Down-Regulation of neu/HER-2 by Interferon-γ in Prostate Cancer Cells

Scott L. Kominsky, Amy C. Hobeika, Faith A. Lake, Barbara A. Torres, and Howard M. Johnson

Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

ABSTRACT

Interferons (IFNs) are known to possess potent antitumor properties. Previous studies have indicated that IFNs are capable of modulating the expression of various tumor suppressor genes and oncogenes. In this study, we looked at the effect of IFN-γ on the neu/HER-2 proto-oncogene in the DU145, LNCaP, and PC-3 prostate cancer cell lines. IFN-γ inhibited cell proliferation in both DU145 and PC-3 cells in a dose-dependent manner, whereas no inhibition of proliferation was seen in LNCaP cells. Correspondingly, IFN-γ treatment of DU145 and PC-3 cells resulted in an increased production of the cyclin-dependent kinase inhibitor p21WAF1, whereas no increase in p21WAF1 was seen in LNCaP cells. In addition, IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT) 1 in DU145 and PC-3 cells, but not in LNCaP cells. Consistent with these findings, we found that IFN-γ treatment of DU145 and PC-3 cells caused a reduction in neu/HER-2 expression, with no change seen in the LNCaP cell line. Transfection and overexpression of the transcriptional coactivator p300 in PC-3 cells suppressed the reduction in neu/HER-2 expression after IFN-γ-treatment, suggesting a role for p300 in neu/HER-2 expression. The antiproliferative activity and p21WAF1 production of these cells after IFN-γ treatment were found to be reduced as well. We propose that the down-regulation of neu/HER-2 by IFN-γ occurs via the interaction of phosphorylated STAT1 with p300 because IFN-γ activities requiring phosphorylated STAT1 are reduced in cells overexpressing p300. These findings suggest that neu/HER-2 may play a role in the growth of some prostate cancers and that IFN-γ may suppress such cancers by down-regulation of neu/HER-2.

INTRODUCTION

IFNs are a group of cytokines that produce a number of cellular and immunological effects including inhibition of proliferation and regulation of oncogenes and tumor suppressor genes in a variety of cell types. Although the antitumor properties of IFNs have been established, many of the underlying mechanisms of these activities remain unknown. We have previously found that IFN-γ inhibition of cellular proliferation occurs via the induction of the CKI p31p32 (1, 2).

Like other cytokines, IFNs use the JAK/STAT signal transduction pathway. IFN-γ binding of its cell surface receptor specifically induces STAT1 phosphorylation, resulting in translocation to the nucleus, where it binds specific γ-activated sites in target genes (3). Recent studies have shown that both dimerized phosphorylated STAT1 and unphosphorylated STAT1 monomer can bind the CBP p300 (4). The CBP p300 family of proteins is a group of transcriptional coactivators that can interact with a variety of DNA-binding factors (5). p300 was originally isolated and cloned because of its interaction with the E1A protein of adenovirus (6). E1A does not directly bind DNA but regulates gene expression via interactions with multiple transcription factors (7). As a result, E1A is responsible for reducing p300 coactivation of several genes controlling activities such as cellular differentiation, cell cycle progression, and transformation (8).

The neu/HER-2 proto-oncogene has been linked to several human malignancies including breast, ovarian, and prostate cancer (9–12). Recently, it has been shown that neu/HER-2 promoter activity can be repressed by E1A (13). Furthermore, this repression was reversed both by increasing amounts of p300 as well as by normal amounts of p300 defective in E1A binding (14). These findings suggest that p300 may play a role in the regulation of the neu/HER-2 gene. Interestingly, phosphorylated STAT1 homodimers from IFN-γ-treated extracts have also been shown to bind the E1A binding site of p300, indicating the potential for IFN-γ to repress p300-regulated genes via phosphorylated STAT1 (4). The experiments described in this report are directed at IFN-γ-induced down-regulation of the neu/HER-2 receptor and the possible role of phosphorylated STAT1 in this down-regulation via interaction with p300, analogous to E1A down-regulation of neu/HER-2.

