Inhibition of Epidermal Growth Factor Receptor Tyrosine Kinase Fails to Suppress Adenoma Formation in ApcMin Mice but Induces Duodenal Injury

Abstract

A highly selective, p.o. bioavailable irreversible inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, N-[4-(3-chloro-4-fluorophenylamino)-quinazolin-6-yl]-acrylamide (CFPQA), was evaluated for its ability to prevent intestinal adenoma formation in ApcMin mice. Ten-week continuous dietary exposure to CFPQA at doses sufficient to abolish intestinal EGFR tyrosine phosphorylation failed to affect intestinal tumor multiplicity or distribution but induced flat mucosal lesions in the duodenum characteristic of chronic injury. Intestinal trefoil factor, an intestinal peptide that mediates antiapoptotic effects through an EGFR-dependent mechanism, was notably absent in adenomas but was highly expressed in flat duodenal lesions. We conclude that chronic inhibition of EGFR tyrosine kinase by CFPQA does not prevent adenomas in ApcMin mice but may induce duodenal injury.

Introduction

Because of its role in malignant transformation and growth, EGFR3 is an attractive target for treatment and prevention of cancer (1–3). Preclinical studies show that inhibition of EGFR activation induces cytostasis and apoptosis in a variety of carcinoma cell lines in vitro and has antitumor activity against epidermoid, breast, ovarian, lung, and nasopharyngeal carcinoma in vivo (4–6), and Phase I studies in humans with advanced malignancies are under way.

Selective inhibitors of EGFR tyrosine kinase induce caspase-dependent apoptosis in colon cancer and adenoma cell lines (7–9), perhaps by preventing EGFR-mediated antiapoptotic signals through the phosphatidylinositol 3'-kinase-Akt pathway (10–12). IGF/TF3 also activates this antiapoptotic pathway and confers resistance of colon cancer cells to apoptosis induced by DNA-damaging agents, serum deprivation, or ceramide through an EGFR-dependent mechanism (13). Of particular interest in colorectal cancer, EGFR and its family members interact with and phosphorylate β-catenin after activation by EGFR ligands or IGF/TF3 (14–16). β-Catenin accumulates early during colorectal carcinogenesis, following functional loss of the adenomatous polyposis coli (APC) gene product (17), and is considered to mediate the transforming and antiapoptotic effects of Apc loss through its actions as a transcriptional activator of antiapoptotic genes when complexed with the LeF/Tcf family of transcription factors (18, 19). The impact of EGFR signaling on the oncogenic function of β-catenin remains unknown. However, together, these observations suggest that EGFR may play a central role in antiapoptotic signaling during colorectal carcinogenesis generated by EGFR ligands, IGF/TF3, and perhaps β-catenin. To determine whether EGFR-mediated signals are critical for adenoma formation induced by Apc loss, we examined the effects of a 10-week continuous exposure to a highly selective, p.o. bioavailable inhibitor of EGFR tyrosine kinase activity, CFPQA (PD179651; Ref. 20), at three different oral doses on tumor multiplicity and distribution in the C57BL/6J-ApcMin mouse model of intestinal tumorigenesis.

Materials and Methods

Mice. The ApcMin mouse is a genetic model of intestinal tumorigenesis driven by a germ-line mutation at codon 850 of the APC gene analogous to FAP in human (21). Inbred C57BL/6J-ApcMin mice were produced by breeding from stock animals purchased from The Jackson Laboratory (Bar Harbor, ME) and screened for the Min+ genotype using a previously described PCR assay (22). Study mice were housed in an AAALAC-approved specific-pathogen-free facility using forced air Thoren microisolator cages (three mice/cage), monitored for health every 2–3 days, and weighed weekly. Mice were weaned onto the AIN-93G powdered diet at 25–30 days of age and assigned systematically to drug treatment and control groups to normalize the distribution of males and females and to avoid clustering of individual mice from single litters. At the end of the study, an intestinal tissue sample was taken from each animal and subjected to Min+ screening PCR to verify the Min+ genotype as described previously (22).

