In Vivo Imaging of Proteolytic Enzyme Activity Using a Novel Molecular Reporter

Ching-Hsuan Tung, Umar Mahmood, Sebastian Bredow, and Ralph Weissleder

Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129

ABSTRACT

The single biggest challenge facing in vivo imaging techniques is the development of biocompatible molecular beacons capable of specifically and accurately measuring in vivo targets at the protein, RNA, or DNA level. Our efforts have focused on designing activatable imaging probes to measure specific enzyme activities in vivo. Using cathepsin D as a model target protease, we synthesized a long-circulating, synthetic graft copolymer bearing near-infrared (NIR) fluorochromes positioned on cleavable substrate sequences. In its native state, the reporter probe was essentially nonfluorescent at 700 nm due to energy resonance transfer among the bound fluorochromes (quenching) but became brightly fluorescent when the latter were released by cathepsin D. NIR fluorescence signal activation was linear over at least 4 orders of magnitude and specific when compared with scrambled nonsense substrates. Using matched rodent tumor models implanted into nude mice expressing or lacking the targeted protease, it could be shown that the former generated sufficient NIR signal to be directly detectable and that the signal was significantly different compared with negative control tumors. The developed probes should find widespread applications for real-time in vivo imaging of a variety of clinically relevant proteases, for example, to detect endogenous protease activity in disease, to monitor the efficacy of protease inhibitors, or to image transgene expression.

INTRODUCTION

There is a growing need in the medical imaging sciences to better detect and characterize abnormal tissue and disease processes and to directly image protein expression. Because most clinical imaging systems rely on physical parameters to generate image contrast (e.g., acoustic impedance, magnetic properties, X-ray absorption, and optical absorption or reflectance), specific molecular information can often not be obtained or is of limited nature. Optical imaging in the NIR spectrum offers the possibility of using fluorescence-tagged reporter probes, injectable i.v., to impart molecular specificity. Unlike other reporters, fluorescent probes can be physically quenched to minimize signal in the nonactivated state while becoming brightly fluorescent after specific molecular conformational changes (1) or reactions (2). Although a variety of such “caged” probes exist for fluorescence after specific molecular conformational changes (1) or reactions (2), there are not many activatable reporters, injectable i.v., to impart molecular specificity. Unlike other reporters, fluorescent probes can be physically quenched to minimize signal in the nonactivated state while becoming brightly fluorescent after specific molecular conformational changes (1) or reactions (2). Although a variety of such “caged” probes exist for fluorescence after specific molecular conformational changes or reactions, it has not been until very recently that probes for in vivo diagnosis (3) or reactions (2) have been developed. The developed probes should find widespread applications for real-time in vivo imaging of a variety of clinically relevant proteases, for example, to detect endogenous protease activity in disease, to monitor the efficacy of protease inhibitors, or to image transgene expression.

MATERIALS AND METHODS

Synthesis and Assay. A PGC (11) was used as a delivery vehicle for the fluorochrome-peptide conjugate (Fig. 1). The structure, physicochemical characteristics, and biological behavior of the graft copolymer have been described previously, and a similar compound has been tested in clinical trials (6). The preparation of the entire NIRF probe has been described in more detail elsewhere (12). Briefly, PEG (M, 450,000) was reacted with a large excess of iodooctacetyl anhydride (Aldrich, Milwaukee, WI) to convert all available amino groups of the poly-L-lysine backbone into iodol groups. The CaD-specific peptide Gly-Pro-Ile-Cys(Et)-Phe-Arg-Leu-Gly-Lys(FITC)-Cys-NH2 (the italicized amino acids correspond to CaD substrate (5)) was synthesized using an automatic synthesizer (PS3; Rainin, Woburn, MA). N-(9-Fluorenyl)-methoxycarbonyl chemistry with 2-(1H-benzotriazole-1-yl)-1,3,3-tetramethylammonium hexafluorophosphate/N-hydroxybenzotriazole as the activating agent was used in peptide synthesis. The purified and characterized peptide was then attached to the iodoacetylated PGC through a thiol-specific reaction. The NIRF fluorochrome-peptide conjugate (Fig. 1) was used in peptide synthesis. The purified and characterized peptide was then attached to the iodoacetylated PGC through a thiol-specific reaction. The NIRF fluorochrome (fluorescein isothiocyanate) reacts with the N-terminus of the CaD substrate peptide. Peptide and fluorochrome attachment was quenched by absorption measurements of FITC and Cy 5.5. Extinction coefficients were 73 × 10^3 M^-1 cm^-1 at 494 nm for FITC and 250 × 10^3 M^-1 cm^-1 at 675 nm for Cy 5.5. On average, each graft copolymer contained 22 NIRF reporter groups, as determined by fluorescence measurements. The calculated molecular weight of the entire probe is 490,000.

