Expression of Estrogen Receptor (ER)-α and ER-β in Normal and Malignant Prostatic Epithelial Cells: Regulation by Methylation and Involvement in Growth Regulation

Kin-Mang Lau, Mark LaSpina, John Long, and Shuk-Mei Ho

Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655 [K-M.L., S-M.H.]. Department of Biology, Tufts University, Medford, Massachusetts 02155 [K-M.L., M.L.] and Urological Clinic, New England Medical Center, Boston, Massachusetts 02111 [J.L.]

ABSTRACT

The aim of the current study is to demonstrate normal and malignant prostatic epithelial cells (PrECs) as targets for receptor-mediated estrogenic and antiestrogenic action. Using an improved protocol, we have successfully isolated and maintained highly enriched populations of normal PrECs from ultrasound-guided peripheral zone biopsies, individually determined to be morphologically normal. Semiquantitative reverse transcription-PCR analyses were used to determine whether transcripts of estrogen receptor (ER)-α and those of ER-β were expressed in our normal PrEC primary cultures, in a commercially available PrEC preparation (PrEC; Clontech), in an immortalized PrEC line established from a benign prostatic hyperplasia specimen (BPH-1), and in three prostatic cancer cell lines (LNCaP, PC-3, and DU145). Expression levels of ER-α and ER-β transcripts were related to those of two estrogen-responsive genes [progesterone receptor (PR) and pS2], at the message levels, to gain insights into the functionality of the ER subtypes in PrECs. Interestingly, only transcripts of ER-β, but not those of ER-α, were found in our primary cultures of normal PrECs, along with both PR and pS2 mRNA. These data strongly suggest that estrogen action was signaled exclusively via ER-β in normal human PrECs. In contrast, PrEC (Clontech) and BPH-1 cells expressed both ER-α and ER-β transcripts and no PR nor pS2 mRNA in PrEC and only a minimal level of PR mRNA in BPH-1. Among the three prostate cancer cell lines, LNCaP expressed ER-β mRNA along with transcripts of PR and pS2, DU145 expressed messages of ER-β and PR, and PC-3 cells exhibited ER-α, ER-β, and pS2 mRNA. Thus, unlike normal PrECs, expression patterns of these genes in malignant PrECs are more variable.

Treatment of prostate cancer cells with demethylation agents effectively reactivated the expression of ER-α mRNA in LNCaP and DU145 and that of pS2 message in DU145. These findings provide experimental evidence that ER-α gene silencing in prostate cancer cells, and perhaps also in normal PrECs, are caused by DNA hypermethylation.

To evaluate the potential of using antiestrogens as prostate cancer therapies, we have assessed the growth-inhibitory action of estrogens (estradiol and diethylstilbestrol) and antiestrogens (4-hydroxy-tamoxifen and ICI-182,780) on PC-3 and DU145 cells. In PC-3 cells, which express both ER subtypes, estrogens as well as antiestrogens are effective inhibitors. Importantly, the ICI 182,780-induced antiproliferative effects were reversed by cotreatment of DU145 cells with an ER-β antisense oligonucleotide, hence lending additional support to a central role played by ER-β in mediating growth-inhibitory action of antiestrogens.

INTRODUCTION

Charles Huggins pioneered the use of the synthetic estrogen, DES, in the treatment of advanced PCa in the early 1940s (1). The action of DES was thought to be mediated via a blockade of the pituitary-testicular axis, which effectively lowered circulating levels of androgen and caused tumor regression (2). However, recent investigations have demonstrated that DES exerts direct growth-inhibitory effects on prostatic cancer cells via induction of mitotic arrest or apoptosis (3–6). Unfortunately, because of serious adverse effects induced by the estrogenicity of DES (feminization, exacerbation of heart failure, vascular complications, gynecomastia, and impotence), the xenoestrogen has lost its attractiveness as a mainstay treatment for advanced PCa (7). Clinical use of TAM, a nonsteroidal estrogen mixed agonist/antagonist, was introduced in the 1980s as an alternative to DES in the treatment of PCa. It was better tolerated than DES but only produced low response rates (8–12). It was therefore concluded that further investigation of TAM in advanced PCa treatment was not warranted. Of late, two recent developments have rekindled interests in using antiestrogens as therapeutics for PC: (a) pure estrogen antagonists (e.g., ICI-164,384 and ICI-182,780; Ref. 13) and selective estrogen receptor modulators, such as raloxifene (14), have become available for clinical trials. Experimental evidence suggests that their mechanisms of action may differ significantly from those of estrogens (15–18) and therefore may yield more favorable outcomes; and (b) a newly discovered ER subtype (ER-β) was found to be expressed at high levels in the epithelial compartments of the rat prostate (19–23).