Diethex and Drug Treatment. The test drug, CFPQA, is a member of the quinazolin family of irreversible selective inhibitors of EGFR tyrosine kinase (1), and its structure, biochemical properties, and selectivity are comparable to those of the well-characterized analogue PD168393 (4, 20). CFPQA has an IC50 of 0.75 nM against the isolated enzyme and an IC50 of 3.1 nM against epidermal growth factor-stimulated receptor phosphorylation in A431 epidermoid cancer cells (20). Similar IC50 values have been determined against murine EGFR. CFPQA has minimal activity against other receptor tyrosine kinases. Like another closely related quinazolin, PD153035, CFPQA induces cytostasis and apoptosis of colorectal cancer cell lines at concentrations near its IC50 for inhibition of EGFR tyrosine kinase activity (7). However, unlike PD153035, CFPQA is well suited for in vivo chemopreventative studies because it has greater aqueous solubility and is p.o. bioavailable.

Food and water were freely available at all times for the duration of the study. Study mice were fed either powdered AIN-93G rodent diet alone (Dyets, Inc., Bethlehem, PA) or AIN-93G plus drug prepared immediately before use by extensive manual mixing of milled drug with powdered diet. Fresh diet was provided every 2–3 days, and all unused AIN-93G diet was stored at 4°C for a period not exceeding 3 months from the time of purchase. Both piroxicam and CFPQA are stable in dry chow at 22°C for over a week (22). All experimental groups were treated continuously from the time of weaning (25–30 days of age) until the time of sacrifice (99–111 days of age). Experimental groups included an AIN-93G vehicle control and three CFPQA treatment groups (50, 200, and 500 ppm CFPQA; n = 10).

Received 4/27/99; accepted 7/19/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom requests for reprints should be addressed, at 2-435 Alfred Gastrointestinal Research Unit, Saint Mary’s Hospital, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Phone: (507) 284-6635; E-mail: karnes.william@mayo.edu.

The abbreviations used are: EGFR, epidermal growth factor receptor; CFPQA, N-[4-(3-chloro-4-fluorophenylamino)-quinazolin-6-yl]-acrylamide; IGF, intestinal trefoil factor; TFF, TFF, ; SP, splanchnicolytic peptide; FAP, familial adenomatous polyposis; TNA, 10 mM Tris (pH 7.2), 150 mM NaCl, and 0.01% sodium azide.

4 William E. Karnes, Jr., unpublished observations.
mice/group). Based on the average food consumption per day and the average weight of mice in this study, approximate dosage conversions were as follows: (a) 500 ppm \(= 100 \text{ mg/kg/day} \); (b) 200 ppm \(= 40 \text{ mg/kg/day} \); and (c) 50 ppm \(= 10 \text{ mg/kg/day} \). Three additional supplemental studies were performed: (a) four Apc\(^{Min} \) mice were treated with 500 ppm CFPQA for 80 days and then observed off treatment for 4 weeks before sacrifice to assess the reversibility of CFPQA-induced duodenal lesions (described in “Results”); (b) four Apc\(^{Min} \) mice were treated with 500 ppm CFPQA for 80 days and then treated with 200 ppm piroxicam for 10 days before sacrifice to assess the effects of piroxicam on CFPQA-induced duodenal lesions; and (c) four wild-type C57BL/6J mice were treated with 500 ppm CFPQA for 80 days before sacrifice to assess whether duodenal lesions were dependent on the Apc\(^{Min} \) genotype.

Tumor Enumeration. Methods used for determining intestinal tumor multiplicity and distribution in Apc\(^{Min} \) mice have been described in detail (23). Briefly, the entire gastrointestinal tract was dissected, washed extensively with PBS, and fixed with methacarn (60% methanol, 30% chloroform, and 10% acetic acid), and tumors were evaluated by dark-field microscopy. The smallest tumors scored by this method were 0.2 mm in diameter, and the site of each tumor was recorded using a calibrated stage micrometer (Klarmann Rulings) to facilitate distribution analysis. For tumor distribution analysis, duodenum, jejunum, ileum, and colon were each divided into three equal segments.