To test the specificity of the developed probe, 0.2 μM of the CaD-sensitive probe and a nonsense scrambled control peptide-based probe Gly-Pro-Phe-Cys(Et)-Ile-Arg-Phe-Leu-Gly-Lys(FITC)-Cys-NH2 (Ref. 12) were treated with 1 unit of hCaD (Sigma, St. Louis, MO) in 1 ml of 50 mM glycine/hydrochloride buffer (pH 3.5) with 0.001% Brij-35. The fluorescence activation of the two NIRF fluorochromes through specific peptide substrates directly to a delivery vehicle (Fig. 1). Although it is conceivable to design alternative low molecular weight probes in which a fluorescence donor and a quencher are directly attached to a substrate peptide (2, 5), such compounds are typically subject to fast excretion in vivo. For this reason, and to improve tumoral delivery of the NIRF probes, we used a novel, long-circulating synthetic PGC that has recently been tested in clinical trials (6). The copolymer accumulates in tumors by slow extravasation through permeable neovascularure, reaching up to 2–6% injected dose/g tissue in mice within 24–48 h after injection in some tumor models (7). Uptake of the polymer into tumor cells occurs by pinocytosis and is comparable in magnitude to that of tumor-specific internalizing monoclonal antibodies. The intracellular release of NIRF probes results in a fluorescent signal that can be detected in vivo at subnanomolar quantities and at depths sufficient for experimental or clinical imaging, depending on the NIRF image acquisition technique (4).

To test the hypothesis that specific enzyme activity can be imaged in vivo, a rodent tumor model system was used. The Y1 tumor has a very low level of rodent CaD, whereas a stable clone expressing hCaD has recently been generated (8, 9); CaD may be relevant to metastasis (10). Both tumors were implanted into mice and probed with an i.v. injected reporter probe specific for CaD. In this report, we demonstrate for the first time that CaD enzyme activity can be directly imaged in vivo. This novel technique should find several applications to measure a variety of enzyme activities noninvasively in normal tissues during disease development and during protease inhibitor treatments.
probes was measured by fluorometry [excitation:emission = 675:694 nm; (U4500; Hitachi, Tokyo, Japan)].

**Cell Culture.** Two rodent rat embryo tumor cell lines (3Y1) were kindly provided by Drs. H. Rochefort and M. Garcia [Institut National de la Santé et de la Recherche Médicale, Montpellier, France (8, 9)]. One of the cell lines was stably transfected with full-length hCaD (CaD*), whereas the other cell line was mock-transfected with an empty expression vector, resulting in no hCaD expression (CaD; Fig. 2). These rodent cell lines were initially chosen for transfection because they neither produce nor secrete rodent CaD. Both cell lines were grown in RPMI 1640 supplemented with 10% fetal bovine serum for transfection because they neither produce nor secrete rodent CaD. Both cell lines were grown in RPMI 1640 supplemented with 10% fetal bovine serum and 0.4 mg/ml G418 in a humidified 6% CO2 atmosphere at 37°C (9).

