The Vitamin D Analogue EB 1089 Prevents Skeletal Metastasis and Prolongs Survival Time in Nude Mice Transplanted with Human Breast Cancer Cells

Calcium Research Laboratory, Department of Medicine, McGill University and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada [K. E. A., V. P., P.-E. C., L.-G. S.-M.]; and Leo Pharmaceuticals Ltd., Ballerup, Denmark [R. K.]

ABSTRACT

1,25-Dihydroxyvitamin D has potent antiproliferative and anti-invasive properties in vitro in cancer cells. However, its calcemic effect in vivo limits its therapeutic applications. Here, we report the efficacy of EB 1089, a low calcemic analogue of vitamin D, on the development of osteolytic bone metastases after intracardiac injection of the human breast cancer cell line MDA-MB-231 in nude mice. Animals injected with tumor cells were implanted simultaneously with osmotic minipumps containing either EB 1089 or vehicle. Both groups remained normocalcemic for the duration of the experiment. The total number of bone metastases, the mean surface area of osteolytic lesions, and tumor burden within bone per animal were markedly decreased in EB1089-treated mice. Furthermore, longitudinal analysis revealed that mice treated with EB1089 displayed a marked increase in survival and developed fewer bone lesions and less hind limb paralysis over time as compared with untreated animals. These results suggest that EB1089 may be beneficial in the prevention of metastatic bone lesions associated with human breast cancer.

INTRODUCTION

Advanced breast cancer is frequently associated with destructive osteolytic bone metastases that are accompanied by serious complications, inside and outside the skeleton, including severe bone pain, pathological fractures, hypercalcemia, neural compression syndrome, and bone marrow suppression (1–3). In turn, there is an increase in morbidity and mortality among breast cancer patients. Arguello et al. (4) established a bone metastasis model in which injection of cancer cells into the left cardiac ventricle of nude mice causes the development of osteolytic lesions. Recently, Sasaki et al. (5) have used this approach to develop a model of human breast cancer, the MDA-MB-231 human breast cancer cell line, that selectively produces osteolytic lesions similar to those observed in breast cancer patients. This model was then used to demonstrate a beneficial effect of bisphosphonates in the treatment and prevention of metastatic cancer to bone (5–8). Because bisphosphonates work primarily by inhibiting osteoclastic bone resorption but have no direct effect on metastatic tumor cells, it would be advantageous to devise alternative therapy that could directly target tumor cells within bone, alone or in combination with bisphosphonates.

The biologically active metabolite of vitamin D₃, 1,25(OH)₂D₃, has functions and therapeutic potential that extend beyond those of regulating bone mineralization and calcium homeostasis. At present, it is well-documented that 1,25(OH)₂D₃ is involved in essential cell regulatory processes, such as proliferation, differentiation, and apoptosis (9, 10). It has been shown that this hormone promotes cellular differentiation and inhibits the proliferation and the invasive potential of a number of different cancer cells in vitro (11–14). Recently, 1,25(OH)₂D₃ has been shown to induce apoptosis in human breast cancer cell lines (11, 15) and can also inhibit tumor-induced angiogenesis (16). In vivo studies demonstrated that 1,25(OH)₂D₃ slows the progression of breast, prostate, and other carcinomas (17–19). These properties suggest the possible clinical use of 1,25(OH)₂D₃ in the treatment of benign or malignant hyperproliferative disorders such as psoriasis and prostate and breast cancer. However, the potent hypercalcemic activity of 1,25(OH)₂D₃ has precluded its application as a pharmacological agent. For this reason, various synthetic vitamin D₃ compounds with reduced calcemic activity that retain the antiproliferative effects of 1,25(OH)₂D₃ have been developed (12, 20–22). Among these analogues, EB 1089 (Leo Pharmaceutical Ltd., Ballerup, Denmark) has been studied extensively. The effect of EB 1089 on cancer cell growth in vivo is ~50% lower than that of 1,25(OH)₂D₃ (23, 24). Moreover, this compound has a half-life similar to 1,25(OH)₂D₃ in vivo (25). In this analogue, the side chain is elongated with introduction of terminal ethyl groups, and double bonds have been introduced at positions C22 and C24 (Fig. 1), resulting in an increased metabolic stability (26). Previous studies have clearly demonstrated the efficacy of EB 1089 in reducing the growth of breast cancer cells in vitro (22, 23, 27). EB 1089 has also been tested in vivo and exhibited the best profile for regression of tumor growth without affecting serum calcium levels (15, 18, 27–29). On the basis of these findings and the fact that the vitamin D₃ receptor is present in a wide variety of human breast cancer cells (30–32) and in >80% of breast tumors (30, 31), we examined the capacity of EB 1089 to inhibit human breast cancer cell growth in vitro and the development of bone metastases in vivo.