Immunoprecipitation and Western Blot. Frozen tissue was homogenized in 10 volumes of ice-cold lysis buffer (50 mM HEPES (pH 7.5), 150 mM NaCl, 10% glycerol, 1 mM sodium EDTA, 1 mM sodium EGTA, 1% Triton X-100, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 10 μg/ml leupeptin, 10 μg/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride), and supernatant representing 1 mg of total protein was rotated at 4°C for 2 h with 2 μg of EGFR antibody (clone 1005; Santa Cruz Biotechnology, Santa Cruz, CA). Fifty μl of protein A-Sepharose (Amersham Pharmacia Biotech, Piscataway, NJ) were added and rotated overnight at 4°C. Immune complexes were washed five times with precipitate wash buffer (50 mM HEPES (pH 7.5), 150 mM NaCl, 10% glycerol, 0.1% Triton X-100, and 0.02% sodium azide), resuspended with 30 μl of loading buffer (2% SDS and 30 mM β-mercaptoethanol), heated to 100°C for 5 min, and centrifuged. Thirty μl of the lysate were loaded and separated on a 4–20% polyacrylamide gel, and the proteins were transferred electrophoretically to nitrocellulose membrane. The membrane was washed once in TNA and blocked overnight in TNA containing 5% BSA and 1% ovalbumin. The membrane was blotted for 2 h with 2 μl of antiphosphotyrosine antibody (clone 4G10; Upstate Biotechnology, Inc., Lake Placid, NY) and then washed twice in TNA, washed once in TNA containing 0.1% Tween-20 and 0.05% NP-40, and washed twice in TNA. The membranes were then incubated for 2 h in blocking buffer containing 0.1 μg/ml polyclonal antibody and then washed again as described above. After the blots were dry, they were loaded into a film cassette and exposed to XAR X-ray film for 1–7 days. Band intensities were determined with a Molecular Dynamics laser densitometer.

Fig. 1. Effects of 5-day treatment with 500 ppm CFPQA on EGFR tyrosine phosphorylation in jejunal mucosa of Apc\(^{Min} \) mice. EGFR was immunoprecipitated from tissue lysates, separated by SDS-PAGE, and analyzed by Western analysis with antibodies specific for phosphotyrosine (top) or EGFR (bottom) as described in “Materials and Methods.” Lane 1, animals fed the AIN-93G diet alone; Lane 2, animals treated with 500 ppm CFPQA; Lane 3, positive control lysate from EGFR-overexpressing A431 epidermoid cancer cells. Molecular weight markers are shown on the right. Bands representing the M, 180,000 EGFR are indicated by the arrowheads.

Fig. 2. Effects of CFPQA on tumor multiplicity and distribution in Apc\(^{Min} \) mice. Tumors were counted in three equal segments each of duodenum (D1, D2, and D3), jejunum (J1, J2, and J3), ileum (I1, I2, and I3), and colon (C1, C2, and C3) as described in “Materials and Methods.” A shows the average total number of tumors in each treatment group (error bars, SD). B shows the average number of tumors in each segment in each treatment group (shown in the legend). The apparent increase in D1 tumors in CFPQA-treated animals is believed to be an artifact due to the duodenal lesions described in “Results” and shown in Figs. 3 and 4. Numbers of animals in each group are shown in parentheses in the legend. Treatment groups labeled CQ50, CQ200, and CQ500 represent CFPQA at 50, 200, and 500 ppm, respectively.