MATERIALS AND METHODS

Reagents, Cell Lines, and Plasmids. Purified human IFN-γ (specific activity, 1–4 × 10^6 units/ml) was obtained from Genzyme Diagnostics (Cambridge, MA). The DU145, LNCaP, and PC-3 cell lines were obtained from American Type Culture Collection (Manassas, VA). Complete media for the DU145, LNCaP, and PC-3 cell lines consisted of Eagle’s MEM, Eagle’s MEM + 1 mM sodium pyruvate and 2 mM L-glutamate, and F12K medium, respectively, supplemented with 10% fetal bovine serum, 200 units/ml penicillin, and 200 μg of streptomycin. Antibodies to p21WAF1, STAT1, and p300 were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to phosphorylated STAT1 were obtained from New England Biolabs, Inc. (Beverly, MA). Antibodies to neu/HER-2 were obtained from Upstate Biotechnol-

ogy (Lake Placid, NY). The p300 plasmid pRc/RSV-p300 containing a neo-resistance gene was used for reducing p300 coactivation of several genes controlling activ-

ation, 1–4 × 10^6 units/ml Geneticin (Sigma Chemical Co., St. Louis, MO).

Antiproliferation Assay. IFN-γ inhibition of cell number was determined by plating DU145, LNCaP, PC-3, and PC-3[pRc/RSV-p300] cells (4–10 × 10^5 cells/well) into 6-well plates with or without 500–20,000 units/ml IFN-γ. At 72 h, cells were trypsinized, washed, and counted. Cell counts were performed using a hemocytometer, and cell viability was assessed by trypan blue dye (0.4%) exclusion.

Immunoprecipitation and Immunoblotting. For preparation of cell lysates, DU145, LNCaP, PC-3, and PC-3[pRc/RSV-p300] cells (4–6 × 10^6 cells/sample) were grown in the presence or absence of 500–20,000 units/ml IFN-γ for various lengths of time and lysed at 4°C for 20 min as described previously (1). Equal amounts of protein from cell lysates were either used directly for Western transfer (100–200 μg/sample) or subsequently immuno-

precipitated (375–500 μg/500 μl) with 1 μg of an antibody specific for the protein of interest. After Western transfer, membranes were immunoblotted...
with antibodies specific for the protein of interest and developed using enhanced chemiluminescence (Amersham, Arlington Heights, IL). Densitometric analysis of radiographic film using IA-200 Image Analysis Software was used to determine the percentage decrease or fold-increase between band intensities based on total pixel values.

RESULTS

We determined the antiproliferative effects of IFN-γ on the DU145, LNCaP, and PC-3 prostate cancer cell lines by determining the total number of cells grown in the presence or absence of 0, 500, 1000, and 5000 units/ml IFN-γ for 72 h. IFN-γ inhibited DU145 and PC-3 cell growth by up to 59.1% and 50.8%, respectively, whereas no inhibition of LNCaP cells was seen (Table 1). We also found that IFN-γ inhibited DU145 and PC-3 cells in a dose-dependent manner. Thus, the proliferation of the DU145 and PC-3 cell lines is inhibited by IFN-γ treatment, whereas LNCaP cells do not appear to be affected.

We have found previously that growth inhibition of the DU145 cells by IFN-γ was due to up-regulation of the CKI p21WAF1 (2). p21WAF1 regulates the mammalian cell cycle by directly binding cyclin-dependent kinases, which are necessary for cell cycle progression, and blocking their kinase activity (15). IFN-γ-induced up-regulation of p21WAF1 describes a mechanism by which IFNs inhibit the cell cycle and subsequent cell growth. Asynchronous DU145, LNCaP, and PC-3 cells were treated with 5000 units/ml IFN-γ for 16 and 24 h and subsequently lysed and immunoblotted. IFN-γ induced p21WAF1 production in both DU145 and PC-3 cells, but not in LNCaP cells (Fig. 1). Consistent with our previous reports, IFN-γ up-regulation of p21WAF1 correlates with inhibition of cell proliferation.

