Tumor Oxygenation in Hormone-Dependent Tumors During Vascular Endothelial Growth Factor Receptor-2 Blockade, Hormone Ablation, and Chemotherapy

Nils Hansen-Algenstaedt, Brian R. Stoll, Timothy P. Padera, Dennis E. J. G. J. Dolmans, Daniel J. Hicklin, Dai Fukumura, and Rakesh K. Jain

Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 [N. H., B. R. S., T. P. P., D. E. J. G. J. D., D. F., R. K. J.]; Department of Chemical Engineering [B. R. S.], Massachusetts Institute of Technology, and Division of Health Sciences and Technology [T. P. P.], Massachusetts Institute of Technology and Harvard Medical School, Cambridge, MA 02139; Department of Immunology, ImClone Systems Incorporated, New York, NY, 10014 [D. J. H.]

ABSTRACT

Tumor oxygenation is critical for tumor survival as well as for response to therapy, e.g., radiation therapy. Hormone ablation therapy in certain hormone-dependent tumors and antiangiogenic therapy lead to vessel regression and have also shown beneficial effects when combined with radiation therapy. These findings are counterintuitive because vessel regression should reduce oxygen tension (pO2) in tumors, decreasing the effectiveness of radiotherapy. Here we report on the dynamics of pO2 and oxygen consumption in a hormone-dependent tumor following hormone ablation and treatment with an anti-VEGFR-2 monoclonal antibody (mAb) or a combination of doxorubicin and cyclophosphamide; the latter combination is not known to cause vessel regression at doses used clinically. Androgen-dependent male mouse mammary carcinoma (Shionogi) was implanted into transparent dorsal skin-fold chambers in mice. The transparent chamber model allowed us to visualize tumor growth and vascularization (18). Because tumor size is an important determinant of therapeutic outcome, treatment was initiated 13 days after the tumors were implanted, mice were treated with antiangiogenic therapy (anti-VEGFR-2 mAb, 1.4 mg/30 g body weight), hormone ablation by orchiectomy (9) or a sham operation. All procedures were carried out following approval of the Institutional Animal Care and Use Committee. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

INTRODUCTION

Solid tumors are typically characterized by hypoxia (1–3). Despite continuous angiogenesis, local disparities between the rate of oxygen supplied by the blood and the oxygen consumption rate (Qt O2) of the tissue leave large numbers of cells in a state of oxygen deprivation. Some of these hypoxic tumor cells remain viable and contribute to the resistance of tumors to radiotherapy and to some anti-neoplastic drugs. As a result, therapies that affect the tumor environment have become a major focus in cancer research (3, 4). The hypoxic tumor microenvironment is a stimulus for angiogenesis, up-regulating expression of angiogenic factors such as vascular endothelial growth factor (VEGF) by tumor (5) and stromal (6) cells. VEGF is a potent angiogenic factor that promotes proliferation of tumor vascular endothelium and increases vascular permeability (7, 8). Thus, therapies that neutralize or interfere with VEGF signaling should cause vessel regression and inhibit growth (e.g., Refs. 8–12). One would also expect these therapies to increase hypoxia in tumors and limit the effectiveness of radiation and certain drug therapies. Surprisingly, the combination of angiogenesis inhibitors and radiotherapy or chemotherapy has led to additive or synergistic tumor response (13–15). Similarly, hormone ablation in hormone-dependent tumors, which leads to impaired vascular function (9), has shown synergistic effects when used in combination with radiation therapy (16).

Understanding the dynamics of tumor oxygenation during tumor regression and relapse is, thus, crucial for optimal scheduling of combined treatment (1, 2). Separate measurements of the partial pressure of oxygen (pO2) and Qt O2 have been made in tumors and, in limited cases, during response to therapy (4, 17). However, noninvasive measurements of pO2 profiles (and calculation of Qt O2) during treatment have not been reported. Here we quantify for the first time temporal changes in tumor pO2 and Qt O2 in response to antiangiogenic, hormone ablation, or chemotherapy (doxorubicin/cyclophosphamide). Androgen-dependent Shionogi tumors were grown in transparent dorsal skin-fold chambers in severe combined immunodeficient mice. The transparent chamber model allowed us to visualize tumor growth, regression, and relapse-over extended periods (18) and to non-invasively measure tissue pO2 using the recently developed phosphorescence quenching microscopy (PQM) technique (2).

