Inactivation of Retinoblastoma Protein in Uveal Melanoma by Phosphorylation of Sites in the COOH-Terminal Region

Milam A. Brantley, Jr. and J. William Harbour

Center for Ocular Oncology, Department of Ophthalmology and Visual Sciences [M. A. B., J. W. H.] and Division of Molecular Oncology [J. W. H.], Washington University, St. Louis, Missouri 63110

Abstract

Uveal melanoma is the most common malignancy of the eye, but little is known about its underlying genetic defects. Melanomas of uveal origin, unlike those of the skin, are rarely familial and have not been linked consistently to mutations in tumor suppressor genes. Here, we investigated the Rb pathway in uveal melanoma. Most tumors displayed strong immunostaining for Rb and p16, suggesting that they were not mutational inactivated. However, Rb was frequently phosphorylated at serine-807 and serine-811, and cyclin D1 was expressed in many of the tumors. Mutation of these serine residues prevented cyclin D-dependent phosphorylation from inactivating Rb in cultured cells. We conclude that Rb is frequently inactivated in uveal melanoma by phosphorylation of residues in the COOH-terminal region that regulate its activity, and one mechanism for this phosphorylation is overexpression of cyclin D.

Introduction

Uveal melanoma is the most common cancer of the eye and leads to metastatic death in up to 53% of patients (1). Unlike cutaneous melanoma, little is known about the underlying genetic changes in uveal melanoma. Rb is the prototype tumor suppressor protein and is a major target for mutations in cancer (2). Rb is inactivated in most tumors, either by mutation of the Rb gene or by hyperphosphorylation of the protein as a result of mutations elsewhere in the Rb pathway (e.g., loss of p16, overexpression of cyclin D or cdk4; Ref. 2). Mutations in the Rb pathway, particularly those that affect p16 and cdk4, play an important role in cutaneous melanoma (3), but there is little evidence that these mutations are prevalent in uveal melanoma. Germline mutations in p16 are extremely rare in uveal melanoma patients, even among those with a family history of melanoma (4–6). Loss of heterozygosity at the chromosome 9p21 locus has been reported in up to 32% of uveal melanomas, but mutation of the p16 gene is rarely observed (7, 8). Likewise, germline or tumor mutations in cdk4 are rare in uveal melanoma (5, 9). The status of Rb itself has not been investigated adequately in this tumor. In the present study, we have used immunohistochemical analysis in 32 tumor specimens and transcriptional assays in cultured cells to examine the Rb pathway in uveal melanoma. By immunostaining, both Rb and p16 were expressed in the vast majority of tumors. Cyclin D was also expressed in most melanoma cells, and immunostaining with a phospho-Rb antibody revealed that two specific serine residues in the COOH-terminal region of Rb were frequently phosphorylated in these tumors.

Results

In transcriptional repression assays, these serine residues were required for cyclin D-mediated inactivation of Rb. Thus, our results suggest that the tumor suppressor activity of Rb is frequently inhibited in uveal melanoma by phosphorylation of specific residues in the COOH-terminal region of Rb, and that one mechanism for this phosphorylation is overexpression of cyclin D.

Materials and Methods

Immunohistochemistry. Immunohistochemistry was performed using the streptavidin-biotin method with the Vector ABC Elite kit (Vector Laboratories, Inc., Burlingame, CA). Specimens consisted of paraffin-embedded sections of 32 enucleated globes containing melanomas involving the choroid and ciliary body. Four-μm sections were obtained, deparaffinized, rehydrated with ethanol, and treated with 0.3% hydrogen peroxide and methanol to inhibit endogenous peroxidase activity. Heat-induced antigen retrieval was performed using microwave treatment in citrate buffer (Rb and p16 antibodies) or EDTA (cyclin D1 antibody) for 15 min. Primary antibodies were applied at 4°C overnight. Antibodies for Rb (C-15; 1:50 dilution; and IF-8; 1:40 dilution) and p16 (F-12; 1:75 dilution) were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). The antibody for phospho-Rb-serine 807/811 (1:25 dilution) was obtained from New England Biolabs, Inc. (Beverly, MA). The antibody for cyclin D1 (NCL-CYCLIN D1-GM; 1:40 dilution) was obtained from Novocastra Laboratories Ltd. (Newcastle Upon Tyne, United Kingdom). Positive controls included normal choroidal melanocytes (Rb and p16 antibodies), a mantle cell lymphoma (cyclin D1 antibody), and p16-null U2OS osteosarcoma cells that constitutively hyperphosphorylate Rb (phospho-Rb antibody). Negative controls included Rb-null C33A cervical carcinoma cells (Rb antibody), U2OS cells (p16 antibody), and normal choroidal melanocytes (phospho-Rb and cyclin D1 antibodies). The secondary antibody alone was used as an additional negative control for all antibodies. The percentage of positive cells was estimated by counting at least 200 cells in at least eight ×40 fields for each specimen. In most cases, at least two sections from each tumor were analyzed for each antibody.

