Dendritic Cells Containing Apoptotic Melanoma Cells Prime Human CD8+ T Cells for Efficient Tumor Cell Lysis

Lars Jenne, Jean-François Arrighi, Helmut Jonuleit, Jean-Hilaire Saurat, and Conrad Hauser

ABSTRACT

Dendritic cells (DCs) phagocytose apoptotic influenza-infected monocytes and cross-present influenza antigen to CD8+ T cells, generating a specific CTL response. We investigated whether apoptotic melanoma cells, presented by this mechanism, can lead to CTL responses to tumor-associated antigens and melanoma cells. Apoptotic HLA-A2+ MEL-397 melanoma cells were internalized by HLA-A2+ immature monocyte-derived DCs but failed to induce maturation of DCs. When exposed to interleukin 6, interleukin 1β, tumor necrosis factor α, and prostaglandin E2, DCs containing apoptotic MEL-397 cell material matured normally [cross-presenting DCs (cp-DCs)]. Autologous CD8+ CTL lines generated with cp-DCs produced tumor necrosis factor when stimulated with HLA-A2-binding immunodominant peptides from MelanA/MART1 and MAGE-3 (expressed by MEL-397 cells) but not tyrosinase (absent in MEL-397). T2 target cells loaded with the respective peptides were lysed by these cell lines, although to a lesser extent than by CTL lines generated in the presence of mature DCs and peptides from melanoma-associated antigens. In contrast, lines generated with cp-DCs lysed HLA-A2+ MEL-526 melanoma cells or allogeneic HLA-A2+ cp-DCs efficiently, whereas the CTL generated with DCs and peptides had little lytic activity. Mature DCs containing apoptotic tumor cells may thus represent an alternative approach for the therapy of malignant tumors.

INTRODUCTION

During the past few years, several melanoma-associated antigens have been identified that can be recognized by tumor-infiltrating lymphocytes and CTLs (1). For melanoma, a large number of tumor-associated antigens has been identified, and the HLA restriction of their immunodominant T cell epitopes has been defined (2, 3). Using a staining tool consisting of tetrameric HLA class I/immunodominant peptide complexes, antigen-specific CTLs are detectable in large numbers in lymph nodes of melanoma patients (4). CD8+ T cell precursors specific for tumor associated antigens have also been reported to be present in the blood of healthy donors (5). Strategies to increase and activate this cellular population in patients appear promising for the immunological treatment of tumors.

DCs3 play a pivotal role in the initiation of T cell-dependent immune responses (6) and can be obtained by culturing peripheral blood monocytes in the presence of GM-CSF and IL-4 (7, 8). Antigen loading can be performed by pulsing DCs with synthetic immunodominant peptides from identified antigens, as recently reported for prostate cancer (9), carcinoembryonic antigen expressing tumors (10), and cutaneous malignant melanoma (11). Disadvantages of this approach include the uncertainty regarding the longevity of antigen expression (12), the need to determine the patient’s HLA haplotype, the unavailability of peptides for all HLA haplotypes, and the lack of CD4 helper cell-related epitopes for most antigens. In addition, the CTLs resulting from such protocols have a good in vitro capacity for killing peptide-pulsed target cells but only a modest capacity for killing tumor cells (13).

Other methods for antigen loading include whole tumor cell preparations, i.e., tumor lysates. Exogenous antigen is not presented solely by MHC class II antigens but also can gain access to the antigen processing pathway for presentation by MHC class I molecules (cross-presentation; for review see (14)). Recently, the capacity of DCs to take up apoptotic cell material using either the vitronectin receptor αvβ3 (15) or αvβ5 and CD36 (16) was demonstrated. Albert et al. (17) showed efficient presentation of influenza antigen by DCs that had phagocytosed infected monocytes that were apoptotic. They showed influenza antigen presentation to T cells in the context of MHC class I (cross-priming). Furthermore, it was also shown that MHC class II restricted presentation of antigen from apoptotic cells by DCs is efficient (18).

We performed this study to determine whether DCs may prime for tumor-specific CTL responses after uptake of apoptotic melanoma cells. To this end, we first studied the uptake of apoptotic melanoma cells by immature monocyte-derived DCs. DCs were then matured (cp-DCs) and cultured with autologous CD8+ T cells and IL-2 to generate T cell lines. In parallel, we generated T cell lines using DCs loaded with immunodominant peptides from melanoma-associated antigens. We compared the ability of the CTL lines generated by both methods to release TNF in response to the immunodominant TAA peptides and to kill target cells loaded with peptide. We further compared their ability to kill melanoma cells and allogeneic cp-DCs. We demonstrate the generation of TAA-specific T cell lines by DCs loaded with apoptotic melanoma cells. Furthermore, CTL lines generated by this method are more potent in killing melanoma cells than CTL lines generated by peptide-loaded DCs.