We next determined whether the signal transduction pathway of IFN-γ was intact in the DU145, LNCaP, and PC-3 cell lines. IFNs initiate their cellular effects by binding to specific cell surface receptors. Like other cytokines, this ligand-receptor interaction induces the phosphorylation of a group of proteins known as STATs, which, in the absence of ligand, reside unphosphorylated in the cytoplasm (3). IFN-γ-mediated signal transduction specifically phosphorylates STAT1, which then acts directly to turn on IFN-γ-inducible genes. DU145, LNCaP, and PC-3 cells were treated with 5000 units/ml IFN-γ for 10 min. Cell lysates were immunoprecipitated using antibodies specific for STAT1, and precipitates were subsequently immunoblotted with antibodies for both STAT1 and phosphorylated STAT1. Both DU145 and PC-3 cells had strong phosphorylation of STAT1 with IFN-γ treatment, whereas no STAT1 phosphorylation was seen in LNCaP cells (Fig. 2). These results explain the lack of response by the LNCaP cell line to IFN-γ because the JAK/STAT transduction pathway is not triggered in these cells. However, the transduction pathway is active in both DU145 and PC-3 cells, consistent with up-regulation of p21WAF1 and the associated antiproliferative effects seen in these cells.

Many of the mechanisms underlying the antiproliferative and cytotoxic effects of IFNs on tumor cells remain to be elucidated. We have previously shown p21WAF1 to be responsible for inhibiting the cell cycle of various transformed cell lines (1, 2), but how IFN regulates proto-oncogenes is still unclear. The neu/HER-2 proto-oncogene has been implicated as a prognostic factor in several human malignancies including breast, ovarian, and prostate cancer. We looked at the effect of IFN-γ on down-regulation of neu/HER-2 expression in the DU145, LNCaP, and PC-3 cell lines as a possible mechanism for inhibition of cell proliferation. Lysates from cells treated in the presence or absence of 5000 units/ml IFN-γ for 96 h were immunoprecipitated using antibodies specific for neu/HER-2. In DU145 and PC-3 cells, we saw a 61.6% and 78.7% reduction, respectively, in neu/HER-2 expression, whereas no reduction in neu/HER-2 was seen in LNCaP cells (Fig. 3A). In addition, we saw a dose-dependent decrease in neu/HER-2 expression in DU145 and PC-3 cells (Fig. 3B). Cells were treated with 500, 1000, and 5000 units/ml IFN-γ for 96 h, and lysates were immunoblotted. Thus, IFN-γ reduces neu/HER-2 expression in both the DU145 and PC-3 cells, whereas no reduction is seen in the LNCaP cell line.

Table 1. Inhibition of prostate cancer cell growth by IFN-γ

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>IFN-γ (units/ml)</th>
<th>Total no. of Cells (x 10⁶)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU145</td>
<td>0</td>
<td>13.2 ± 0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>8.54 ± 0.33</td>
<td>35.3 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>6.72 ± 0.20</td>
<td>49.1 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>5.40 ± 0.11</td>
<td>59.1 ± 2.1</td>
</tr>
<tr>
<td>LNCaP</td>
<td>0</td>
<td>1.50 ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.58 ± 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1.62 ± 0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>1.80 ± 0.18</td>
<td></td>
</tr>
<tr>
<td>PC-3</td>
<td>0</td>
<td>2.36 ± 0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>1.88 ± 0.11</td>
<td>20.3 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1.37 ± 0.08</td>
<td>42.0 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>5000</td>
<td>1.16 ± 0.06</td>
<td>58.0 ± 1.9</td>
</tr>
</tbody>
</table>