Although ER-β shares high homology with the classical ER (ER-α), the two ER subtypes may regulate different sets of cellular functions (18, 24). Recent findings from an ER-β knockout mouse suggest that ER-β may suppress proliferation and prevent hyperplasia in the rodent prostate (25). Taken together, these new findings raise an intriguing possibility that ER-β is expressed in normal and/or malignant human PrECs and plays a role in mediating estrogen action in these cell types.

Knowledge of the distribution of ER-β in normal and malignant human PrECs is limited at this time. A recent study reported a lack of ER-β expression in human prostate tissues (26), whereas several preliminary reports noted expression of this receptor subtype in basal epithelial cells of the human (27–29). In this study, we reported the development of an effective method to obtain and culture “pure” or highly enriched populations of normal PrECs from needle biopsies of the peripheral zone of the human prostate. Expression levels of ER-α and ER-β transcripts in our primary cultures of normal PrECs were compared with those found in a PrEC preparation obtained from a commercial source (PrEC; Clontech), in an immortalized PrEC cell line established from a BPH specimen (BPH-1; Ref. 30), and in three prostatic cancer cell lines (DU145, PC-3, and LNCaP). Expression...
levels of ER-α and ER-β in normal and malignant PrEcs were then related to the transcript expression levels of two estrogen-responsive genes (PR and pS2) to gain insights into the functionality of the ER subtypes. Additionally, we have compared the efficacy of two estrogens (DES and E2) to those of two antiestrogens (4OH-TAM and ICI) in inhibiting cell growth in PC-3 and DU145 cells. An ER-β antisense ODN was then used to demonstrate that the antiestrogen-induced growth-inhibitory effects on prostate cancer cells were mediated via an ER-β signaling mechanism. Finally, we provided the first experimental evidence in support of DNA methylation-mediated transcriptional inactivation of gene expression as the mechanism of ER-α silencing in PrEcs.

MATERIALS AND METHODS

Establishment of Normal PrEcs in Primary Cultures. Tissue specimens used for generating primary cultures of normal PrEcs were obtained from patients undergoing transrectal ultrasound-guided biopsies of the prostate for standard clinical indications. All patients contributing biopsy material were invited to participate in a prospective tissue acquisition study approved by the local Institutional Review Board (approval was granted to J. L. at the New England Medical Center). Written informed consent was obtained prior to biopsy from participating patients. From each participant, one biopsy core was obtained from the peripheral zone of the prostate, placed on a sponge pad soaked in sterile saline; a 1–2-mm section was excised from the midportion of the core and suspended in 5 ml of culture medium (described below). The two remaining ends of the core were inked at the ends opposite the sectioned midportion piece, placed in 10% formalin, and processed for histology. Histological examination of the end pieces of a biopsy core allowed us to determine the histological nature and the homogeneity of the core. Only specimens judged to be histologically normal, with no hyperplastic or neoplastic tissue contamination, were used to establish primary cultures of normal PrEcs.

Each harvested tissue specimen was then washed three times with HBSS and cut into five to seven smaller pieces. The pieces were suspended in 2 ml of freshly prepared growth medium (see below) and transferred to a 60-mm Falcon culture dish (Becton Dickinson, Lincoln Park, NJ) coated with type I rat tail collagen (Collaborative Biomedical Products, Bedford, MA). An epithelial cell selection medium (the growth medium), reported previously (31), consisted of keratinocyte serum-free medium with 25 μg/ml bovine pituitary extract, 5 ng/ml epidermal growth factor, 2 mm l-glutamine, 10 mm HEPES buffer, P/S (100 units/ml penicillin and 100 μg/ml streptomycin), 5.5 μM of fungizone, 20 ng/ml cholera toxin, and 1% heat-inactivated FBS was used to obtain enriched populations of PrEcs. All culture reagents were obtained from Life Technologies, Inc. (Grand Island, NY) except for FBS, which was purchased from Sigma Chemical Co. (St. Louis, MO). The culture was incubated at 37°C in a 5% CO2 atmosphere without disturbance for 7 days to allow epithelial cells to grow out of the tissue pieces. Culture medium was then routinely replaced every 4 days until cell culture reached ~80% confluence. The cells were split once before they were used for RNA extraction. In addition to primary cultures obtained from biopsy explants, a batch of normal human PrEcs were purchased from Clonetics Co. (San Diego, CA). The PrEcs cells were cultured in the PrEGM medium (Clonect) supplemented with SingleQuots (Clonetics Co.) according to the manufacturer’s recommended protocol.