MATERIALS AND METHODS

Cell Lines, Culture Media, and Peptides. Two melanoma cell lines, MEL-397 (HLA: A1, A10, B8, and B62) and MEL-526 (HLA: A2, A3, B50, and B62), were kindly provided by Dr. M. T. Lotze (University of Pittsburgh, Pittsburgh, PA). MEL-397 expresses MelanA/MART1, MAGE-3, and gp-100, and MEL-526 expresses MelanA/MART1, tyrosinase, MAGE-3, and gp-100 (19). They were cultured in RPMI 1640 supplemented with 2 mM l-glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 10% heat-inactivated FCS (Life Technologies, Inc., Basel, Switzerland). Both cell lines were subcultured every 4 days after treatment with trypsin-EDTA (Life Technologies, Inc., Basel, Switzerland) was also cultured in the same medium. The natural killer cell-sensitive line K562 (kindly provided by Dr. P. Romero, Ludwig Institute for Cancer Research, Lausanne, Switzerland) was cultured in the same medium. The natural killer cell-sensitive line K562 (kindly provided by Dr. E. Roosnek, University of Geneva, Geneva, Switzerland) was also cultured in the medium described above. HLA-A2-restricted immunodominant peptides corresponding to residues 27–35 (AAGIGILTV) from the MelanA/MART1 tumor associated antigen (20), to residues 369–377 (YMNGTMSQV) from tyrosinase (21), and to residues 271–279 (FLWGPRALV) from the MelanA/MART1 tumor associated (22) sequence (23).

Received 10/27/99; accepted 6/12/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This project was supported in part by the MEDIC Foundation (Geneva, Switzerland). L. J. was supported by Deutsche Forschungsgemeinschaft grant 282/6.

2 To whom requests for reprints should be addressed, at Allergy Unit, Hôpital Cantonal Universitaire de Genève, 24 rue Micheli-du-Crest, 1211 Genève 14, Switzerland. Phone: 0041-22-37-829-381; Fax: 0041-22-37-294-75; E-mail: Conrad.Hauser@medecine.unige.ch.

3 The abbreviations used are: DC, dendritic cell; cp-DC, cross-presenting DC; TNF, tumor necrosis factor; IL, interleukin; PGE2, prostaglandin E2; GM-CSF, granulocyte-macrophage colony-stimulating factor; mAb, monoclonal antibody; 7-AAD, 7-amino-actinomycin D; PBMC, peripheral blood mononuclear cell.
synthesized and purified by HPLC to >95% purity (Department of Biochemistry, University of Lausanne, Lausanne, Switzerland).

Antibodies and Reagents. The following mAbs were used. FITC-labeled murine CD80 (BB1), CD40 (5C3), HLA-DR (G46–6), and HLA-ABC (G46–2.6) mAbs were purchased from PharMingen (Hamburg, Germany), and CD8 (DK25) mAb was purchased from DAKO Diagnostika GmbH (Hamburg, Germany). PE-conjugated murine CD86 (IT2.2) mAb was from PharMingen; CD83 (Hb15a) mAb was from ImmunoTech (Marseille, France); CD4 (MT310) and CD16 (DJ130c) mAbs were from DAKO Diagnostika GmbH; and CD14 (MO-P9), CD19 (Leu-12), and CD3 (SK7) mAbs were from Becton Dickinson (Heidelberg, Germany). Purified control IgG1-PE was purchased from DAKO Diagnostika GmbH, and IgG2b-PE, IgG1-FITC, and IgG2b-FITC mAbs were from PharMingen.

Flow Cytometric Analysis. Cultured cells were washed; suspended at 3 × 10^5/ml in 50 μl of cold PBS, 0.1% sodium azide, 10 mg/ml BSA, and 200 μg/ml mouse IgG (Sigma); and incubated for 10 min on ice. Subsequent staining with labeled mAb or appropriate isotypic controls was performed for 30 min. Cells were then washed and resuspended in 300 μl of cold PBS, 1% human serum albumin containing 10 μg/ml 7-AAD (Sigma). Stained cells were analyzed for three-color immunofluorescence with a FACScalibur cell analyzer (Becton Dickinson, Mountain View, CA). Cell debris was eliminated from the analysis using a gate on forward and side scatter. A life gate was set using 7-AAD. At least 10^5 cells were analyzed for each sample. Results were processed using Cellquest software (Becton Dickinson).