We report here that in the MDA-MB-231 bone metastasis model, EB 1089 significantly decreases the development of osteolytic bone metastases, as demonstrated by radiological and histomorphometric examinations.

MATERIALS AND METHODS

Animals. Female, athymic nude mice (BALB/c-nu/nu; Charles River, Quebec, Canada), 4 weeks of age, were used for all experiments. Animals were maintained in a specific pathogen-free environment under controlled conditions of light and humidity for several weeks. These studies were approved by the Institutional Review Board of the Royal Victoria Hospital (Montreal, Canada).

Culture Conditions. The MDA-MB-231 (MDA-231) human breast cancer cell line was initially isolated from a pleural effusion of a 51-year-old woman and found to be estrogen receptor negative (33). This cell line was obtained from the American Type Culture Collection (Rockville, MD) and maintained in DMEM (Life Technologies, Inc., Grand Island, NY) supplemented with 10% heat inactivated fetal bovine serum (Wisent, Montreal, Quebec, Canada).
Intracardiac Injection of MDA-231 Cells in Nude Mice and Administration of EB 1089. Intracardiac injection of MDA-231 cells was performed according to the procedure described previously by Sasaki et al. (5). Subconfluent MDA-231 cells were fed with a fresh medium 24 h before intracardiac injection into nude mice. Cells (1 × 10⁵) were suspended in 0.1 ml of PBS and then injected into the left cardiac ventricle of female nude mice, 4 weeks of age, using a 27-gauge needle under anesthesia.

A preventative protocol was designed in which EB 1089 was administered continuously using an osmotic minipump (model 2 ML4 Alzet; Alza Corp., Palo Alto, CA) implanted s.c. the same day as the inoculation of MDA-231 breast cancer cells (Fig. 1). In preliminary experiments, we used increasing concentrations of EB 1089 (10, 14, 16, and 18 pm/24 h) to determine the minimal effective dosage that will not cause hypercalcemia in non-tumor-bearing mice. An infusion rate of 14 pm/24 h was chosen, and each minipump contained EB 1089 dissolved in 50% propylene glycol, 10% ethanol, and 40% saline to deliver a continuous dose of EB 1089 for up to 4 weeks at a delivery rate of 2.5 μl/h. Untreated animals were implanted with a minipump containing vehicle alone. Radiographs were taken 35 days after cell inoculation and prior to sacrifice to assess the number of osteolytic bone metastases. Histomorphometric analysis of tumor burden within bone was then performed in this group. In a separate protocol, survival, development of bone metastases, and hind limb paralysis were determined from the day of cell inoculation to the animal’s death using Kaplan-Meier analysis.

Assessment of the Number and Area of Bone Metastases. The number and area of osteolytic bone metastases were determined on radiographs. Animals were anesthetized, placed in a prone position against the films (18 × 24-cm; Mammoray Screens, AGFA, Mortsel, Belgium), and exposed to an X-ray at 25 kV for 5 s using a Mammo Diagnost UC (Philips, Hamburg, Germany). Films were developed using a Curix Compact processor (AGFA). The radiographs were extensively evaluated by three investigators including

and 1× antibiotic-antimycotic solution (Life Technologies, Inc.) in a humidified atmosphere of 5% CO₂ in air. The medium was changed twice weekly.

Assessment of Cell Growth in Vitro. The effects of EB 1089 and 1,25(OH)₂D₃ on the proliferation of breast cancer MDA-231 cells in vitro were assessed by cell count and [³H]thymidine incorporation. Cells were seeded at a density of 4 × 10⁴ cells/well in 24-well cluster plates in DMEM containing 10% fetal bovine serum for 24 h. After 24 h in serum-deprived DMEM, fresh medium containing 2.5% charcoal-stripped FCS with or without increasing concentrations of EB 1089 or 1,25(OH)₂D₃ (10⁻¹⁰ to 10⁻⁷ M) was added to cultured cells, and incubations continued for 3–5 days. Medium was changed every 2 days thereafter. EB 1089 and 1,25(OH)₂D₃ were dissolved in ethanol, and the final concentration of ethanol in all cultures did not exceed 0.1%. Cells were trypsinized at timed intervals, and an aliquot was counted (Coulter Electronics, Beds, United Kingdom).