Transcription Assays and Plasmid Constructs. For CAT assays, 0.2 μg of the reporter plasmid pSVEC-G (Ga4 sites upstream of the SV40 enhancer and the E1b TATA box driving the CAT gene) along with 0.5 μg of the indicated expression vectors was transfected into Rb-null C33A cells in a total of 10 μg of DNA by the calcium phosphate method as described previously (10). A phosphorimager was used to quantify CAT activity. Expression plasmids included the following Ga4-tagged Rb proteins: G-A (domain A, amino acids 379–602), G-B (domain B, amino acids 620–792), and RbC (the COOH-terminal region, amino acids 767–928), as described previously (10). RbCA2 was created by subcloning an SspI/EcoRI (amino acids 767–928) fragment from PSM.2S (which contains serine-to-alanine substitutions at serine-807 and serine-811; Ref. 11) into the Ga4 DNA binding domain expression vector pM2. Rb was functionally reconstituted in these assays by coexpressing domains A and B and the COOH-terminal region on separate proteins, as described previously (10). Cyclin D was expressed as an RC.CMV vector.

Received 4/27/00; accepted 6/29/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 These studies were supported by grants (to J. W. H.) from the NIH and Research to Prevent Blindness, Inc.

2 To whom requests for reprints should be addressed, at Ophthalmology and Molecular Oncology, Washington University School of Medicine, Box 8069, 660 South Euclid Avenue, St. Louis, MO 63110. Phone: (314) 747-1738; Fax: (314) 747-5073; E-mail: harbour@vision.wusl.edu.

3 The abbreviations used are: Rb, retinoblastoma protein; cdk, cyclin-dependent kinase; CAT, chloramphenicol acetyltransferase.
nocytes had positive nuclear staining. Immunostaining for p16 revealed strong nuclear expression (≥20% positive cells) in all cases, with a mean of 76% positive cells/tumor (Fig. 1B). Most normal choroidal melanocytes also had positive nuclear staining. For cyclin D1, all tumors contained cells with positive nuclear staining (mean, 18% positive cells; range, 1–60%; Fig. 1C). Strong staining (≥20% positive cells) was observed in 41% of tumors; 59% contained ≤5% positive cells. Normal choroidal melanocytes were negative, suggesting that detection of cyclin D1 in melanoma cells reflected abnormally high expression.

Using an antibody that specifically detects Rb that is phosphorylated at serine-807 and serine-811 ("phospho-Rb"), normal choroidal melanocytes were negative, but all tumors contained malignant cells with intense nuclear staining (Fig. 1D). The percentage of positive cells ranged from 0.1 to 5% of cells/tumor, consistent with the fraction of cycling cells in uveal melanomas stained for Ki-67 (12). Virtually all mitotic figures were positive and represented ~4% of all positive cells (Fig. 1D), further supporting the idea that phospho-Rb is expressed in cycling cells. There was a trend for increased cyclin D1 and phospho-Rb staining among melanomas of lower (spindle and mixed) histological grades (Table 1). Thus, although Rb does not appear to be mutated in most uveal melanomas, it is frequently phosphorylated on serine-807 and serine-811, and this phosphorylation may functionally inactivate Rb. Overexpression of cyclin D may be a common mechanism for maintaining Rb in a phosphorylated state in these tumors.

Transcription Assays. To determine the functional consequence of phosphorylating Rb on serine-807/811, we transfected Rb into an Rb-null cell line and measured active transcriptional repression, an activity that is required for Rb to arrest cells in G1 phase (13). Transfection of Rb repressed the activity of a CAT reporter by 85% (Fig. 2, Lane 2). Coexpression of cyclin D efficiently blocked this Rb repressor activity, presumably by activating endogenous kinases to phosphorylate Rb (Fig. 2, Lane 3). However, when serine-807 and

Table 1 Summary of immunohistochemical analysis

<table>
<thead>
<tr>
<th>Histological classification</th>
<th>Positive tumors</th>
<th>Phospho-Rb (serine-807/811)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rb</td>
<td>p16</td>
</tr>
<tr>
<td>Spindle</td>
<td>8/9</td>
<td>9/9</td>
</tr>
<tr>
<td>Mixed</td>
<td>11/12</td>
<td>12/12</td>
</tr>
<tr>
<td>Epithelioid</td>
<td>11/11</td>
<td>11/11</td>
</tr>
</tbody>
</table>

* Tumors were scored positive if nuclear staining was present in ≥20% of cells.
* Percentage of positive cells (and range) among tumors in each histological grade.

Fig. 1. A, immunohistochemical staining of Rb in a representative uveal melanoma. Most melanoma cells had nuclear staining for Rb. ×40. B, immunohistochemical staining of p16 in a representative uveal melanoma. Most melanoma cells had nuclear staining for p16. ×40. C, immunohistochemical staining of cyclin D1 in a representative uveal melanoma. ×40. D, immunohistochemical staining for Rb phosphorylated on serine-807/811 in a representative uveal melanoma. The fraction of positive cells was similar to the fraction of cycling cells reported previously for uveal melanomas (12). Positively staining mitotic figures were observed frequently (arrow). ×40.
transcriptional repression by Rb, but this effect is lost with mutation of serine-807/811.

was performed using the calcium phosphate method. Note that cyclin D blocks most of the
melanomas, suggesting that the
pathway in uveal melanoma.