DC Generation from Buffy Coats. Buffy coats of HLA-A^b^+ healthy donors were obtained according to institutional guidelines. PBMCs were prepared by density centrifugation using Ficoll-Paque (Amersham Pharmacia Biotech, Uppsala, Sweden). PBMCs were resuspended (15 × 10^6 cells/well) in 6-well plates (Nunc, Roskilde, Denmark) and incubated for 1 h at 37°C. Nonadherent cells were removed and the remaining cells were fed with 3 ml of X-VIVO 15 medium (Bio-Whittaker, Walkersville, MD) containing 1% of heat-inactivated autologous plasma, 10^3 IU of GM-CSF/ml, and 10^5 IU of IL-4/ml (Stratagene, La Jolla, CA). Cells were refed with 0.5 ml of fresh medium containing 10^3 IU of GM-CSF and 10^5 IU of IL-4 per ml on days 2, 4, and 6. On day 7, the nonadherent cells were transferred to a new well with fresh medium. DC maturation was induced with a cocktail of cytokines as recently published (8). The following cytokines were added: IL-4, 1000 units/ml, IL-6, 1000 units/ml (all from Stratagene); GM-CSF, 1000 units/ml (Leukomax, Novartis, Basel, Switzerland, kindly provided by Dr. P-Y. Dietrich, University of Geneva); PGE2, 1 μg/ml (Prostin, Amersham Pharmacia Biotech); and TNF-α, 10 ng/ml (kindly provided by Dr. J-M. Dayer, University of Geneva). Cells were harvested and counted in an Isomedic gamma counter (Wallac, Turku, Finland). Proliferation was assessed by tritiated thymidine incorporation in the last 8–12 h of culture. All conditions were set up in triplicate.

Induction of Apoptosis in MEL-397 Cells and Uptake of Apoptotic Cell Material by DCs. To induce apoptosis, MEL-397 cells were irradiated with UV-B (Philips UV, Philips, the Netherlands). After irradiation, MEL-397 cells were kept for 8 h in culture to allow apoptosis to occur. Apoptosis was measured using annexin-V kit (PharMingen) and 7-AAD staining (22). The three peptides described above were added at 10 μM when indicated. Nine days later, CD8^-^ T cells were restimulated under identical conditions using fresh generated autologous DCs. CTL lines were used after two cycles of stimulation for TNF assays and after three or four cycles of restimulation for CTL assays.

Statistical Analysis. Statistical analysis was done with Wilcoxon’s signed rank test.
RESULTS

Apoptotic MEL-397 Cells Are Efficiently Taken up by Immature DCs. MEL-397 cells were labeled with PKH-26 and UV-B irradiated (6 J/cm²) to induce apoptosis. Cells were kept for 8 h in culture to permit apoptosis to occur and then added to an equal number of PKH-67 labeled immature DCs. The labeling with these two dyes allowed the simultaneous detection of DCs and MEL-397 cells by flow cytometry. MEL-397 cells were also labeled with 7-AAD before flow cytometry to detect apoptotic cells. The percentage of 7-AAD⁺ MEL-397 cells was around 70% 8 h after irradiation but increased to 98% (SD: 2.2%) after 48 h, as measured in five independent experiments. The uptake of PKH-26⁺ tumor cells by the DCs resulted in a double-positive fraction (Fig. 1). Very few double-positive cells were detected immediately after adding apoptotic MEL-397 cells to DCs. Most of the DCs and MEL-397 cells stained double-positive after 18 h. Additional incubation for a total of 48 h only slightly increased the percentage of double-positive cells. Internalization of MEL-397 cells by DCs was confirmed microscopically (not shown). No double-positive cells were observed in cultures kept on ice. Together, these results indicate that immature DCs can efficiently internalize cell material from apoptotic MEL-397 cells, presumably by phagocytosis as shown previously with other cells (16).