MATERIALS AND METHODS

Tumor Model and Treatment. Male severe combined immunodeficient mice from our gnotobiotic colony were implanted with transparent dorsal skin-fold chambers (18). Androgen-dependent male mouse mammary carcinoma (Shionogi) was implanted 3 days after chamber implantation as described previously (9). Intravital microscopy was performed every third day to document tumor growth and vascularization (18). Because tumor size is an important determinant of therapeutic outcome, treatment was initiated 13 days following tumor implantation, after the tumors had become established and had developed a functional vascular network. Mice in the antiangiogenic group received either anti-VEGFR-2 monoclonal antibody (mAb; DC101, 45 mg/kg, i.p.; Ref. 19) or an equal amount of non-specific rat IgG (Jackson Immunochemicals, West Grove, PA) every 3 days. Mice in the chemotherapy group received either doxorubicin (6.5 mg/kg, i.p.) and cyclophosphamide (100 mg/kg, i.p.) or an equal amount of physiological saline every 7 days. Mice in the hormone ablation group underwent either an orchietomy (9) or a sham operation. All procedures were carried out following approval of the Institutional Animal Care and Use Committee.

Tumor Growth Analysis. The growth data were described using the rectilinear form of the Gompertz equation (20): ln ln Amax – ln A(t) = ln g/α – αt.

Received 11/23/99; accepted 6/21/00.

The abbreviations used are: Qt O2, oxygen consumption rate; VEGF, vascular endothelial growth factor; pO 2 , partial pressure of oxygen; PQM, phosphorescence quenching microscopy; mAb, monoclonal antibody.

which relates tumor cross-sectional area (A) to time (t). The parameters (α, β) were determined by comparing this model to the experimental growth data using a linear regression.

Vessel Volume per Area. The vascular volume per unit area was calculated based on the vessel diameter (D) and length (L):

\[
\text{volume per area} = \frac{\pi}{4A} \sum_{i=1}^{n} D_i^2 L_i
\]

where \(M\) is the total number of vessels in the region with the area A (11). The vessel diameter and length were measured in five distinct regions (each \(\approx 0.5\) mm in length) using image analysis of the tumor vasculature.

Phosphorescence Quenching Microscopy. High resolution PQM was used to measure \(pO_2\) profiles (2). Tissue \(pO_2\) was measured between adjacent vessels in 20-μm increments. Briefly, albumin-bound palladium meso-tetra-(4-carboxyphenyl) porphyrin (Medical Systems Corp., Greenwale, NY) was injected i.v. via the tail vein (60 mg/kg). Three to seven fields of view were selected randomly throughout the tumor. After 30 min, excitation was generated by flashes (\(n = 15\)) from a 540-nm flashlamp (EG&G, Salem, MA). Phosphorescence signals (≥630 nm; Oriel, Stratford, CT) were detected with a photomultiplier tube (9203B, Products for Research, Danvers, MA), averaged on a digital oscilloscope (TDS-320, Tektronix, Beaverton, OR), and transferred to a computer. Lifetime constants (\(τ\)) were obtained from this data and \(pO_2\) values were calculated using the Stern-Volmer equation, \(pO_2 = \frac{1}{k(1/τ - 1/τ_0)}\) (21). In this expression, \(k\) and \(τ_0\) are the quenching constant and the phosphorescence lifetime in the absence of oxygen, respectively. To establish pre-treatment values, oxygen levels were measured on day 12, 1 day before initiating therapy. After initiating therapy, oxygen levels were measured 14, 20, 26, and 32 days after tumor implantation. RBC velocity was also measured in these vessels using the temporal correlation velocimetry described elsewhere (19).

Oxygen Consumption Rate. To estimate changes in \(Q_{O_2}\) with time, a one-dimensional linear diffusion-reaction model was used to describe the diffusion process.

\[
D \frac{\partial^2 C}{\partial x^2} - \frac{\partial C}{\partial t} = \kappa C
\]

Where \(D\) is diffusion coefficient, \(C\) is oxygen concentration, \(\kappa\) is oxygen consumption rate. Using the boundary conditions, \(C(0) = C_0\) and \(C(\infty) = C_{\text{eq}}\) at which the minimum \(pO_2\) (minimum concentration, \(C_{\text{eq}}\)) is measured, gives the solution

\[
C(x) = \left(\frac{Q_{O_2}}{2DS}\right)x^2 - \left(\frac{2Q_{O_2}(C_0 - C_{\text{eq}})}{DSx + C_0}\right)
\]