Immunohistochemistry. Expression of trefoil peptides was determined by immunohistochemistry using rabbit polyclonal antibodies kindly provided by Dr. Daniel Podolsky (Massachusetts General Hospital, Boston, MA) raised against rat ITF/TFF3 and human SP (SP/TFF2), both recognizing the murine forms. Sections (5 μm) of methacarn-fixed, paraffin-embedded tissues were dewaxed and rehydrated, treated with 2% hydrogen peroxide in 100% methanol for 10 min, and then rinsed in PBS (pH 7.4). Slides were then blocked with 5% FCS/PBS for 30–45 min, followed by a 1-h incubation with 100–200 μl of primary antibody diluted in 15% FCS/PBS at a 1:100 ratio for ITF and a 1:500 ratio for SP in a closed humidified chamber. Slides were then rinsed three times in PBS and incubated with 100–200 μl of biotin-conjugated horseradish peroxidase secondary antibody (Dako, Carpinteria, CA) diluted 1:100 in 15% FCS/PBS for 1 h in the chamber. After three to four additional rinses in PBS, 200 μl of 3,3’-diaminobenzidine solution prepared according to the instructions supplied with the 3,3’-diaminobenzidine substrate kit for peroxidase (Vector Laboratories, Burlingame, CA) were added for 7 min. Slides were then washed in water and stained with 200 μl of hematoxylin for 15–30 s, followed by several washes with PBS. Slides were then permount coverslipped and analyzed using a Zeiss Axiosvert S100TV microscope and a Spot digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI). Images were batch-processed for consistent color balance and contrast using Adobe Photoshop version 4.0.

Statistical Analysis. End points for efficacy included intestinal tumor multiplicity and distribution, body weight, serum drug levels, and EGFR phosphorylation level in intestinal mucosa. Statistical comparisons of tumor multiplicity between chemoprevention study groups were performed using Wilcoxon’s rank-sum or two-sample t tests. All Ps <0.05 were considered significant.

Results

CFPQA Steady-State Serum Levels and Effects on Intestinal EGFR Tyrosine Phosphorylation. Chronic oral administration of CFPQA to Apc\(^{Min} \) mice through a food/drug mixture produced serum levels of 11.4 ± 2.5 nmol/l (for 50 ppm), 105 ± 26 (for 200 ppm), and 282 ± 69 nmol/l (for 500 ppm). Serum exposure levels attained for 200 and 500 ppm CFPQA were sufficient to abolish detectable EGFR tyrosine phosphorylation in the intestinal mucosa of Apc\(^{Min} \) mice by...
immunoprecipitation and Western blot (Fig. 1). Therefore, the 200 and 500 ppm doses of CFPQA produced exposure levels sufficient to modulate the pharmacodynamic marker (EGFR autophosphorylation) in the target tissue (intestinal mucosa).

CFPQA Does Not Affect Adenoma Multiplicity or Distribution in ApcMin Mice. Despite adequate systemic exposure and confirmed modulation of EGFR tyrosine phosphorylation, none of the tested doses of CFPQA caused significant changes in intestinal tumor multiplicity or distribution in ApcMin mice (Fig. 2, A and B). An apparent increase in tumor multiplicity in the first portion of the duodenum (Fig. 2B, D1) was judged to be an artifact after histological analysis revealed nonadenomatous mucosal lesions confined to the duodenum in the CFPQA-treated animals (described below). In contrast, piroxicam (positive control) dramatically reduced adenoma multiplicity in the duodenum, jejunum, and ileum (>95% reduction; \(P < 0.01 \) versus the AIN-93G control group). These findings suggest that adenoma multiplicity in the ApcMin mouse is not dependent on EGFR tyrosine kinase activity.

CFPQA Induces Duodenal Lesions. No significant differences in body weights or overall health between any of the treatment groups were noted. However, all ApcMin and wild-type mice treated with 200 or 500 ppm CFPQA for 10 weeks exhibited flat mucosal lesions restricted to the duodenum. Histologically, the duodenal lesions exhibited absent villi, expanded hyperchromatic proliferative zones with an increased frequency of mitotic figures and glandular crowding, and underlying Brunner’s gland hypertrophy without mucosal ulceration or erosion (Fig. 3). The duodenal changes induced by CFPQA were reversible on cessation of treatment (gross observation 4 weeks after the end of treatment) but were not affected by simultaneous treatment with piroxicam (200 ppm; data not shown). Taken together, these observations suggest that the CFPQA-induced duodenal lesions develop independently of Apc status and represent reactive rather than neoplastic changes.