Maintenance of Established Prostatic Cell Lines. All culture reagents were obtained from Life Technologies and FCS from Sigma (St. Louis, MO), except otherwise specified. BPH-1 (30), a nontumorigenic, SV40-immortalized, highly differentiated human prostate epithelial cell line, was provided as a gift by Dr. Simon Hayward at the University of California (San Francisco, CA). This cell line was maintained in RPMI 1640 with 10 mM HEPES, 1 mM sodium pyruvate, 2 mM l-glutamine, 4.5 g glucose/l, and 1.5 g of sodium bicarbonate/l. (American Type Culture Collection, Rockville, MD) plus 5% heat-inactivated FBS, ITS (insulin-transferrin-selenium mixture; Collaborative Biomedical Research, Bedford, MA), and P/S. Three human prostate cancer cell lines (DU145, PC-3, and LNCaP) were purchased from American Type Culture Collection. For routine maintenance, DU145 and PC-3 cells were grown in DMEM/F-12 supplemented with heat-inactivated FBS, 2 mm l-glutamine, 1 mM sodium pyruvate, 0.1 M nonessential amino acids, P/S, 0.05 mM β-mercaptoethanol (Sigma), and 1% ITS+. LNCaP cells were maintained in the same medium used for BPH-1 except that ITS+ was left out from the medium. All cell cultures were incubated at 37°C under a 5% CO2 atmosphere.

RNA Isolation and RT-PCR. Total cellular RNA was isolated using RNA Stat-60 reagent (Tel-Test, Inc., Friendswood, TX) according to protocols provided by the manufacturer. The quality of each total RNA sample was checked and controlled by the following steps: (a) measurement of absorbance; (b) running of a denaturing RNA gel capable of detecting possible RNA degradation, as judged by the integrity and intensity of the 18S and the 28S rRNA signals; and (c) conducting a semiquantitative RT-PCR for the 18S rRNA at low cycle numbers. One μg of total cellular RNA was reverse transcribed using the GeneAmp RNA PCR kit (Perkin-Elmer, Norwalk, CT), and 2 μl of the resulting cDNA were used in each PCR.

Intron-spanning primers were either obtained from published literature or designed using the Primer3 Output program.5 Primer sequences for GAPDH, ER-α (primer set #1, exon 1–3), ER-β, PR, and AR are given in Table 1. All PCR conditions were optimized for quantification of relative message content under nonsaturating conditions. Preliminary experiments were conducted to ensure linearity for all semiquantitative procedures. Hot-start PCR using AmpliTaq Gold DNA polymerase (Perkin-Elmer) was used in all amplification reactions. The enzyme was activated by preheating the reaction mixtures at 95°C for 6 min prior to PCR. This protocol was chosen to minimize nonspecific product amplification. The routine PCR program was 30 cycles of 1 min at 94°C, 1 min at 60°C (annealing temperature), and 1 min at 72°C with the following modifications: (a) amplification for ER-β cDNA used an annealing temperature of 58°C; (b) amplifications of ER-α cDNA and AR cDNA were carried out at an annealing temperature of 55°C; (c) cycle number for ER-α cDNA amplification was set at 35; and (d) GAPDH cDNA was amplified at 26 cycles. GAPDH cDNA levels served as a loading control. Amplification of the correct sequence was verified by direct DNA sequencing of each PCR product from at least two different samples.

To further confirm that primary cultures of normal PrEcs and certain prostate cancer cell lines did not express ER-α mRNA (see “Results”), we used two additional pairs of primers (primer sets #2 and #3, Table 1) to amplify regions downstream of the coding sequence of ER-α (668 bp of exon 3–6 and 710 bp of exon 5–8, respectively). Together, these three pairs of primers for ER-α primers (Table 1) covered most of the length of the coding sequence. They had been used successfully in our recent study on the expression of ER-α mRNA in ovarian cancer (32). If PCR at high cycle number failed to yield products from all three pairs of primers, we considered the sample to be devoid of ER-α cDNA.

