66%) or lobular (75%) carcinoma (7, 8, 24). Nevertheless, in a study based on comparative genomic hybridization in lobular carcinoma in situ, allelic loss on 22q was observed in 52% of cases (25). Taking into account all these considerations, it is possible that mutations in one putative 22q tumor suppressor gene may represent a late event for tumor progression in the majority of breast carcinomas, as well as an early event in those less prevalent neoplasms with lobular differentiation. However, the involvement of different genes located in the same or nearby regions cannot be ruled out.

Allelic loss on chromosome 22q is a common phenomenon not only in breast cancer but also in other neoplasms. Whereas cytogenetic and genome-wide allelotyping studies allow one to estimate the frequency of 22q deletion, identification of the specific region of deletion has relied on refined mapping analysis. At present, this information is available in breast, colon, and ovarian cancers, as well as oral squamous cell carcinomas and astrocytomas (Refs. 7, 8, and 11–14; Fig. 3). It is important to note that the recent completion of human chromosome 22 (16) allows, for the first time, to map precisely all markers involved in each region of deletion. This comprehensive approach indicates that the interval identified in the present investigation is consistent with data derived from colon (11), ovarian (12),...
and oral (14) cancer studies, thus delimiting a minimal region of deletion flanked by markers D22S1171 and D22S928. In addition, a larger region of deletion involved in astrocytomas (13), breast (8), and ovarian cancers (12) could be limited by markers D22S284 and D22S928.

After defining a 1-Mb minimal region of deletion, our effort has been focused on identifying genes mapped in that area. As an initial consideration, searches through the Sanger Center as well as the Human Genome Database\(^5\) and the National Center for Biotechnology Information\(^5\) were conducted. Unfortunately, no known gene was located between the above-mentioned markers. The completion of the chromosome 22q sequencing project permitted the prediction of unknown genes using computer-based approaches. Following this strategy, the Sanger Center predicted the existence of eight genes and four pseudogenes between markers D22S1171 and D22S928 (16), and we have also been able to identify four additional genes (Fig. 4). These predicted genes match EST sequences or exhibit similarities with some known genes. Nevertheless, it is important to note that before undertaking mutational and functional analyses, it is essential to verify the existence of these predicted genes by means of experimental approaches, a process that is ongoing in our laboratory.

In conclusion, this study provides evidence of a common region of deletion on chromosome 22q13 involved in both breast and colorectal processes, and it reinforces the existence of putative tumor suppressor gene(s) in this location that may be involved in different neoplasms. The identification of a 1-Mb minimal region of deletion may serve as the basis for the isolation of such a gene by positional cloning and/or computer-based gene prediction approaches.

References


A Region of Deletion on Chromosome 22q13 Is Common to Human Breast and Colorectal Cancers

Antoni Castells, James F. Gusella, Vijaya Ramesh, et al.

_Cancer Res_ 2000;60:2836-2839.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/11/2836

Cited articles This article cites 25 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/11/2836.full#ref-list-1

Citing articles This article has been cited by 14 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/11/2836.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.