Apoptotic Tumor Cells Do Not Induce DC Maturation. We next studied the effect of apoptotic melanoma cell material on immature DCs. Steady state mRNA levels encoding for proinflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-1RA, and IL-6) were measured by RNase protection assay 1 and 2 h after culturing immature DCs with or without apoptotic MEL-397 cells (Fig. 2a). The relative amount of proinflammatory cytokine mRNA induced by apoptotic cells was lower than by stimulation of immature DCs with exogenous TNF-α. To see whether the small induction of TNF-α mRNA induced by apoptotic MEL-397 cells was accompanied by release of protein, we measured bioactive TNF in the 48 h supernatant of these cultures. Induction of TNF protein induced by apoptotic MEL-397 cells was measurable and significant (Fig. 2b).

We further investigated the modulation of relevant surface markers known to be up-regulated upon DC maturation. Two days after adding apoptotic MEL-397 cells to immature DCs, the surface expression of CD83, CD86, CD80, CD40, and MHC class I and II was not altered (three experiments; data not shown).

We next tested the effect of apoptotic cell material on the capacity of DCs to stimulate allogenic T cells. DCs cultured with apoptotic MEL-397 cells for 2 days induced T cell proliferation comparable to that of immature control DCs (data not shown).

Together, these data suggest that the presence or the uptake of apoptotic MEL-397 cells does not induce features of DC maturation, with the exception of moderate induction of some inflammatory cytokines.
Characterization of cp-DCs. Because apoptotic MEL-397 cells did not induce maturation in DCs, we attempted to achieve this by adding a mixture of maturation factors. We exposed DCs containing or not containing apoptotic MEL-397 cells for 2 days to IL-1β, TNF-α, IL-6, and PGE₂, a mixture previously shown to induce full maturation in DCs (8). DCs incubated with apoptotic MEL-397 cells and subsequently matured are herein referred to as cp-DCs. In three independent experiments, we found no significant difference in the expression of maturation markers, costimulatory molecules, and MHC molecules in cp-DCs as compared to control mature DCs. Mean values were as follows: for CD83, 83.3% (SD, 12.5%) in cp-DCs versus 82.7% (SD, 10%) in normal DCs; for CD80, 69.7% (SD, 1.5%) versus 73% (SD, 4.6%); for CD86, 90.3% (SD, 6.7%) versus 94.5% (SD, 2.3%); for CD40, 54% (SD, 26%) versus 70% (SD, 19.3%); for MHC class I, 96% (SD, 2.8%) versus 94.2% (SD, 7.4%); and for MHC class II, 97.5% (SD, 1.3%) versus 98.6% (SD, 1%).

Furthermore, DCs matured alone or after the uptake of apoptotic MEL-397 cells had a similar capacity to stimulate the proliferation of allogenic T cells, as shown in Fig. 3.

cp-DCs Induce CD8⁺ Cells That Respond Specifically to Peptides from Melanoma-associated Antigens. We next asked whether cp-DCs also stimulate the growth of autologous CD8⁺ T cells. We cultured HLA-A2⁺ cp-DCs with autologous CD8⁺ cells from healthy donors plus IL-2. In addition, for control purpose, mature DCs and autologous CD8⁺ T cells were cultured with IL-2 in the presence or absence of a 10⁻⁵ M concentration of the HLA-A2-restricted immunodominant peptides from the melanoma antigens MelanA/MART1, MAGE-3, or tyrosinase. The latter method has previously been used to generate specific T cell lines (5). Although neither CD8⁺ T cells alone nor CD8⁺ T cells cultured in the presence of apoptotic MEL-397 expanded at any time point, the CD8⁺ cells in the presence of DCs proliferated, regardless of whether the culture contained apoptotic MEL-397 cells or peptides or none of these antigens (data not shown). After three or four cycles of restimulation under condition of the primary culture, the resulting cell lines were 97.5%–99% CD8⁺ cells. No CD16⁺ or CD19⁺ cells were identified.