Treatment of DU145, PC-3, and LNCaP Cells with Demethylating Agents. The three prostatic cancer cell lines were seeded at a density of 104 cells/ml medium in 25-cm2 culture flasks, allowed to attach during a 24-h period, and exposed to two demethylating agents separately. The demethylating agents were added daily in aqueous solution. 5′-Azacytidine was added at final concentrations of 2.5 and 5 μM and 5′-aza-2′-deoxycytidine at 0.5 and 0.75 μM, respectively. Culture medium was changed every 4 days, and cells were subjected to a total of 8 days of demethylating agent treatment. At the end of the treatment period, the medium was removed, and cellular RNA was extracted for RT-PCR.

Treatment of DU145 and PC-3 Cells with Estrogens/Antiestrogens. Cells were seeded at a density of 5 × 103 per ml into 24-well plates (Falcon; Becton Dickinson Labware, Lincoln Park, NJ) in a final volume of 1 ml of culture medium with 5% charcoal-stripped FBS. Twenty-four h after seeding, triplicate wells of cells were treated with 1, 10, and 100 μM of E2, DES, 4OH-TAM, or ICI E2, DES, and 4OH-TAM were purchased from Sigma, and ICI was a generous gift from Zeneca Pharmaceuticals (Macclesfield, United Kingdom). Estrogens and antiestrogens were dissolved in absolute ethanol (Sigma) and added to the media daily. Cell cultures that were not treated with estrogenic compounds received absolute ethanol as a vehicle control. Total additive ethanol concentrations never exceeded 0.2% throughout the culture period. The cells were refed with freshly prepared medium every other day. At the end of a 4-day treatment period, cells in each well were trypsinized, and

5 Internet address: http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi.
cell count was determined by direct counting using the trypan blue exclusion method. All treatment experiments were repeated at least three times to generate statistically relevant data.

Treatment of DU145 Cells with ICI and ER-β Antisense ODN. DU145 cells (5 × 10^4 cells/well) were plated in 24-well plates (Falcon; Becton Dickinson Labware). After allowing 24 h for cell attachment, cell cultures were treated in triplicate with 1 μM of ICI in the presence of 2.5 μM ER-β antisense, sense, or mismatch ODNs for 4 days. The ER-β antisense ODN, an 18-mer, was designed to recognize the first translation start site on the ER-β mRNA and its immediate 5’ flanking region (Table 2). The nucleotide sequence of sense ODN is complementary to those of ER-β antisense ODN (Table 2). On the basis of the sequence of ER-β antisense ODN, five nucleotides were scrambled to generate a mismatch ODN that retains the same GC ratio as the ER-β antisense ODN (Table 2). Both the sense and the mismatch ODNs served as controls for the antisense ODN. In all three ODNs, the first and the last three nucleotides were phosphorothioate modified to increase their stability in cellulo. The number of viable cells in each well was determined by direct counting using the trypan blue exclusion method after a 4-day treatment period. At least three independent experiments were performed to obtain statistically relevant data.

Statistics. Statistical analysis was performed by using Student SYSTAT software (Course Technology, Inc., Cambridge, MA). Data were analyzed by one-way ANOVA, followed by the Tukey post-hoc test, and a 95% confidence limit was used for all comparisons among treatment groups.

RESULTS

Expression of AR, ER-β, PR, and pS2 mRNA, but not ER-α Transcripts, in Normal PreECs in Primary Cultures. Five primary cultures of normal PreECs (N4#6, N3#5, N3#4, N2#3, and N2#2) were established in our laboratory from ultrasound-guided peripheral zone biopsies over a period of 18 months. The biopsy cores were all judged upon histological examination to contain only normal prostatic tissue with no BPH or cancerous foci contamination. The primary cell cultures were all early passages (second or third), cobblestone in appearance, with no visible fibroblast contamination. Semiquantitative RT-PCR analyses (Fig. 1) demonstrated that our normal PrEC cultures retained high levels of AR mRNA expression, which usually appeared in DU145 Cells and ER-β mRNA Expression in LNCaP Cells. In contrast, ER-α mRNA was expressed only in the PC-3 cells. Interestingly, PR transcripts were detected only in DU145 and LNCaP cells and not in PC-3 cells. Messages of pS2 were found in PC-3 and LNCaP cells but not in DU145 cells. In accordance with reports in the literature, AR mRNA expression was only noted in LNCaP cells.