\(pO_2\) data were fit with this second order polynomial. We assumed a value of \(D = 3 \times 10^{-3} \text{ cm}^2/\text{s}\) (22), \(S = 2.05 \times 10^{-3} \text{ mlO}_2/\text{cm}^2\cdot\text{mm Hg}\) (23), and calculated \(Q_{O_2} = \frac{10^{-3} \text{ mlO}_2/\text{cm}^2\cdot\text{min}}{\text{min}}\). \(Q_{O_2}\) were calculated only for those vessels that were greater than 200 μm from the nearest neighboring vessel to satisfy the assumptions in the mathematical model.

Statistical Analysis. Results are presented as mean ± SE. ANOVA tests were performed to compare the equality of controls. F-tests were used to test the equality of variances. Two sample t-tests for independent samples of equal variances were performed to compare sample means. Statistical significance was based on \(P\) values smaller than 5%. Prior to the first day of treatment (day 13), there were no statistically significant differences between the four groups (control, anti-VEGFR-2 mAb, hormone ablation, and doxorubicin/cyclophosphamide) included in the study.

RESULTS

Tumor size and transformed tumor size analyzed using the rectilinear form of the Gompertz model are shown in Fig. 1. A and B, respectively. Tumors in the control groups exhibited similar growth curves, independent of the treatment modality (saline, non-specific IgG, or sham operation). Hormone ablation and treatment with doxorubicin/cyclophosphamide resulted in significant growth delays (\(P < 0.05\)). The growth of the anti-VEGFR-2 mAb-treated group was not significantly different from the control group. The growth data were used to ensure that comparisons of \(pO_2\) and \(Q_{O_2}\) values were size-matched because tumor size is known to be an important determinant of oxygenation (24).

![Fig. 1. Tumor growth. A, Tumor size (mm²) is plotted as a function of time. B, Transformed tumor size is plotted as a function of time. Transformed tumor size was calculated using the rectilinear form of the Gompertz model and the data were fit using a linear regression. Tumor growth data were used to ensure size-matched comparisons of \(pO_2\) and \(Q_{O_2}\) values.](image-url)
OXYGEN CONSUMPTION RATE AND \(pO_2 \) IN TUMORS

DISCUSSION

The importance of low oxygen in cancer treatment response has been discussed since the description of tumor hypoxia by Thomlinson and Gray (25). To improve existing therapies and to develop new strategies, it is essential to understand how various tumor therapies influence the local microenvironment. Because tumor \(pO_2 \) fluctuates, reflecting the imbalance between oxygen supply and \(Q_{O_2} \), a continuous, controlled, non-invasive in vivo analysis is necessary to gain insight into the dynamics of tumor oxygenation (2).

Oxygen tension in all control groups decreased with increasing tumor size despite increases in vessel density. \(Q_{O_2} \), on the other hand, remained constant, indicating unchanged metabolic demands. This implicates hindered oxygen delivery as the cause of tumor hypoxia. This is supported by the observation that \(pO_2 \) at the vessel wall decreases with increasing tumor size. The decrease in delivery could be attributable to increased consumption by endothelial cells (26, 27), impaired oxygen carrying capacity, or increased oxygen extraction from blood as it flows over longer distances through the growing tumor.

The decrease in \(pO_2 \) observed 1 day after initiating treatment in the...
hormone ablation and anti-VEGFR-2 mAb groups is likely the result of the ability of these treatments to alter vascular function by inducing endothelial cell apoptosis (9) or by blocking VEGF signaling. In both treatments, the subsequent period of low pO₂ is followed by increases in pO₂ and Qₐ₂, coincident with a second wave of angiogenesis. In the anti-VEGFR-2 mAb-treated group, the high pO₂ levels observed with increases in vasculature and despite increases in Qₐ₂ may be the result of increased tissue perfusion. Blood flow rate measurements indicate that RBC velocity during vessel regression and relapse (day 14: V_RBC = 74.9 ± 2.1 μm/s; day 20: V_RBC = 80.9 ± 1.8 μm/s; day 26: V_RBC = 79.7 ± 3.3 μm/s; day 30: V_RBC = 72.9 ± 3.1 μm/s; and day 35: V_RBC = 75.4 ± 2.1 μm/s) does not change appreciably (P > 0.23, one-way ANOVA). However, vessel density increases significantly during the later stages of therapy (after day 26), suggesting improved tissue perfusion. In addition, similar to observations made in studies in which VEGF itself was neutralized (11) or down-regulated (9), vessels that develop during the second wave of angiogenesis appear less tortuous (Fig. 5). The increase in Qₐ₂ is presumably due to an increase in the number of oxygen-consuming cells and mirrors the metabolic demands of the tumor. Thus, it appears that Qₐ₂, not pO₂, mirrors the dynamics of tumor growth and regression in agreement with the findings of Gullino et al. in tissue-isolated tumors (28).