DNA synthesis was assessed by measuring [³H]thymidine incorporation into cellular DNA. [³H]Thymidine (1 Ci/ml, DuPont New England Nuclear) was added to the cells during the last 2 h of incubation. The medium was aspirated, and cells were then washed twice with cold HBSS and incubated in 5% cold trichloroacetic acid for 15 min. After aspiration of the trichloroacetic acid, the cells were dissolved in 0.5 ml of 0.6 N NaOH, and an aliquot was counted by liquid scintillation. Results were expressed as a percentage of [³H]thymidine incorporation measured in the absence of 1,25(OH)₂D₃ or EB 1089.

Fig. 2. Effects of EB 1089 and 1,25(OH)₂D₃ on MDA-231 cell growth in vitro. Cells were treated without or with increasing concentrations of 1,25(OH)₂D₃ or EB 1089 (10⁻¹⁰ to 10⁻⁷ M) for 3–5 days in DMEM supplemented with 2.5% charcoal-stripped FCS. A, cell number measured at 3 and 5 days with 10⁻⁷ M of each compound. B, [³H]thymidine incorporation expressed as a percent of control (100%). Each value represents the mean of three different experiments done in quadruplicate; bars, SE. *, a significant difference from control values (vehicle treated cells); ○, a significant difference between 1,25(OH)₂D₃ and EB 1089 (P < 0.05). □, control; □□, 1,25(OH)₂D₃; □□□, EB 1089.
one radiologist, who had no knowledge of the experimental protocol. The area of osteolytic metastases was determined in both fore and hind limbs using an image analysis system in which prints of radiographs were captured and measured using a digitizing tablet attached to an IBM-compatible computer.

Histological and Histomorphometrical Examinations of Bones. The details of these methods were described previously (34, 35). In brief, both femora from animals in each treatment group were removed at the time of killing, fixed, dehydrated in 70% ethanol, and embedded in methylmethacrylate (J-T Baker, Phillipsburg, NJ). Bone specimens were cut completely through. Levels of longitudinal sections were spaced by 50 \(\mu \)m if tumor was identified or by 125 \(\mu \)m if no tumor was seen on sections stained by methylene blue. Sections of 5 \(\mu \)m were obtained using a polycut-E microtome (Reichert-Jung, Leica, Heerbrugg, Switzerland), placed on gelatin-coated glass slides, and stained with hematoxylin, eosin, and Goldner.

Histomorphometrical determination of total tumor depth and area of metastatic cancer infiltrations were measured in the femora of each treatment group on Goldner-trichrome-stained longitudinal sections. The metastatic tumors in bone were recognized, and their areas were measured on an osteoMeasure system (Osteometrics, Inc., Atlanta, GA) using an IBM-compatible computer.

Table 1 Incidence and distribution of bone metastases in EB 1089 or vehicle-treated mice at time of death

<table>
<thead>
<tr>
<th>Animals with bone metastases (%)</th>
<th>No. of lesions</th>
<th>Animals with limb paralysis (%)</th>
<th>Bone metastases/paralysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB 1089 (n = 9)</td>
<td>66</td>
<td>6 3 2</td>
<td>33 77</td>
</tr>
<tr>
<td>Untreated (n = 11)</td>
<td>100</td>
<td>10 17 8</td>
<td>72 100</td>
</tr>
<tr>
<td>(P^*)</td>
<td>0.002</td>
<td>0.01</td>
<td>0.013 0.007</td>
</tr>
</tbody>
</table>

* \(P \)s were derived with the log-rank test.

one radiologist, who had no knowledge of the experimental protocol. The area of osteolytic metastases was determined in both fore and hind limbs using an image analysis system in which prints of radiographs were captured and measured using a digitizing tablet attached to an IBM-compatible computer.