Fig. 2. Characterization of tumor models by RT-PCR (a) and Western blotting (b). RT-PCR shows positive mRNA signals in the stably transfected CaD+ cell line and no signal in the control cell line transfected with an empty expression vector; (b) Western blotting shows a strong M 34,000 band corresponding to activated CaD and a weaker M 52,000 band corresponding to pro-CaD.

The delivery vehicle consists of a partially methoxy-pegylated poly-L-lysine graft copolymer. CaD peptide substrates are conjugated to remaining lysines on the polymer backbone through an acetyl linker and are subsequently modified with Cy5.5 fluorochromes (circles). The NIFR of the native reporter compound is minimal (<1 AU). On interaction with CaD, Cy5.5 is released from the peptide substrate, causing a >60-fold increase in the NIRF signal.

**Assays for CaD Expression.** Expression of hCaD (or lack thereof in the mock-transfected cell line) was verified by Western blotting and RT-PCR. For Western blotting, cells were lysed in 2 ml of buffer [20 mM Tris (pH 8.0), 150 mM NaCl, 5 mM EDTA, and 1% Triton X-100]. The lysate was kept on ice for 20 min and then centrifuged for 10 min at 4°C at 16,000×g. Protein concentration was determined by the BCA assay (Pierce, Rockford, IL). Equal amounts of protein were loaded and electrophoretically separated by SDS-PAGE in nonreducing 10% gels. After transfer onto polyvinylidene difluoride membranes, immunoblotting were incubated for 30 min with an anti-hCaD polyclonal antibody (Calbiochem, San Diego, CA) for 30 min. The primary antibody was revealed with an alkaline phosphatase-conjugated goat anti-rabbit IgG secondary antibody (Sigma) using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) as substrates are conjugated to remaining lysines on the polymer backbone through an acetyl linker and are subsequently modified with Cy5.5 fluorochrome (circles). The NIFR of the native hCaD polyclonal antibody (Calbiochem, San Diego, CA) for 30 min. The primary antibody was revealed with an alkaline phosphatase-conjugated goat anti-rabbit IgG secondary antibody (Sigma) using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) as substrate (Boehringer Mannheim, Indianapolis, IN).

**In Vivo Imaging.** The imaging system used in this study consisted of a light-tight imaging chamber equipped with a 150 W halogen white light filtered with an excitation bandpass filter (610–650 nm; Omega Optical, Brattleboro, VT; Ref. 14) to excite Cy5.5. Fiber optic cables and light diffusers resulted in a relatively spatially homogenous photon source over the imaging area. Fluorescence was detected by a 12-bit monochrome CCD camera (Kodak) equipped with a 1/1.2 12.5–75 mm zoom lens and an emission long pass filter at 700 nm (Omega Optical). Images were digitally acquired and saved as 16-bit Tiff files.

Anesthetized mice (n = 5) were imaged 24 h after i.v. injection of 2.5 nmol of fluorochrome (corresponding to 2.5 mg/kg probe). To further analyze in vivo imaging findings, each tumor pair excised from a single animal was also imaged after excision. Image analysis was performed using commercially available software (Kodak Digital Science 1D software, Rochester, NY). Elliptical regions of interest were selected manually for tumor center and tumor periphery for CaD+ and for entire CaD− tumors, as well as for representative adjacent nontarget tissue (adjacent thigh). The mean and SD of SI of pixel values was recorded. CNRs were calculated for each animal. Significance of differences among groups was determined using a one-tailed Student’s t test.

**Histology.** Harvested tumors were snap frozen in liquid nitrogen and cut into 8–20-μm sections. Immunohistochemistry was performed using a primary rabbit polyclonal antibody against hCaD (Dako, Carpinteria, CA). The primary antibody was revealed with a goat anti-rabbit antibody conjugated to alkaline phosphatase. After a heat step (65°C, 30 min), phosphatase activity was visualized using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate, and sections were counterstained with nuclear fast red. CaD expression was also assessed on nonfixed 20-μm sections by NIFR microscopy using 70°C for 150 s. Control PCR experiments for the housekeeping gene β-actin were performed on the same samples using commercially available primers (Clonetech, Palo Alto, CA). Cycle numbers for the individual products were 34–36 for CaD and 20–22 for β-actin. PCR products were analyzed by electrophoresis on 2% agarose gels. Gels were photographed using a Kodak DC 40 system and analyzed with BioMax software (Kodak, Rochester, NY).