Expression of ER-α Variant in Prostate Cell Lines. When RT-PCR analyses were conducted for ER-α mRNA semiquantification in PrEC (Clonetics Co.), BPH-1, or PC-3 cells, we noticed that, in addition to the expected PCR product, a smaller PCR product was comammified (Fig. 1, a and b). Sequencing analysis (data not shown) revealed that this smaller PCR product was derived from an ER-α mRNA variant that had the entire exon 2 deleted. We reported recently the coexistence of this ER-α mRNA variant with wild-type transcripts in normal and malignant human ovarian surface epithelial cells (33).

Demethylation Reactivates ER-α and pS2 mRNA Expressions in DU145 Cells and ER-α Expression in LNCaP Cells. Prior to exposure to demethylating agents, ER-α and pS2 transcripts were not detected in RNA samples prepared from DU145 cells (Fig. 1, a and c). In accordance with reports in the literature, AR mRNA expression (data not shown) was reversely repressed by treatment with demethylating agents. Exposure of LNCaP cells to demethylating agents also reactivated ER-α mRNA expression (data not shown).

Effect of Antiestrogens and Estrogens on Cell Growth of DU145 and PC-3 Cells. Cell growth analyses showed that the growth of DU145 cells, which only expressed ER-β mRNA, was adversely affected by the antiestrogens ICI and 4OH-TAM (Fig. 3, A and B). A dose-dependent inhibition of cell numbers was observed in cultures exposed to ICI for 4 days when compared with control cultures treated with vehicle (absolute ethanol). A 40% reduction (P < 0.001) in the cell numbers was achieved with an ICI dose of 1 μM. A similar

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence</th>
<th>Location (nt)</th>
<th>Expected size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER-β</td>
<td>5'-TGA AAA GGA AGG TTA GTG GGA ACC-3'</td>
<td>230–253</td>
<td>528 bp</td>
</tr>
<tr>
<td>ER-β</td>
<td>5'-TGG TCA GGG ACA TCA TGA TGG-3'</td>
<td>737–757</td>
<td></td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-TAC TGC ATC AGA AGG GAG-3'</td>
<td>41–60</td>
<td>650 bp</td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-ATC AGT GGA CTG GTG GTC-3'</td>
<td>671–690</td>
<td>(exon 1–3)</td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-TGA TCA GGA AGC TGG CTT-3'</td>
<td>742–761</td>
<td>668 bp</td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-TCC AGA GAC TGC AGG GTG-3'</td>
<td>1390–1409</td>
<td>(exon 3–6)</td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-GTG CCT GTC TAG AGA TCC-3'</td>
<td>1142–1161</td>
<td>710 bp</td>
</tr>
<tr>
<td>ER-α</td>
<td>5'-TGG CGC TTG ATG AGG GTA AA-3'</td>
<td>1382–1851</td>
<td>(exon 5–8)</td>
</tr>
<tr>
<td>PR</td>
<td>5'-GAT TCA GAA GCC AGC AG-3'</td>
<td>1817–1836</td>
<td>533 bp</td>
</tr>
<tr>
<td>pS2</td>
<td>5'-GGA CAA GAT GTG GCA CGA-3'</td>
<td>252–71</td>
<td>236 bp</td>
</tr>
<tr>
<td>pS2</td>
<td>5'-GCA CCT CTT CTT CGT GGA-3'</td>
<td>268–287</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>5'-GAT TCA GAA GCC AGC AG-3'</td>
<td>2896–2918</td>
<td>342 bp</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-CCA ATT AGC AAT TCC ATG GCA-3'</td>
<td>152–175</td>
<td>598 bp</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5'-CTC AGA CGG CAG GTC AGG ACC-3'</td>
<td>726–749</td>
<td></td>
</tr>
</tbody>
</table>

* nt, nucleotide.