* Cells were plated into 6-well plates (5 x 10⁶ cells/well) and grown in the presence or absence of IFN-γ for 72 h, and the total number of live cells was determined. The percentage of viability for all cell lines was approximately 92%. Data are representative of three experiments, each performed in triplicate. Statistical significance was shown by Student’s t test for the difference in cell number grown in the presence and absence of 500 (P < 0.05), 1000 (P < 0.04), and 5000 units/ml (P < 0.05) IFN-γ.
lysates from DU145, PC-3, and LNCaP cells grown in the presence or absence of 5000 units/ml IFN-γ for 4 days were immunoblotted with antibodies specific for neu/HER-2. Densitometric analysis of radiographic film showed a 61.6% and 78.7% decrease in neu/HER-2 expression for DU145 and PC-3 cells, respectively, whereas no change in neu/HER-2 expression was seen in LNCaP cells. A, down-regulation of neu/HER-2 expression by IFN-γ in DU145 and PC-3 cells is dose dependent. Cell lysates from DU145 and PC-3 cells treated with 0, 500, 1000, or 5000 units/ml IFN-γ for 4 days were immunoblotted with antibodies specific for neu/HER-2. Data are representative of three experiments, each performed in triplicate.

consistent with the failure to phosphorylate STAT1 and induce p21WAF1 in the latter cell line.

Although neu/HER-2 expression has been linked to tumor growth and metastasis, little is known about the transcriptional regulation of this oncogene. Previous findings have implicated the CBP p300 as a transcriptional regulator of neu/HER-2 (14). The same studies have suggested that adenovirus E1A protein binding to p300 represses neu/HER-2 expression after IFN-γ treatment. Considering that the overexpression of p300 in PC-3 cells abrogated IFN-γ-induced down-regulation of neu/HER-2, we determined the ability of IFN-γ to up-regulate p21WAF1 in transfected PC-3 cells, p300-transfected PC-3 cells were treated with or without IFN-γ at concentrations of 5,000 and 20,000 units/ml over a time period of 16 and 24 h. Cells treated for 24 h with 5,000 and 20,000 units/ml IFN-γ showed a 1.5- and 3.7-fold increase in p21WAF1 production, respectively, as determined by densitometric analysis (Fig. 5). No p21WAF1 was detected at 16 h. Wild-type PC-3 cells treated with 5,000 units/ml IFN-γ over a 24-h period showed a 2.5-fold increase in p21WAF1 production. Thus, treatment of transfected PC-3 cells with 5,000 units/ml IFN-γ led to decreased p21WAF1 production as compared with wild-type PC-3 cells, correlating with the reduced antiproliferative effects of IFN-γ on transfected PC-3 cells. Consistent with the antiproliferative effects of IFN-γ on transfected PC-3 cells, treatment with an increased concentration of IFN-γ (20,000 unit/ml) was able to restore p21WAF1 levels to those seen after IFN-γ treatment of wild-type PC-3 cells.

We have previously shown that the CKI p21WAF1 appears to play a role in mediating the antiproliferative effects of IFN-γ. Because IFN-γ has reduced antiproliferative activity on PC-3 cells overexpressing p300, we determined the ability of IFN-γ to up-regulate p21WAF1 in transfected PC-3 cells. p300-transfected PC-3 cells were treated with or without IFN-γ at concentrations of 5,000 and 20,000 units/ml over a time period of 16 and 24 h. Cells treated for 24 h with 5,000 and 20,000 units/ml IFN-γ showed a 1.5- and 3.7-fold increase in p21WAF1 production, respectively, as determined by densitometric analysis (Fig. 5). No p21WAF1 was detected at 16 h. Wild-type PC-3 cells treated with 5,000 units/ml IFN-γ over a 24-h period showed a 2.5-fold increase in p21WAF1 production. Thus, treatment of transfected PC-3 cells with 5,000 units/ml IFN-γ led to decreased p21WAF1 production as compared with wild-type PC-3 cells, correlating with the reduced antiproliferative effects of IFN-γ on transfected PC-3 cells. Consistent with the antiproliferative effects of IFN-γ on transfected PC-3 cells, treatment with an increased concentration of IFN-γ (20,000 unit/ml) was able to restore p21WAF1 levels to those seen after IFN-γ treatment of wild-type PC-3 cells.