To assess antigen-dependent responses, we incubated the T cell lines after two restimulations with immunodominant peptides from MelanA/MART1, MAGE-3, or tyrosinase. It is important to mention that MEL-397 cells used to prepare cp-DCs express MelanA/MART1 and MAGE-3 but not tyrosinase (19). After 48 h, we measured TNF in the supernatant. As shown in Fig. 4, T cells generated in the presence of peptide plus DCs only produced TNF when the same peptide used for primary culture was added for restimulation but not when unrelated peptides or no peptide was added. The CD8⁺ cell lines generated in the presence of cp-DCs produced TNF only in the presence of MelanA/MART1 and MAGE-3, whereas no TNF was released in the presence of tyrosinase peptide or in the absence of peptide. CD8⁺ cells primed with DCs in the absence of exogenous peptide or apoptotic MEL-397 cells did not produce TNF. Together, these results demonstrate that CD8⁺ T cell lines generated with either cp-DCs or DCs plus peptide from healthy individuals release TNF in an antigen-specific manner.

cp-DCs Prime Autologous CD8⁺ T Cells for Specific Killing of Target Cells Pulsed with Peptides Derived from Melanoma-associated Antigens. To see whether the T cell lines exhibit specific CTL activity, we used HLA-A2⁺ T2 cells as target cells that were loaded with the peptides mentioned above. Because of TAP deficiency, T2 cells express at their surface empty MHC class I that can be loaded with HLA-A2-restricted peptides (24). Three cycles of restimulation with cp-DCs generated T cell lines with CTL activity toward MelanA/MART1 and MAGE-3 peptide-loaded T2 cells, but not T2 alone or T2 loaded with peptide from tyrosinase. At an E:T cell ratio of 60:1, the mean killing rates in five experiments performed with independent blood donors were as follows: MelanA/MART1 peptide-loaded T2 cells, 33.4% (SE, 7.4%); MAGE-3 peptide-loaded targets, 36% (SE, 8.9%); tyrosinase-loaded targets, 6.7% (SE, 0.6%); and unpulsed targets, 12.7% (SE, 4.1%; Fig. 5a). T cell lines generated in the presence of peptide from MelanA/MART1, MAGE-3, or tyrosinase and autologous mature DCs killed T2 cells pulsed with the relevant peptide but not those pulsed with irrelevant peptide (Fig. 5) or no peptide (data not shown). In addition, these T cell lines killed peptide-loaded target cells more efficiently than CTLs primed with cp-DCs in three independent experiments (Fig. 5, c and d). T cell lines generated with DCs in the absence of exogenous antigen did not kill peptide-loaded or unloaded T2 cells (Fig. 5, c and d). These results demonstrate as a novel finding that priming of CD8⁺ T cells with cp-DCs from normal donors can generate CTL lines and peptide pulses.

Fig. 4. Antigen-specific TNF production by primed CD8⁺ CTL lines. After two cycles of restimulation under different priming conditions, the amount of TNF produced by CD8⁺ T cells incubated with or without 10⁻⁵ M HLA-A2-binding peptide from melanoma-associated antigens was measured. One experiment of four with similar results is shown. The data are given as mean of duplicates.

Fig. 3. The increase of allostimulatory capacity of immature DCs by maturation factors is not inhibited by apoptotic MEL-397 cells. Immature DCs containing (●) or not containing (▲) apoptotic MEL-397 cells were exposed to the maturation inducing cytokines TNF-α, IL-1β, IL-6, and PGE₂ for 2 days and subsequently used to stimulate allogenic T cells. T cell proliferation was measured by [³H]thymidine incorporation after 5 days. Immature DCs not containing apoptotic cells served as control (□). The data represent mean of triplicates ± SD. One representative experiment of five with similar results is shown. In all experiments, the proliferation of T cells without DCs was below 600 cpm.

Fig. 4. Antigen-specific TNF production by primed CD8⁺ CTL lines. After two cycles of restimulation under different priming conditions, the amount of TNF produced by CD8⁺ T cells incubated with or without 10⁻⁵ M HLA-A2-binding peptide from melanoma-associated antigens was measured. One experiment of four with similar results is shown. The data are given as mean of duplicates.
specific for peptides from melanoma-associated antigens expressed by the MEL-397 cells. The results also confirm that peptide from MelanA/MART1, MAGE-3, and tyrosinase can be used to generate CTL lines that lyse peptide-loaded target cells.