^a The first base of translation-initiating site is +1.
^b This base was phosphorothioate modified.
growth-inhibitory response was observed when DU145 cells were treated with 4OH-TAM. However, cell number reduction achieved with 1 μM 4OH-TAM was only 25% (P < 0.001). In contrast, exposure of DU145 cells to 1 μM estrogens (E2 and DES) did not affect cell growth in 4-day exposure experiments (Fig. 3, C and D). However, in a separate series of experiments, DU145 cells were treated with 10 μM DES, and we observed a significant reduction in cell number (data not shown). Furthermore, we had conducted competition experiments to determine whether E2 could reverse the growth-inhibitory effects induced by ICI and 4OH-TAM. DU145 cells were treated with 10−6 M ICI or 4OH-TAM in the absence or presence of 10−2, 10−2, 10−6 M E2. E2 at all three concentrations was unable to reverse the ICI- or 4OH-TAM-induced cell growth inhibition (data not shown).

When PC-3 cells, which expressed transcripts of both ER subtypes, were exposed to antiestrogens (ICI and 4OH-TAM), a 25–30% reduction in cell growth was noted in cultures treated with 1 or 10 μM ICI or with 1 μM 4OH-TAM (P < 0.001; Fig. 4, A and B). Furthermore, exposure of PC-3 cells to E2 at 1 or 10 μM concentrations also induced inhibition of cell growth (P < 0.05 and P < 0.01, respectively; Fig. 4C). Interestingly, treatment with DES at the various concentrations up to 10−6 M did not elicit statistically significant cell growth inhibition in PC-3 cells (Fig. 4D). However, in a separate experiment, PC-3 cells were treated with 10 μM DES, and we observed a significant reduction in cell number (data not shown). Additionally, we had conducted competition experiments to determine whether DES could reverse the growth-inhibitory effects induced by ICI and 4OH-TAM. PC-3 cells were treated with 10−6 M ICI or 4OH-TAM in the absence or presence of 10−8, 10−7, 10−6 M E2. E2 at all three concentrations was unable to reverse the ICI- or 4OH-TAM-induced cell growth inhibition (data not shown).

Reduction of ICI-induced Cell Growth Inhibition by ER-β Antisense ODN. Treatment of DU145 cells were with ICI at 1 μM induced a 40% reduction in cell number (Fig. 3). Cotreatment of DU145 cells with ICI and an ER-β antisense ODN led to restoration of cell number (P < 0.001; Fig. 5) whereas cotreatments with an ER-β sense ODN or a mismatch ODN (Table 2) did not reverse the ICI-induced effects. These data support the notion that the ICI-
induced cell growth inhibition in DU145 cells is mediated via an ER-β signaling mechanism.

DISCUSSION

The roles played by estrogens in the neoplastic transformation of PrECs as well as in PCa progression and treatment remain controversial. Exposure of humans or rodents to estrogens induces a proliferative lesion, squamous metaplasia, in their prostates (34–37), whereas prolonged treatment of Noble rats with androgen plus estrogen causes a high incidence of PCA in the dorsolateral prostates of the treated animals (38–41). Paradoxically, DES, TAM, and other estrogens have been used as treatment regimens for advanced metastatic PCa (1, 7–12, 42, 43). In addition to acting as chemical castration agents, both estrogen and antiestrogen are believed to exert direct growth-inhibitory effects on prostatic cancer cells via induction of apoptosis or cell cycle arrest (3–6, 44). Precisely how estrogens/antiestrogens elicit these actions remains uncertain.

Traditionally, the actions of estrogens/antiestrogens are thought to be mediated via the classical ER, the α subtype, which has been localized to the stromal compartment and basal epithelial cells of human and rodent prostates (22, 26, 45–48). Because ER-α is not expressed in the normal glandular epithelium of rat or human prostate (4, 21, 26, 46–49), it is widely believed that the action of estrogen/antiestrogen on normal PrECs is indirect, likely mediated via estrogen-induced stromal factors. However, after the discovery of ER-β (19) and its localization to the epithelial compartment of rodent prostates (19, 21, 50), a distinct possibility has been raised that estrogen/antiestrogen could influence PrEC function via an ER-β signaling pathway. However, at present, information on ER-β in human PrECs is limited. Only one recent study (26) has evaluated the expression pattern of ER-β transcripts and proteins in human prostatic tissues and found nondetectable levels in both normal and diseased tissues. In contrast, the present study unequivocally demonstrated expression of ER-β mRNA in highly enriched or pure human PrEC cultures established from peripheral zone biopsies. Furthermore, because ER-α expression was undetectable but transcripts of two estrogen-dependent genes, PR and pS2, were expressed in these cultures, these data strongly suggest that ER-β is the cellular mediator of estrogen action in normal human PrECs. Of interest to note is that both ER-α and ER-β mRNA, but not PR or pS2 transcripts, were expressed in a PrEC preparation purchased from a commercial source (PrEC; Clontech) and in the immortalized PrEC line, BPH-1, with only a minimal level of PR transcripts. The discrepancies between ER subtype, PR, and pS2 expression in our primary PrEC cultures and those observed in PrEC (Clontech) and BPH-1 could be attributable to the tissue of origin of these cell cultures/lines. In this regard, PrEC cultures (Clontech) are routinely prepared from whole prostates, and BPH-1 was derived from a benign hyperplastic specimen (30), whereas our primary cultures were established from ultrasound-guided peripheral zone biopsies.