To investigate the possibility that the second wave of angiogenesis observed during anti-VEGFR-2 mAb therapy may be the result of hypoxia-induced up-regulation of VEGF (9), anti-VEGFR-2 mAb was administered in excess to ensure complete competitive inhibition. The second wave of angiogenesis still occurred under these conditions, suggesting that it may be mediated by alternate signaling pathways or by other angiogenic factors. The mechanisms underlying the second wave of angiogenesis require further investigation.

During doxorubicin/cyclophosphamide therapy there was no sig-

![Figure 4](image_url)

Fig. 4. Vascular density (n = 3–5). Volumetric vessel density is plotted against time. Anti-VEGFR-2 mAb therapy caused a dramatic reduction in volumetric vessel density after day 20 as compared with controls. The arrow indicates administration of antibody.

![Figure 5](image_url)

Fig. 5. Photographs of Shionogi tumors grown in dorsal skin-fold chambers were taken 14, 26, and 32 days after the tumors were implanted. Therapy was initiated in well-vascularized tumors on day 13. **A.** Anti-VEGFR-2 mAb therapy. The color photographs show reduced vessel density on day 26 and vessel regrowth on day 32. Black and white images (enlarged views) illustrate changes in vessel morphology following treatment. **B.** Hormone ablation. Tumor regression is visible on day 26 with tumor regrowth and increased vessel density illustrated on day 32.
nificant tumor growth or change in tumor vascularization (data not shown). The constant pO_2 and Q_{O2} levels observed following therapy are compatible with growth arrest during which there is little increase in the number of tumor cells. These findings are consistent with other published observations (17). The slight decrease in tumor oxygenation on day 26 is consistent with the slight increase in tumor size. Compared with size-matched controls, pO_2 did not change. The effectiveness of radiation is enhanced by increased oxygenation and/or reduced tumor volume (29). Because neither a change in Q_{O2} nor an increase in pO_2 (compared with size-matched controls) was observed during chemotherapy, the benefits of combining radiation with chemotherapy are likely not the result of enhanced oxygenation but rather reduced tumor volume (30). Reduced tumor volume is likely the effect of chemotherapy on both tumor cells and endothelial cells (31, 32).

Tumor size and oxygenation are predictors of the success of radiation therapy (1) and chemotherapy (33). The elevated pO_2 resulting from the second wave of angiogenesis in anti-VEGFR-2 mAb therapy and hormone ablation should enhance the effectiveness of oxygen-dependent treatments such as radiation therapy. This finding may help to explain the beneficial effects of combining antiangiogenic and radiation therapy (4, 14). This finding also illustrates the importance of timing in the administration of combined treatments. Following hormone ablation therapy, the second wave of angiogenesis and increase in pO_2 are preceded by tumor regression that is most pronounced 12–14 days after treatment. The effectiveness of radiation therapy is therefore likely to be enhanced just before relapse when tumors exhibit increased pO_2 and decreased size. Indeed, Zietman et al. (16) observed radiation therapy to be most effective 12–14 days after hormone ablation therapy, the second wave of angiogenesis and vascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res., 59: 5209–5218, 1999.

Tumor Oxygenation in Hormone-Dependent Tumors During Vascular Endothelial Growth Factor Receptor-2 Blockade, Hormone Ablation, and Chemotherapy

Cancer Res 2000;60:4556-4560.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/60/16/4556

Cited articles This article cites 29 articles, 10 of which you can access for free at: http://cancerres.aacrjournals.org/content/60/16/4556.full#ref-list-1

Citing articles This article has been cited by 17 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/60/16/4556.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.