Fig. 3. A, IFN-γ down-regulates neu/HER-2 expression in DU145 and PC-3 cells. Cell lysates from DU145, PC-3, and LNCaP cells grown in the presence or absence of 5000 units/ml IFN-γ for 4 days were immunoblotted with antibodies specific for neu/HER-2. DU145 and PC-3 B, down-regulation of neu/HER-2 expression by IFN-γ in DU145 and PC-3 cells is dose dependent. Cell lysates from DU145 and PC-3 cells treated with 0, 500, 1000, or 5000 units/ml IFN-γ for 4 days were immunoblotted with antibodies specific for neu/HER-2. Data are representative of three experiments, each performed in triplicate.

Table 2 Inhibition of PC-3(pRc/RSV-p300) cell growth by IFN-γ

<table>
<thead>
<tr>
<th>IFN-γ (units/ml)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.1 ± 0.4</td>
</tr>
<tr>
<td>5000</td>
<td>44.6 ± 1.9</td>
</tr>
</tbody>
</table>

*p Cells were plated into 6-well plates (1 × 10^5 cells/well) and grown in the presence or absence of IFN-γ for 4 days were immunoblotted with antibodies specific for p300 and neu/HER-2. The percentage of reduction in neu/HER-2 expression after treatment with 5000 units/ml IFN-γ for 4 h in PC-3 and PC-3(pRc/RSV-p300) cells was determined by densitometric scanning of radiographic film. Data are representative of three experiments, each performed in triplicate.

Fig. 4. A, transfection of PC-3 cells with pRc/RSV-p300 increases expression of p300 and decreases down-regulation of neu/HER-2 in response to IFN-γ treatment. Cell lysates from PC-3 and PC-3(pRc/RSV-p300) cells grown in the presence or absence of 5000 units/ml IFN-γ for 4 days were immunoblotted with antibodies specific for p300 and neu/HER-2. B, the percentage of reduction in neu/HER-2 expression after treatment with 5000 units/ml IFN-γ for 4 h in PC-3 and PC-3(pRc/RSV-p300) cells was determined by densitometric scanning of radiographic film. Data are representative of three experiments, each performed in triplicate.
Fig. 5. IFN-γ up-regulates p21WAF1 production in wild-type PC-3 and PC-3 (pRc/RSV-p300) cells. Wild-type PC-3 and PC-3(pRc/RSV-p300) cells were treated with 0, 5,000, or 20,000 units/ml IFN-γ for 16 and 24 h. Cell lysates were then immunoblotted with antibodies specific for p21WAF1. A, densitometric analysis of radiographic film showed a 1.5- and 3.7-fold increase in p21WAF1 production after treatment of PC-3 (pRc/RSV-p300) cells with 5,000 and 20,000 units/ml IFN-γ for 24 h, respectively. No increase in p21WAF1 production was seen at 16 h. B, wild-type PC-3 cells showed a 1.2- and 2.5-fold increase in p21WAF1 production after IFN-γ treatment for 16 (data not shown) and 24 h, respectively, as determined by densitometric analysis. Data are representative of three experiments, each performed in triplicate.

DISCUSSION

Type II IFNs have been shown to possess antiproliferative effects on various tumor cell types. Furthermore, these antiproliferative effects have been found to correlate with changes in tumor suppressor gene and oncogene expression (1, 2, 16, 17). IFN-γ exerts its effects through the JAK/STAT signal transduction pathway, in which STAT1 molecules are phosphorylated and translocated to the nucleus, where they bind to γ-activated sites and activate transcription of target genes. Here we have shown that IFN-γ exhibits strong antiproliferative effects on the prostate cancer cell lines DU145 and PC-3. Correspondingly, treatment of these cell lines with IFN-γ resulted in an increased production of the CKI p21WAF1 as compared with media control. Interestingly, IFN-γ treatment of the prostate cancer cell line LNCaP did not result in any growth inhibition or increase in p21WAF1 production. Examination of the JAK/STAT signal transduction pathway showed equal amounts of constitutive STAT1 produced in all cell lines after IFN-γ treatment. However, IFN-γ-treated LNCaP cells failed to produce any phosphorylated STAT1, whereas significant amounts were produced in both DU145 and PC-3 cells. Independent studies have shown that phosphorylated STAT1 molecules specifically recognize STAT-responsive elements in the p21WAF1 promoter and are required for cell growth inhibition in response to IFN-γ in various cell lines (18). This correlates with the lack of antiproliferative activity and failure to induce p21WAF1 in LNCaP cells after IFN-γ treatment.