Issues relating to whether ER, and which subtype, is expressed in cancerous PrECs remain unsettled. Several investigators (51, 52) observed ER-α expression in human prostate cancer cell lines, including LNCaP, PC-3, and DU-145, whereas others (53) did not. Similarly, observations on ER-α expression in prostate cancer specimens were equally controversial. Bonkhoff et al. (26) reported recently that ER-α expression was infrequent in low-to-moderate grade adenocarcinoma but common in high-grade and metastatic cancers. Conversely, Konishi et al. (54) noted the presence of ER-α immunoreactivity in well-differentiated adenocarcinomas but not in poorly
differentiated specimen. The latter observation was supported by two additional studies that reported no ER-α expression in lymph node and distant metastases (53, 55). These issues become more convoluted when the expression pattern of ER-β is taken into consideration. A lack of ER-β expression in human prostate tissues was reported by Bonkhoff et al. (26), whereas several preliminary reports noted expression of this receptor subtype in dysplastic and cancerous tissues (27–29). Findings in the present study revealed that ER-β mRNA was expressed in all three cancer cell lines (PC-3, DU145, and LNCaP), although in accordance with the literature, the ER-α message was only detected in PC-3 cells (51). Unlike primary PrEC cultures, which uniformly expressed both PR and pS2 transcripts, PR mRNA expression was only detected in DU145 and LNCaP cells whereas pS2 transcripts were found in PC-3 and LNCaP cells. Hence, despite uniform expression of ER-β, the expression patterns of ER-α, PR, and pS2 among these prostatic cancer cell lines was variable. Because transcription of PR and pS2 is well recognized to be regulated by estrogen (56–58), the loss of expression of these two genes in some prostatic cancer cell lines suggests a deregulation of estrogen signaling in these cells. A similar phenomenon has been observed in ovarian cancer cell lines that express both ER subtype but no PR (33).

Until now, it remains unknown as to why prostatic epithelium expresses only ER-β and not ER-α. In the present study, we demonstrated that treatment of DU145 and LNCaP cells with demethylating agents reactivated ER-α expression in these cells. These data provide the first experimental evidence in support of DNA methylation-mediated gene silencing (59, 60) as a mechanism of ER-α inactivation in PrECs. In breast cancers, it had been shown that hypermethylation of the promoter region of ER-α was associated with loss of expression of this receptor subtype in hormone-refractory cancers (61–64). Because of the fragile nature of PrECs in primary culture, we had not subjected them to demethylating agent treatment; it is reasonable to assume that the same mechanism transcriptional inactivation operates in ER-α silencing in the normal prostatic epithelium. Interestingly, loss of pS2 expression in DU145 cells might also be linked to hypermethylation-mediated transcriptional inactivation because exposure of this cell line to demethylating agents revived pS2 expression.

Fig. 4. Effects of antiestrogens and estrogens on cell growth of PC-3 cells. Cell growth assay was described in Fig. 3. A, ICI. B, 4OH-TAM. C, E2. D, DES. Columns, means; bars, SD; n = 9; *, P < 0.001; #, P < 0.01; +, P < 0.05; compared with control (B).

Fig. 5. Reversal of ICI-induced DU145 cell growth inhibition by ER-β antisense ODN. Cells were treated with ICI at 10−6 M in the absence or presence of 2.5 μM of the antisense, sense, or mismatch ODNs for 4 days. Cell numbers in “untreated” cultures received no ICI treatment and were arbitrarily assigned a value of 100% (first column on the left). Cell numbers in cultures treated with ICI and ICI plus ODNs were expressed as percentages of cell numbers in the “untreated” cultures. Columns, means; bars, SD; n = 16. *, significant difference between ICI-treated cultures and those that received ICI plus the antisense ODN at P < 0.001.
The pS2 gene encodes an 84-amino acid, cystein-rich, secretory protein, which is widely expressed in estrogen-sensitive tissues (57). Its expression in prostate cancer specimens has been shown to be associated with premalignant changes and neuroendocrine differentiation (65, 66).