ITF/TFF3 Expression in Adenomas and Duodenal Lesions. We then performed immunohistochemical analysis of adenomas, normal intestinal mucosa, and the duodenal lesions of CFPQA-treated and control mice for protein expression of ITF/TFF3, as well as SP (SP/TFF2), a trefoil peptide expressed primarily in the neck cells of gastric glands (24). Specific ITF/TFF3 (Fig. 4) but not SP/TFF2 (data not shown) immunoreactivity was present in cells of the crypts, rare villus goblet cells, and the overlying mucous layer of normal intestinal mucosa of treated and untreated animals. Adenomas exhibited no detectable immunoreactivity for either peptide (Fig. 4). However, CFPQA-induced duodenal lesions showed strong ITF/TFF3 immunoreactivity of isolated cells throughout the entire thickness of the lesions, consistent with the histological impression that these lesions represent expanded regenerative crypts (Fig. 4). The absence of ITF/TFF3 immunoreactivity in adenomas suggests that this peptide does not play a role in ApcMin adenoma development or in the resistance of adenomas to chemoprevention by CFPQA.

Discussion

In the present study, chronic dietary exposure to 200 and 500 ppm of the selective EGFR tyrosine kinase inhibitor CFPQA achieved steady-state serum concentrations well above the \(\text{IC}_{50} \) for inhibition of EGFR tyrosine kinase activity and abolished detectable EGFR tyrosine phosphorylation in intestinal mucosa but had no effect on tumor multiplicity or distribution of adenomas in ApcMin mice. Similar concentrations of CFPQA or its closely related analogue, PD153035, are sufficient to induce cytostasis and apoptosis in EGFR-
dependent colorectal cancer cell lines within 24 h (7). Together, these results suggest that EGFR-mediated proliferative and survival signals are not critical for early stages of colorectal carcinogenesis. We speculate that other signaling pathways may be activated that compensate for or protect against the antitumor effects of EGFR inhibition or that EGFR is not involved in adenoma formation induced by Apc loss. Neither IGF/IGF3 nor SP/TTF2 was expressed in adenomas, suggesting that EGFR is not involved in adenoma formation induced by Apc loss. The results suggest that EGFR-mediated proliferative and survival signals are not involved in adenoma formation and do not confer resistance to adenomas to chemoprevention by CFQPA.

Although the ApcMin mouse is considered to be a genetically relevant model of human colorectal carcinogenesis triggered by Apc loss, there are important phenotypic differences between ApcMin mice and human colon tumors. Compared with adenomas, ApcMin adenomas infrequently progress to frank carcinomas, they are distributed more densely in the small intestine than in the colon, and they lack the genetic complexity and instability of human colorectal neoplasms (25). Furthermore, in contrast to reports that IGF/IGF3 is expressed in human adenomas and colorectal cancers (26), we found no detectable IGF/IGF3 expression in the adenomas of ApcMin mice. Thus, the lack of antitumor activity for CFQPA in the ApcMin model cannot be generalized to human colorectal adenomas and carcinomas.

Acknowledgments

We gratefully acknowledge the valuable contributions of Dr. Daniel Podolsky (Massachusetts General Hospital, Boston, MA), Anita Jennings (Mayo Clinic, Scottsdale, Histology Core), Dr. Thomas Lidner (Mayo Clinic, Scottsdale, Pathology), and members of the Mayo Clinic, Scottsdale, Transgenic Animal Core.

References

Inhibition of Epidermal Growth Factor Receptor Tyrosine Kinase Fails to Suppress Adenoma Formation in \(\text{Apc}^{\text{Min}} \) Mice but Induces Duodenal Injury

Cancer Res 2000;60:4678-4681.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/17/4678

Cited articles

This article cites 25 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/17/4678.full#ref-list-1

Citing articles

This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/17/4678.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.