Histological and Histomorphometrical Examinations of Bones. The details of these methods were described previously (34, 35). In brief, both femora from animals in each treatment group were removed at the time of killing, fixed, dehydrated in 70% ethanol, and embedded in methylmethacrylate (J-T Baker, Phillipsburg, NJ). Bone specimens were cut completely through. Levels of longitudinal sections were spaced by 50 \(\mu \)m if tumor was identified or by 125 \(\mu \)m if no tumor was seen on sections stained by methylene blue. Sections of 5 \(\mu \)m were obtained using a polycut-E microtome (Reichert-Jung, Leica, Heerbrugg, Switzerland), placed on gelatin-coated glass slides, and stained with hematoxylin, eosin, and Goldner.

Histomorphometrical determination of total tumor depth and area of metastatic cancer infiltrations were measured in the femora of each treatment group on Goldner-trichrome-stained longitudinal sections. The metastatic tumors in bone were recognized, and their areas were measured on an osteoMeasure system (Osteometrics, Inc., Atlanta, GA) using an IBM-compatible computer.

Table 1 Incidence and distribution of bone metastases in EB 1089 or vehicle-treated mice at time of death

<table>
<thead>
<tr>
<th>Animals with bone metastases (%)</th>
<th>No. of lesions</th>
<th>Animals with limb paralysis (%)</th>
<th>Bone metastases/paralysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB 1089 (n = 9)</td>
<td>66</td>
<td>6 3 2</td>
<td>33 77</td>
</tr>
<tr>
<td>Untreated (n = 11)</td>
<td>100</td>
<td>10 17 8</td>
<td>72 100</td>
</tr>
<tr>
<td>(P^*)</td>
<td>0.002</td>
<td>0.01</td>
<td>0.013 0.007</td>
</tr>
</tbody>
</table>

* \(P \)s were derived with the log-rank test.
Analytical Methods. Animals were bled once a week for measurement of total plasma calcium and albumin. Plasma calcium and albumin levels were determined by microchemistry (Kodak Ektachrome, Mississauga, Ontario, Canada). Corrected plasma calcium was calculated using the formula: plasma total calcium $\times (40 - \text{plasma albumin}) \times 0.02$.

Statistical Analysis. All results are expressed as mean \pm SE. Statistical comparisons for in vitro study were made using the unpaired Student’s t test (a probability value of $P < 0.05$ was considered significant). Statistical significance of the difference in numbers of osteolytic metastases and tumor volume between EB 1089-treated groups and untreated groups was analyzed by Mann-Whitney test for nonparametric samples. The statistical difference of survival rate of the animals was determined by Kaplan-Meier analysis.

RESULTS

Effects of EB 1089 and 1,25(OH)$_2$D$_3$ on MDA-231 Cell Growth in Vitro. We examined the effects of 1,25(OH)$_2$D$_3$ and its low calccemic analogue EB 1089 on the proliferation of breast cancer MDA-231 cells in vitro. Cells were grown as described in “Materials and Methods” and treated with increasing concentrations of EB 1089 or
1,25(OH)2D3. As shown in Fig. 2, treatment of cells with 10−7 M of each compound for 3 and 5 days resulted in a time-dependent decrease of cell number (Fig. 2A). Moreover, addition of increasing concentrations of EB 1089 or 1,25(OH)2D3 to the culture medium caused a significant dose-dependent inhibition of [3H]thymidine incorporation (Fig. 2B). The minimal dosage producing a significant inhibition of cell growth was 10−10 M for EB 1089 and 10−7 M for 1,25(OH)2D3. In addition, the degree of inhibition observed with EB 1089 at any one dose appeared greater than 1,25(OH)2D3.

Osteolytic Bone Metastases Caused by MDA-231 Breast Cancer Cells in Nude Mice. Nude mice injected with breast cancer MDA-231 cells into the left cardiac ventricle showed multiple and well-defined osteolytic bone metastases in lower and upper extremities between 4 and 5 weeks after cell inoculation. Furthermore, mice developed severe cachexia with a marked decrease in muscle and adipose tissue, leading to body weight loss (data not shown). These observations are consistent with those reported previously (5, 36).

Effects of Continuous Treatment with EB 1089 on the Development of Osteolytic Bone Metastases. The number of mice that developed osteolytic bone metastases was analyzed longitudinally by Kaplan-Meier analysis and found to be significantly lower in the EB 1089-treated group as compared with the untreated group (Fig. 3A). At the time of death, the percentage of mice that developed osteolytic bone metastases was only 66% in the EB 1089-treated group compared with 100% in the untreated group (P < 0.002; Table 1). In addition, the total number of bone lesions at each site analyzed (femur, tibia, and humerus) was significantly reduced in animals treated with EB 1089 (P < 0.01). Furthermore, EB 1089-treated mice developed less hind limb paralysis as compared with untreated mice (P < 0.013; Fig. 3B; Table 1).