cp-DCs Prime Autologous CD8+ T Cells for Killing of HLA-A2-positive MEL 526 Cells. To evaluate the ability of the CTL lines to kill melanoma cells in vitro, we used MEL-526 cells as targets. This cell line expresses MelanA/MART1, MAGE-3, and gp-100 as MEL-397 cells plus tyrosinase peptide (10-5 M) and DCs served as control. CD4+ T cells were generated in the presence of cp-DCs (three cycles of restimulation). CTL responses (28). It was only recently that the highly efficient presentation of viral antigen after the phagocytosis of influenza-infected, apoptotic macrophages was demonstrated (17). These authors (17) induced CTL recall responses using cp-DCs. Presentation of antigen (ovalbumin) from apoptotic cells in the context of MHC class II has been demonstrated in a mouse model (18). To study whether the uptake of apoptotic cells by DCs can be used for in vitro priming of T cells against melanoma we cultured autologous CD8+ T cells with HLA-A2+ DCs that were first allowed to take up apoptotic MEL-397 melanoma cells and then matured with a mixture of maturation factors (cp-DCs). CD8+ T cells cultured in the presence of peptide (10-5 M) and DCs served as control. CD4+ T cells were processed and presented naturally in target cells. Furthermore, these results suggest that cp-DCs are capable of inducing CTLs against antigen presented in a MHC class I-restricted manner.

DISCUSSION

We confirmed the uptake of apoptotic cell material by immature DCs with MEL-397 cells and the absence of DC maturation after uptake of these cells. The slight induction of proinflammatory cytokines by apoptotic MEL-397 cell material was, however, neither associated with increased expression of costimulatory molecules nor an enhanced capacity of stimulating allogeneic T cells. This finding was recently reported for other transformed human cell lines (25) and for mouse fibroblasts (26). In our experiments, we show that DCs containing apoptotic MEL-397 cells could be matured with a mixture of IL-1β, TNF-α, IL-6, and PGE(2). Maturation in cp-DCs is supported by the surface marker profile and the enhanced stimulation of allogeneic T cell proliferation.

Exogenous antigen can be presented by MHC class I molecules, a process termed cross-presentation (14). It was suggested by Bevan (27) that damaged cells could gain access to cross-presentation pathways. In addition, it has been demonstrated that particulate antigens prime more efficiently than soluble molecules for class I-restricted CTL responses (28). It was only recently that the highly efficient presentation of viral antigen after the phagocytosis of influenza-infected, apoptotic macrophages was demonstrated (17). These authors (17) induced CTL recall responses using cp-DCs. Presentation of antigen (ovalbumin) from apoptotic cells in the context of MHC class II has been demonstrated in a mouse model (18). To study whether the uptake of apoptotic cells by DCs can be used for in vitro priming of T cells against melanoma we cultured autologous CD8+ T cells with HLA-A2+ DCs that were first allowed to take up apoptotic MEL-397 melanoma cells and then matured with a mixture of maturation factors (cp-DCs). CD8+ T cells cultured in the presence of peptide (10-5 M) and DCs served as control. CD4+ T cells were...
The killing of HLA-A2

lines (f), CTL lines generated without peptide (MAGE-3 peptide (i)), and cross-primed CTL

generated with DCs and MelanA/MART1 peptide (L), CTL lines generated with DCs and

E

eys (31, 32). This may explain our results. The high density of

peptide on antigen-presenting cells select for high-affinity/high-avidity T cells whereas low levels of

shown with murine cells that priming with high levels of peptide

density on cp-DCs and MEL-526 cells. It has previously been

higher on T2 cells loaded with peptide and DCs to which peptide was

added than on cp-DCs and MEL-526 cells. It has previously been

not measure the density of immunogenic peptide on the surface of

cells as opposed to MEL-526 cells and cp-DCs was striking. We did

two different priming strategies when using peptide-loaded T2 target

remains to be established.

whether the cell lines generated by repetitive stim-

ulation can recognize immunodominant peptide epitopes from melano-

oma-associated antigens expressed by MEL-397 (MelanA/MART1 and

MAGE-3), we stimulated the T cell lines with these peptides and

measured the TNF response as the first readout. It was not necessary

to add exogenous antigen-presenting cells to observe responses by the

CD8

T cell lines. This is not surprising, as activated CD8

were recently described to present peptide efficiently to each other

(30). Both cell lines primed with cp-DCs and with DCs plus antigenic

peptide exhibited specific responses. It is impressive that T cell lines

generated by cp-DCs recognized single peptide epitopes from

MelanA/Mart1 or MAGE-3 expressed by MEL-397 cells. From these

experiments, we can be concluded that cp-DCs can prime for responses

to MelanA/MART1 and MAGE-3. These data, together with the CTL

experiments with cp-DCs as target cells, give evidence that DCs can

cross-present melanoma antigens to CD8

T cells. Furthermore, these

results show that many healthy individuals have circulating precursors

for these antigens in the blood. Their frequency should be

>1.5 × 10

as we used 1.5 × 10

cells per condition in the starting

cultures. This is in the order of magnitude reported for MAGE-3

specific T cells measured by ELISPOT assay (6). Whether the specific

cells within our T cell lines derive from naive or memory cells

remains to be established.