Discussion

Rb inhibits proliferation by arresting cells in the G1 phase of the
cell cycle (2). For cell division to occur, Rb is hyperphosphorylated and inactivated by cdk's that interact with their cyclin partners to form
active kinase complexes (2), cdk’s are in turn restrained by inhibitors
such as p16, which blocks cdk4/6 and allows hypophosphorylated Rb
to accumulate (14). The result of these interactions is a tightly
regulated pathway that allows cell division only under appropriate phys-
iological circumstances. In most cancers, this “Rb pathway” is dis-
rupted such that Rb is inactivated, either by mutation of the Rb gene
or by functional inactivation of Rb by hyperphosphorylation of the
protein (2). In this study, we wished to determine the status of the Rb
pathway in uveal melanoma.

We found that Rb is expressed strongly in most of the uveal
melanomas, suggesting that the Rb gene is not commonly mutated in
this cancer. However, we also found that serine-807 and serine-811 of
Rb are often phosphorylated in these tumors, and this phosphorylation
may block the tumor suppressor activity of Rb. Mutation of serine-
807/811 prevented inhibition of Rb repressor activity by cyclin D-
dependent phosphorylation. Furthermore, these sites have been shown
to regulate Rb binding to the proto-oncogene c-abl (11), and this
binding is important for tumor suppression by Rb (15). We showed
previously that phosphorylation of two other sites in the COOH-
terminal region (threonine-821/826) blocks active repression by Rb
through induction of an intramolecular interaction that displaces his-
tone deacetylases from the pocket (10). It is interesting that serine-
807/811 can independently regulate active repression by Rb, possibly
by inducing a similar intramolecular interaction. Taken together, our
findings support the idea that Rb is functionally inactivated in uveal
melanomas by phosphorylation of these (and potentially other) cdk
phosphoacceptor sites.

One mechanism for inappropriately phosphorylating Rb is by mu-
tation of p16 (2). However, we found no evidence for p16 inactivation
in uveal melanoma. In one recent report, loss of heterozygosity at the
p16 locus was observed in 24% of uveal melanomas, half of which
had a homozygous deletion that included this locus (8). However, no
mutations within the p16 gene were found, and no other evidence was
presented that p16 was specifically targeted by these genetic rearrange-
ments. Thus, most available evidence suggests that p16 is not a
frequent target of inactivating mutations in uveal melanoma.

Another mechanism for hyperphosphorylating Rb is by overexpres-
sion of cyclin D (2). We found positive immunostaining for cyclin D
in most tumors, whereas normal choroidal melanocytes were negative.
Overexpression of cyclin D has been observed in a number of cancers
as a result of amplification, translocation, or other rearrangement of
the gene, and these mutations presumably contribute to tumorigenesis
by activating endogenous cdk4/6 to phosphorylate Rb (2). In support
of this possibility, we show that overexpression of cyclin D in cultured
cells blocks active transcriptional repression by Rb, which is required
for Rb to arrest cells in G1 (10, 13). Others have further shown that
overexpression of cyclin D can overcome Rb-mediated tumor sup-
pression in vivo (16). Therefore, the tumor suppressor function of Rb
appears to be inhibited in uveal melanomas by phosphorylation of
specific cdk phosphoacceptor sites, and this phosphorylation may be
attributable to, at least in some cases, overexpression of cyclin D.

Because some of the tumors were only weakly positive for cyclin D1,
other proteins in the Rb pathway (e.g., cyclin D2, cyclin D3, cyclin E,
or cdk4/6) may also be deregulated in some tumors.

Overexpression of cyclin D may also serve to deregulate the Rb
pathway by another recently described mechanism (17). Cyclin D, when
complexed with cdk4/6, can sequester p21 and p27 so that they are
unavailable to inhibit cdk2 (Ref. 17; Fig. 3). Cyclin D also
competes directly with p16 for binding to cdk4/6 (18, 19), as demon-
strated in cultured uveal melanoma cells where p16 protein levels
were normal, but p16-cdk4 complexes were not found as in normal
choroidal melanocytes (20). Thus, cyclin D can activate cdk4/6 to
phosphorylate Rb, and it can interfere directly and indirectly with
several cdk inhibitors, resulting in the downstream activation of cdk2
and circumvention of the Rb checkpoint (Fig. 3). This study provides
new insights into abnormalities of the Rb pathway in uveal melanoma,
and it suggests that the molecular pathophysiology of this form of melanoma may be distinct from its cutaneous counterpart.

Acknowledgments

We thank Belinda McMahan in the Immunomorphology Core Laboratory for performing immunohistochemistry and Dr. Morton Smith (University of Wisconsin) for assistance in obtaining tumor specimens.

References

Inactivation of Retinoblastoma Protein in Uveal Melanoma by Phosphorylation of Sites in the COOH-Terminal Region

Milam A. Brantley, Jr. and J. William Harbour

Cancer Res 2000;60:4320-4323.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/16/4320

Cited articles
This article cites 19 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/16/4320.full.html#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/16/4320.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.