Radiographs taken 35 days after tumor cell inoculation in the untreated group showed multiple and obvious osteolytic lesions in the distal femora and proximal tibia. In contrast, nude mice treated with EB 1089 (14 pm/day/mouse) from the time of MDA-231 cell inoculation developed fewer radiographically detectable osteolytic bone lesions (Fig. 4). Only 28% of mice treated with EB 1089 developed osteolytic bone metastases as compared with 85% of untreated mice (P < 0.03).

The number of bone lesions per animal in the EB 1089-treated group was markedly lower than that in the untreated group at 5 weeks (Fig. 5A) and at the death of the animals (Fig. 5B). Moreover, the mean lesion area was significantly reduced in the EB 1089-treated group compared with the group receiving vehicle alone (Table 2).

Histological Examination of Bones with Metastatic Lesions. Representative histological sections through the femora of both untreated and EB 1089-treated groups 35 days after inoculation of tumor cells are illustrated in Fig. 6. Bone sections from untreated mice revealed that in most cases metastatic tumor cells filled a substantial amount of bone marrow space. In contrast, tumor cells present in the bone marrow space in EB 1089-treated mice were small and associated with little or no bone destruction. Furthermore, most of the EB 1089-treated mice had intact cortical and trabecular bone, and many bones had no evidence of tumor involvement.

Histomorphometric Analysis of Metastatic Cancer Burden in Bone. Histomorphometrical analysis of bone from mice in both untreated and EB 1089-treated groups 35 days after inoculation of tumor cells confirmed radiographic observations. The number and area of osteolytic lesions were significantly decreased in mice treated with EB 1089 compared with vehicle-treated mice (Fig. 7, A and B). Moreover, tumor depth was significantly less in EB 1089-treated mice compared with untreated mice (Fig. 7C).

Effect of EB 1089 on Plasma Calcium. Tumor-bearing animals receiving EB 1089 did not show any significant change in plasma calcium when compared with the vehicle-treated control group. In both groups, plasma calcium concentrations remained normal for the duration of the experiment (Fig. 8).

Effect of EB 1089 on Animal Survival. We assessed the effect of EB 1089 on survival time of tumor-bearing animals. Mice receiving EB 1089 IN OSTEOLYTIC BONE METASTASES
independently human breast cancer cell growth has been extensively studied and shown to inhibit both estrogen dependent and independent human breast cancer cell growth in vitro and in vivo (18, 21, 43–46). EB 1089, has been shown that synthetic vitamin D3 analogues with low calcemic activities relative to the native hormone 1,25(OH)2D3, are of potential interest on tumor cell growth within bone. The mechanism(s) by which 1,25(OH)2D3 and its analogues inhibit tumor growth is complex and not fully understood. 1,25(OH)2D3 induces a growth arrest in G0-G1 (20, 49) and was shown to modulate the expression of cell cycle-associated genes, including myc (50–52) and p21 WAF (15). Both 1,25(OH)2D3 and EB 1089 can induce human breast tumor regression by a mechanism that involves both activation of apoptosis and inhibition of proliferation (11, 15, 20, 28). However, no indication of apoptosis in MDA-MB-231 cells by 1,25(OH)2D3 or EB1089 was observed in our study (data not shown).

In conclusion, EB 1089 is highly effective in reducing metastatic bone lesions associated with human breast cancer and warrants further study as a therapeutic agent in this condition.

ACKNOWLEDGMENTS

We thank Claire Deschênes for preparation of histological sections and Pamela Kirk for preparation of the manuscript.

REFERENCES

The Vitamin D Analogue EB 1089 Prevents Skeletal Metastasis and Prolongs Survival Time in Nude Mice Transplanted with Human Breast Cancer Cells

Khadija El Abdaimi, Natalie Dion, Vasilios Papavasiliou, et al.

Cancer Res 2000;60:4412-4418.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/16/4412

Cited articles
This article cites 48 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/16/4412.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/16/4412.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/60/16/4412.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.