For Western blotting, cells were lysed in 2 ml of buffer [20 mM Tris (pH 8.0), 150 mM NaCl, 5 mM EDTA, and 1% Triton X-100]. The lysate was kept on ice for 20 min and then centrifuged for 10 min at 4°C at 16,000×g. Protein concentration was determined by the BCA assay (Pierce, Rockford, IL). Equal amounts of protein were loaded and electrophoretically separated by SDS-PAGE in nonreducing 10% gels. After transfer onto polyvinylidene difluoride membranes, immunoblotting were incubated for 30 min with an anti-hCaD polyclonal antibody (Calbiochem, San Diego, CA) for 30 min. The primary antibody was revealed with an alkaline phosphatase-conjugated goat anti-rabbit IgG secondary antibody (Sigma) using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate (Boehringer Mannheim, Indianapolis, IN).

**Histology.** Harvested tumors were snap frozen in liquid nitrogen and cut into 8–20-μm sections. Immunohistochemistry was performed using a primary rabbit polyclonal antibody against hCaD (Dako, Carpinteria, CA). The primary antibody was revealed with a goat anti-rabbit antibody conjugated to alkaline phosphatase. After a heat step (65°C, 30 min), phosphatase activity was visualized using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate, and sections were counterstained with nuclear fast red. CaD expression was also assessed on nonfixed 20-μm sections by NIFR microscopy using 70°C for 150 s. Control PCR experiments for the housekeeping gene β-actin were performed on the same samples using commercially available primers (Clonetech, Palo Alto, CA). Cycle numbers for the individual products were 34–36 for CaD and 20–22 for β-actin. PCR products were analyzed by electrophoresis on 2% agarose gels. Gels were photographed using a Kodak DC 40 system and analyzed with BioMax software (Kodak, Rochester, NY).

For Western blotting, cells were lysed in 2 ml of buffer [20 mM Tris (pH 8.0), 150 mM NaCl, 5 mM EDTA, and 1% Triton X-100]. The lysate was kept on ice for 20 min and then centrifuged for 10 min at 4°C at 16,000×g. Protein concentration was determined by the BCA assay (Pierce, Rockford, IL). Equal amounts of protein were loaded and electrophoretically separated by SDS-PAGE in nonreducing 10% gels. After transfer onto polyvinylidene difluoride membranes, immunoblotting were incubated for 30 min with an anti-hCaD polyclonal antibody (Calbiochem, San Diego, CA) for 30 min. The primary antibody was revealed with an alkaline phosphatase-conjugated goat anti-rabbit IgG secondary antibody (Sigma) using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate (Boehringer Mannheim, Indianapolis, IN).

**Histology.** Harvested tumors were snap frozen in liquid nitrogen and cut into 8–20-μm sections. Immunohistochemistry was performed using a primary rabbit polyclonal antibody against hCaD (Dako, Carpinteria, CA). The primary antibody was revealed with a goat anti-rabbit antibody conjugated to alkaline phosphatase. After a heat step (65°C, 30 min), phosphatase activity was visualized using nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate substrate, and sections were counterstained with nuclear fast red. CaD expression was also assessed on nonfixed 20-μm sections by NIFR microscopy using 70°C for 150 s. Control PCR experiments for the housekeeping gene β-actin were performed on the same samples using commercially available primers (Clonetech, Palo Alto, CA). Cycle numbers for the individual products were 34–36 for CaD and 20–22 for β-actin. PCR products were analyzed by electrophoresis on 2% agarose gels. Gels were photographed using a Kodak DC 40 system and analyzed with BioMax software (Kodak, Rochester, NY).
NIRF signal in d nonsense peptide spacers were used (data not shown). The lysosomal compartment. No signal was observed when control probes containing cells grown in culture or 1 culture 1 h after incubation with the reporter probe (×200 magnification). Note that the CaD; Fig. 2).