Different variants of ER-α transcripts are often found to coexist with the wild-type transcript in normal and malignant tissues (67, 68). These variants, produced by alternative splicing, are whole exon deletion variants that may have “outlaw functions.” In PC-3 cells, a previous study has demonstrated the expression of an exon 4 deletion variant (51). In the current study, we found an exon 2 deletion variant in PC-3, BPH-1, and PrEC (Clontech) cells. Whether ER transcript variants have functional or regulatory roles in prostatic cells is a topic of future investigation.

Therapies for metastatic prostate cancers are limited. In addition to androgen ablation therapies, estrogens/antiestrogens have been used, singularly or in combination with other modalities, for treatment of the disease. DES is an effective treatment therapy; however, its estrogenicity induces significant adverse effects in patients and have resulted in termination of its use (7). In contrast, TAM, a nonsteroidal antiestrogen, is better tolerated but produces little objective responses in multiple trials (8–12). With the discovery of ER-β as a new estrogen signaling pathway and the availability of pure antiestrogens such as ICIs (13), it becomes appropriate to address the issue of whether pure antiestrogens could be considered in the treatment of prostate cancer. In this study, we have compared the efficacy of two estrogens (E2 and DES) an two antiestrogens (4OH-TAM and ICI) in inhibiting cell growth in two androgen-refractory prostate cancer cell lines, PC-3 cells that we found express both ER subtypes, and DU145 cells that express only ER-β. Past studies have shown that DES, when given at high concentrations (10–30 μM range), exerts colchicine-like action, inhibits tubulin assembly, and induces apoptosis in prostate cancer cells (69, 70). Because the focus of the current study is to elucidate receptor-mediated action of DES, we have chosen to use concentrations not higher than 10−6 M. Our results demonstrated all four estrogenic/antiestrogenic compounds, at relatively low doses, exerted antiproliferative effects on PC-3 cells, with antiestrogens exhibiting greater potencies. Furthermore, competition experiments showed that DES could reverse the effect of ICI, thus suggesting that estrogens and antiestrogens may share similar cellular mediators in this cell line. In contrast, DU145 cells responded only to antiestrogens with regard to cell growth inhibition. In both cases, ICI was found to be more potent than 4OH-TAM as a growth inhibitor. Furthermore, competition experiments demonstrated that E2 did not reverse the ICI-induced or 4OH-TAM-induced growth inhibition. This finding suggests that estrogens have little impact on the antiestrogenic action in DU145 cells. Importantly, the antiestrogen-induced growth-inhibitory response in DU145 cells was reversible by cotreatment with an ER-β antisense ODN. Taken together, these findings raise several significant implications: (a) it is apparent that the estrogen/antiestrogen-induced antiproliferative action on prostatic cancer cells is ER subtype dependent. It supports the prediction for the antiproliferative action of ER-β as previously discussed (71); (b) because ICI consistently expresses a higher potency, it may be better suited to be used in prostate cancer treatment. In clinical trials for breast cancer treatment, this compound has demonstrated high efficacy and low toxicity (72); and (c) our data have provided the first demonstration that estrogen/antiestrogen action in prostatic cancer cells could signal via an ER-β pathway. Because ER-β selective ligands have been reported recently (73), this development raises the likelihood of using receptor subtype ligands as cancer therapeutics in the future.

In summary, this study has demonstrated that human normal PrECs express exclusively ER-β and likely signal via this receptor subtype for estrogen/antiestrogen action. On the contrary, prostatic cancer cells exhibit a more variable pattern of ER subtype expression, and their responses to individual estrogen or antiestrogen will depend on the ER subtype(s) expressed in the cells. Significantly, we provide the first experimental evidence that ER-α gene silencing in prostate cancer cells, and perhaps also in normal cells, may be caused by DNA hypermethylation. Overall, data from this study lend support to the notion that ER-β plays a central role in estrogen/antiestrogen signaling in normal and malignant human PrECs.

REFERENCES

Expression of Estrogen Receptor (ER)-α and ER-β in Normal and Malignant Prostatic Epithelial Cells: Regulation by Methylation and Involvement in Growth Regulation