The differential killing capacity of CTL lines generated with the two different priming strategies when using peptide-loaded T2 target

cells as opposed to MEL-526 cells and cp-DCs was striking. We did

not measure the density of immunogenic peptide on the surface of

DCs and the different target cells. It is very likely, however, that it was

higher on T2 cells loaded with peptide and DCs to which peptide was

added than on cp-DCs and MEL-526 cells. It has previously been

shown with murine cells that priming with high levels of peptide

selects for low-affinity/low-avidity T cells whereas low levels of

peptide on antigen-presenting cells select for high-affinity/high-avidity T cells (31, 32). This may explain our results. The high density of

peptide used for priming may have selected for low-affinity T cells

that killed efficiently only when target cells with high peptide density

(i.e., peptide-loaded T2 cells) are used but not when naturally pro-

cessed and presented antigen is displayed in low density on target

cells, such as MEL-526 cells and cp-DCs. Conversely, the low peptide

density on cp-DCs may have selected for high-affinity T cells that

killed MEL-526 cells and cp-DCs efficiently. CTL lines generated

with cp-DCs may have been less efficient to kill T2 cells loaded with

a single antigenic peptide than CTL lines generated with DCs and

peptide because the former may contain cells specific for several

antigens from MEL-397 cells, whereas the latter contain cells with a

single relevant specificity. Cross-primed CD8

T cell lines exhibited

clear CTL activity (an average of 25% lysis above negative control)

only at high E:T ratios (60: 1). This may be linked to the low density of

antigen expressed on target cells (unlike in T2 cells loaded with

peptide) and the relative low abundance of high avidity T cells in the

effector population. Despite the differential killing activity of T cell

lines generated by the two methods, the antigen presenting capacity of

both peptide-exposed DCs and cp-DCs was high, because with both

methods, lines with antigen specificity could be generated. Our cyto-
toxicity results therefore suggest that vaccination with mature DCs

expressing naturally processed and presented antigen, such as cp-DCs,

may be more efficient than vaccination with peptide-pulsed mature

DCs. Our findings may thus contribute to the optimization of vacci-
nation strategies using DCs. Transfection of RNA from tumor cells

may represent an alternative approach to generate a low and natural

density of T cell epitopes on DCs (33, 34).

Another potential advantage of cp-DCs is that determination of

Fig. 7. CTL lines generated with cp-DCs kill allogenic HLA-A2

cp-DCs. CTL lines

generated by three restimulations using cross-primed DCs (), DCs without peptide (), DCs and MelanA/MART1 peptide (O), DCs and tyrosinase peptide (), or DCs and MAGE-3 peptide (•) were tested in their lytic activity toward allogenic HLA-A2

cp-DCs containing MEL-397 cells (a) as target cells or HLA-A2

DCs without MEL-397 cells (b). Two experiments were performed with similar results. Data are given as mean of triplicates ± SD.
MHC class I haplotypes is not a prerequisite (as in the peptide approach) because melanoma-associated antigens may also be recognized in the context of haplotypes other than HLA-A2. Furthermore, presentation of apoptotic melanoma cells by DCs has the potential benefit that presentation via MHC class II may generate helper epitopes that support the development of specific CTLs that might be important for antitumor immunity (35). The induction of autoreactivity could be a potential disadvantage of cp-DCs, as with all whole cell preparations of tumor cells and RNA derived thereof (discussed in Ref. 36).

In conclusion, we have demonstrated that DCs containing apoptotic melanoma cells can efficiently prime autologous CD8+ T cells in vitro to give rise to CD8+ T cell lines specific for epitopes from the melanoma-associated antigens MelanA/MART1 and MAGE-3 and that these cell lines killed melanoma target cells more efficiently than cell lines generated with DCs and peptides.

REFERENCES

Dendritic Cells Containing Apoptotic Melanoma Cells Prime Human CD8+ T Cells for Efficient Tumor Cell Lysis

Lars Jenne, Jean-François Arrighi, Helmut Jonuleit, et al.

Cancer Res 2000;60:4446-4452.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/16/4446

Cited articles
This article cites 36 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/16/4446.full.html#ref-list-1

Citing articles
This article has been cited by 24 HighWire-hosted articles. Access the articles at:
/content/60/16/4446.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.