RESULTS

In Vitro Characterization. RT-PCR analysis of the rodent tumor model showed that CaD+ cells grown in culture or in vivo contained hCaD mRNA message (Fig. 2a). The mock-transfected control cell line (CaD−) and whole CaD+ cells were negative for mRNA expression. Western blotting of the CaD+ cells showed a faint band at M, 52,000 (proCaD) and a pronounced band at M, 34,000 (activated CaD; Fig. 2b).

In vitro, the synthesized CaD probe was essentially optically “silent,” generating <1 AU at 675 nm excitation and 694 nm emission, whereas the CaD activated probe generated over 60-fold higher fluorescence. To test for the specificity of activation, we also compared the probe with a scrambled peptide containing the same amino acids but in a different sequence. As shown in Fig. 3a, there was essentially no NIFR activation with the control probe when incubated with purified hCaD. To test for the linearity of NIFR signal generation, the probe was also incubated with different amounts of CaD+ cells (Fig. 3b). The measured NIFR signal was linear over a range of at least 4 orders of magnitude (r² = 0.99; Fig. 3b). When CaD+ cells incubated with the probe for 1 h were observed by confocal fluorescence microscopy, a NIFR signal could be seen originating from vesicular structures within cells, presumably representing the lysosomal compartment. No signal was observed when control probes containing nonsense peptide spacers were used (data not shown).

appropriate excitation and emission filters (650/700 nm; Omega Optical). Sections were viewed in phase-contrast or NIFR mode using an inverted epifluorescence microscope (Zeiss Axiovert, Thornwood, NY), and images were obtained with a cooled CCD camera (Sensys; Photometrics, Tuscon, AZ) interfaced to a Macintosh computer.

Fig. 3. a, NIFR signal generation as a function of time with the CaD-sensitive probe compared with a scrambled peptide probe. b, linearity of enzyme-mediated NIFR signal generated by incubating varying amounts of cells with 1.0 μM CaD probe. Confocal microscopy using (c) Nomarski optics or (d) 700 nm fluorescence emission of CaD+ cell culture 1 h after incubation with the reporter probe (×200 magnification). Note that the NIFR signal in d clearly originates from vesicular structures within the cells, presumably the lysosomal compartment. No signal was observed when control probes containing nonsense peptide spacers were used (data not shown).

Ex vivo NIRF images of the paired tumors obtained from the same animal (Fig. 5) confirmed the marked differences in probe activation between CaD+ and CaD− tumors. Heterogeneity of tumoral NIFR signal was observed in vivo, in excised tumor specimen (Fig. 5), and also in histological sections (Fig. 6). CaD expression was commonly highest in the periphery of tumors, in intratumoral septae, and in focal nodular areas with high growth rates. A similar finding has also been observed previously for other proteases when studied in tumor chamber models by intravitral microscopy (data not shown). The morphological appearance of the tumors and their vascular density were similar by histology.
DISCUSSION

Proteases are essential for the normal functioning of mammalian cells (15), bacteria (16), and viruses (17). Analysis of several genomes has shown that about 2% of all gene products are proteases (15). Proteases also play key roles in many diseases including neoplastic (18–20), vascular (21), infectious (22), degenerative (23), and autoimmune disorders (24). Given their central role, proteases have received considerable attention as therapeutic drug targets (22, 25, 26). The ability to evaluate specific enzyme activity in vivo would thus have considerable clinical and basic science applications. For example, protease imaging could be used to improve the early detection of diseases (4), to image the efficacy of protease inhibitors, to serve as an in vivo screening tool for drug development, to image transgene expression, or to understand how protease activities are regulated in intact micro- and macroenvironments. Thus far, detection of enzyme activity has been limited to ex vivo assays on excised tissues or fluid samples using fluorescence detection kits, immunohistology, ELISA, or Western blotting or to radiolabeled enzyme substrates.