In addition to increasing p21WAF1 production, we have found that IFN-γ treatment of DU145 and PC-3 cells results in a dose-dependent down-regulation of the neu/HER-2 proto-oncogene, although this was not seen in LNCaP cells. Recent studies have suggested that the transcriptional coactivator p300 may play a role in the regulation of neu/HER-2 (13). The adenovirus E1A protein was found to transcriptionally repress the neu/HER-2 promoter. Additional studies have shown that overexpression of p300 was able to overcome the repression of neu/HER-2 promoter activity by E1A (14). This repression was also overcome by a p300 mutant deficient in E1A binding. These studies suggest that E1A binding to p300 results in repression of neu/HER-2 promoter activity. In a separate study, phosphorylated STAT1 from IFN-γ-treated cell extracts was found to bind to the E1A-binding domain of p300 (4). In light of this evidence, we looked at the effect of p300 overexpression on IFN-γ-induced down-regulation of neu/HER-2 expression in PC-3(pRc/RSV-p300) cells. Interestingly, the overexpression of p300 was sufficient to significantly overcome the repression of neu/HER-2 expression after IFN-γ treatment, as seen in the case of neu/HER-2 repression by E1A. Thus, p300 appears to play a role in the expression of neu/HER-2. Furthermore, IFN-γ-mediated repression of neu/HER-2 expression may occur via the interaction of phosphorylated STAT1 with p300 because phosphorylated STAT1 has been shown to bind to the E1A-binding domain of p300. This provides a mechanism by which IFN-γ regulates neu/HER-2 expression and cell growth via phosphorylated STAT1 in addition to p21WAF1 inhibition of cyclin-dependent kinases.

We subsequently found that the overexpression of p300 greatly reduced the antiproliferative activity of IFN-γ on PC-3 cells, correlating with the derepression of neu/HER-2. However, this antiproliferative activity was restored after treatment with an increased concentration of IFN-γ, thereby increasing the amount of phosphorylated STAT1 available for transcription of target genes. The overexpression of p300 in PC-3 cells also significantly inhibited the ability of IFN-γ to increase p21WAF1 production. Consistent with antiproliferation studies, IFN-γ-induced increases in p21WAF1 production were restored to levels seen in wild-type PC-3 cells after treatment with an increased concentration of IFN-γ. Therefore, increased concentrations of IFN-γ (and thus increased levels of phosphorylated STAT1) reversed the repressed IFN-γ-induced activities requiring phosphorylated STAT1 in cells overexpressing p300. These studies correlate with the proposal of p300-phosphorylated STAT1 binding in response to IFN-γ and inhibiting the function of both factors. All studies involving PC-3(pRc/RSV-p300) cells were repeated in PC-3 cells transfected with the empty vector, pRe/RSV. The results of these studies showed that PC-3(pRc/RSV) cells behaved in a manner similar to that of wild-type cells (data not shown).

In summary, we have shown that IFN-γ-induced inhibition of prostate cancer cell line growth is accompanied by an increased production of the CKI p21WAF1 and decreased expression of the proto-oncogene neu/HER-2. Our findings also implicate the transcriptional coactivator p300 in the positive regulation of neu/HER-2 gene expression. Furthermore, we propose that IFN-γ-induced down-regulation of neu/HER-2 may involve the binding of phosphorylated STAT1 to p300, thereby inhibiting neu/HER-2 expression. Future studies will be directed at elucidating the interactions between this and other IFN-induced transcription factors and this coactivator.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Richard H. Goodman for the generous donation of plasmid pRc/RSV-p300.

REFERENCES


Down-Regulation of neu/HER-2 by Interferon-γ in Prostate Cancer Cells

Scott L. Kominsky, Amy C. Hobeika, Faith A. Lake, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/14/3904

Cited articles
This article cites 18 articles, 8 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/14/3904.full#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/14/3904.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.