The primary goal of the current study was to investigate whether a given single protease could be detected noninvasively by in vivo imaging. Although the model system used in this study may be somewhat artificial (overexpression of a transgene), our results clearly confirm the feasibility of the approach. CaD, an aspartic lysosomal protease, was chosen as a target protease because of the availability of CaD+ and CaD− tumor models (8, 9), the fact that the enzyme is primarily localized in the lysosomal compartment of cells (8) into which the graft copolymer is internalized (7, 11), and because of the potential role of the enzyme in metastasis formation (8) and local invasiveness (27). Early detectable NIRF signals emanated from the CaD+ tumors both in vivo and ex vivo and by microscopy. Interestingly, in vivo CaD expression in experimental tumors was somewhat heterogeneous and preferentially occurred in the tumor periphery, well-vascularized septa traversing the tumor, and/or focal areas with high cell turnover. Although it is conceivable that the CaD+ and CaD− tumors may have slightly different vascular permeabilities, prior research has shown that the developed graft copolymers distribute evenly in the steady state, unless VEGF is markedly up-regulated, for example, such as in transfected tumor models (28). Even if local accumulation of the nonactivated probe in the interstitium was heterogeneous, this would be undetectable by NIRF imaging because the probe has not yet been activated (note also the absence of NIRF signal in the CaD− tumor; identical imaging settings). The NIRF signal in the CaD+ tumor is heterogeneous.

Table 1. SI and CNRs for tumor regions

<table>
<thead>
<tr>
<th>Region of interest</th>
<th>SI mean ± SD (AU)</th>
<th>CNR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaD+, periphery</td>
<td>59,100 ± 1,500</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>CaD+, center</td>
<td>52,600 ± 1,500</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>CaD−, tumor</td>
<td>35,300 ± 5,200</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Nontarget tissue</td>
<td>23,000 ± 1,700</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>CaD+ periphery to CaD−</td>
<td>8.6</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>CaD+ center to CaD−</td>
<td>6.0</td>
<td>&lt;0.005</td>
<td></td>
</tr>
<tr>
<td>CaD+ periphery to background</td>
<td>22.8</td>
<td>&lt;0.001</td>
<td></td>
</tr>
<tr>
<td>CaD+ center to background</td>
<td>16.2</td>
<td>&lt;0.001</td>
<td></td>
</tr>
</tbody>
</table>

* Observed NIRF signal originates from endogenous fluorochromes (autofluorescence) and exogenous (i.e., diet) fluorochromes. CNR = (SI1 − SI2)/(√(SD1 + SD2)).
* NA, not applicable.

Proteases have received considerable attention as therapeutic drug targets (22, 25, 26). The ability to evaluate specific enzyme activity in vivo would thus have considerable clinical and basic science applications. For example, protease imaging could be used to improve the early detection of diseases (4), to image the efficacy of protease inhibitors, to serve as an in vivo screening tool for drug development, to image transgene expression, or to understand how protease activities are regulated in intact micro- and macroenvironments. Thus far, detection of enzyme activity has been limited to ex vivo assays on excised tissues or fluid samples using fluorescence detection kits, immunohistology, ELISA, or Western blotting or to radiolabeled enzyme substrates.

The primary goal of the current study was to investigate whether a given single protease could be detected noninvasively by in vivo imaging. Although the model system used in this study may be somewhat artificial (overexpression of a transgene), our results clearly confirm the feasibility of the approach. CaD, an aspartic lysosomal protease, was chosen as a target protease because of the availability of CaD+ and CaD− tumor models (8, 9), the fact that the enzyme is primarily localized in the lysosomal compartment of cells (8) into which the graft copolymer is internalized (7, 11), and because of the potential role of the enzyme in metastasis formation (8) and local invasiveness (27). Early detectable NIRF signals emanated from the CaD+ tumors both in vivo and ex vivo and by microscopy. Interestingly, in vivo CaD expression in experimental tumors was somewhat heterogeneous and preferentially occurred in the tumor periphery, well-vascularized septa traversing the tumor, and/or focal areas with high cell turnover. Although it is conceivable that the CaD+ and CaD− tumors may have slightly different vascular permeabilities, prior research has shown that the developed graft copolymers distribute evenly in the steady state, unless VEGF is markedly up-regulated, for example, such as in transfected tumor models (28). Even if local accumulation of the nonactivated probe in the interstitium was heterogeneous, this would be undetectable by NIRF imaging because the probe has not yet been activated (note also the absence of NIRF signal in the CaD− tumor; identical imaging settings). The NIRF signal in the CaD+ tumor is heterogeneous.

Fig. 5. Excised CaD− (a) and CaD+ (b) tumors from an animal 24 h after i.v. injection of the reporter probe. Note the significant NIRF signal generation in the CaD+ tumor (d) and the near absence of signal in the CaD− tumor (c; identical imaging settings). The NIRF signal in the CaD+ tumor is heterogeneous.

4956
this prototype imaging system is useful for fast, high-resolution screening of superficial events, it generally does not allow adequate detection of photons from deep tissues (i.e., >10 mm deep). If the latter is required (as in the clinical scenario, unless endoscopic imaging is performed), different NIR optical detection systems have to be used. Such systems can be based on phase modulation signal (36, 37), diffuse optical tomography (38), or ultrafast imaging of ballistic and/or early arriving photons (39). As these innovative imaging approaches enter the realm of clinical testing, it will become apparent that there will be sufficient SI from deep tissues when used with the developed probes (40).

The current study indicates that the autoquenched probe is specific in vivo. Although the detection threshold of the probe was not directly determined in this study, Cy5.5 concentrations in the nanomolar range have been previously detectable (4). With a more sensitive detection system such as phase array technology (36), the detection threshold is expected to be in the picomolar range in deep tissue. Recalculating these detection thresholds, it is entirely feasible to reach locally high enough substrate concentrations at physiologically acceptable doses of fluorochromes. Although the dose used in this rodent study would scale up to 175 mg of drug substance in a human, it is at least 2–3 orders of magnitude above the theoretical detection threshold. Fluorochromes such as indocyanine green are used routinely in cardiology, hepatology, ophthalmology, and, most recently, clinical diffuse optical tomography (40) at i.v. doses of 25–50 mg.

Although the current study used CaD as a model protease, a variety of other proteases are highly relevant in oncological and cardiovascular imaging (18, 19). The next logical step will be to identify a clinically relevant protease and design a similar probe for clinical testing. Ideally, the probe would be tested in a protease inhibitor trial to monitor real-time drug efficacy at the molecular level. To this extent, we have synthesized a MMP-2-sensitive probe and shown that MMP-2 inhibitor treatment can indeed be monitored by this approach.

In summary, the use of reporter probes to noninvasively image enzyme activity has been demonstrated in vivo. One of the main utilities of the technique is expected to lie in the evaluation of the large number of metalloprotease and HIV protease inhibitors currently under development and/or in clinical use. As we move forward to design and build imaging probes with molecular specificity, new applications are likely to occur such as in vivo imaging of transgenes or screening of potential drug candidates.

ACKNOWLEDGMENTS

We thank Dr. A. Bogdanov for helpful discussions and for providing the protected graft copolymer, Drs. H. Rochefort and M. Garcia for providing the 3Y1 cell lines, Drs. N. Michaud and C. Lin for help with confocal microscopy experiments, and Dr. M. Lewin for Western blotting. We also thank Drs. J. Basilion and L. Josephson for many helpful discussions and review of the manuscript.

REFERENCES

In Vivo Imaging of Proteolytic Enzyme Activity Using a Novel Molecular Reporter

Ching-Hsuan Tung, Umar Mahmood, Sebastian Bredow, et al.

Cancer Res 2000;60:4953-4958.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/17/4953

Cited articles
This article cites 34 articles, 9 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/17/4953.full#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/17/4953.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.