Identification of the Interferon-inducible Double-Stranded RNA-dependent Protein Kinase as a Regulator of Cellular Response to Bulky Adducts

Josée Bergeron, Naciba Benlimame, Nie Zeng-Rong, Dingzhang Xiao, P. James Scrivens, Antonis E. Koromilas, and Moulay A. Aloufi-Jamali

Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Departments of Medicine and Oncology [J. B., N. B., A. E. K., M. A. A.-J.], Pharmacology and Therapeutics [M. A. A.-J.], Division of Experimental Medicine [P. J. S., A. E. K., M. A. A.-J.], and McGill Centre for Translational Research in Cancer [M. A. A.-J., McGill University, Montreal, Quebec, H3T 1E2 Canada

Abstract

The double-stranded RNA-dependent protein kinase PKR plays a central role in IFN-mediated antiviral response. The ability of PKR mutants to transform rodent fibroblasts led to the hypothesis that PKR acts as a tumor suppressor. Recent studies have identified an expanding network of PKR signaling partners, including signal transducers and activators of transcription 1 (STAT1), p53, and IkB-kinase. Here we demonstrate that the PKR is involved in the cellular response to genotoxic stress. PKR-deficient mouse embryonic fibroblasts (PKR−/−) are hypersensitive to bulky adduct DNA damage caused by cisplatin, melphalan, and UV radiation but not to other DNA-damaging agents such as Adriamycin. PKR-deficient cells are highly susceptible to cisplatin-induced apoptosis. They demonstrate retarded cisplatin ad- duct removal kinetics. Most strikingly, PKR localizes to the nucleus rapidly upon cisplatin treatment. Restoration of PKR in PKR−/− cells results in resistance to cisplatin and enhanced cell capacity to remove cisplatin DNA adducts. We conclude that PKR has a function in the regulation of cellular response to bulky adduct-inducing agents, possibly by modulating DNA repair mechanisms.

Introduction

The double-stranded RNA-dependent protein kinase PKR is a central regulator of the IFN-mediated antiviral pathway. The transformation of NIH-3T3 fibroblasts by dominant-negative, catalytically inactive PKR led to the hypothesis that PKR also acts as a tumor suppressor (1–3). The role of PKR in tumorigenesis remains enigmatic, however, because two lines of mouse knockouts have been generated and characterized, neither demonstrating an increase in cancer incidence (4, 5). Furthermore, although a decrease in PKR expression and activity has been associated with a subset of human leukemias (6) and a rearrangement of the murine homologue, TIK, has been found in a murine lymphocytic leukemia (7), the role of this kinase in malignancy and its status as a tumor suppressor remain ambiguous.

PKR is involved in a number of signaling pathways and is emerging as a mediator of several stress response, antiproliferative, and apoptotic programs (reviewed in Ref. 8). Although its classical function in virally-induced apoptosis is to inhibit protein translation by phosphorylation of the elF-2α, PKR has also been found to associate with STAT1 (9) and to phosphorylate p53 (10), as well as mediate signaling through nuclear factor-κB (NF-κB), likely via interaction with an IkB-kinase (11). An up-regulation of the FAS receptor coinciding with apoptosis is also observed in response to dsRNA in PKR-overexpressing cells (12). Interestingly, originally identified as the factor responsible for arresting cell-free translation in reticulo-cyte lysates in response to dsRNA (13, 14), it has subsequently been demonstrated that PKR can be activated in the absence of dsRNA, notably by polyanions and protein activators (15). PKR expression is induced 5–10-fold by type I interferons but is present at significant basal levels in their absence. PKR activity is tightly controlled not only at the transcriptional level but also by interaction with protein inhibitors and activators, such as p58 and PACT, respectively (15, 16).

In this study, we provide novel evidence that human and mouse PKR are translated to the nucleus after DNA damage, facilitate cisplatin adduct removal, and oppose apoptosis in response to genotoxic stress. Previously characterized PKR-knockout MEFs show hypersensitivity to bulky adducts and increased susceptibility to apoptosis after cisplatin treatment.

Materials and Methods

Cell Lines and Cell Culture. The cell lines used in this study consisted of a human breast carcinoma cell line MDA-MB231 (American Type Culture Collection) and isogenic MEFs with PKR+/+ and PKR−/− genotype (4, 5). Cells were cultured as monolayers in αMEM supplemented with 10% heat-inactivated fetal bovine serum (MDA-MB231) or in DMEM supplemented with 10% heat-inactivated fetal bovine serum (MEFs) and 100 units/ml penicillin G and 100 units/ml streptomycin. Cells were maintained in 5% CO₂/95% air at 37°C in a humidified incubator.

Retroviral Expression of PKR. A bicistronic retroviral vector (17) based on the Moloney murine leukemia virus was used for the expression of PKR. The empty vector or vector containing the coding sequence of wild-type PKR were transfected by Lipofectamine into the 2 producer cell line. Stable producer cells were selected 1 week after daily exposure to 1 μg/ml of puromycin as described earlier (17). Retroviral infection of PKR−/− cells was performed by filtering the producer cell culture supernatant through a 0.45 μm filter and by adding Polybrene to a final concentration of 80 μg/ml. After infection; cells were selected until drug-resistant colonies were visible.

Cytotoxicity Assay. For drug cytotoxicity assays, exponentially growing cells (1–3 × 10⁵ cells/well) were seeded in 96-well plates. The next day, cells were exposed continuously to cisplatin (Oncology Pharmacy at the Jewish General Hospital), Adriamycin, or melphalan (Sigma Chemical Co., St. Louis, MO) for 96 h. Cell survival was evaluated by the MTT assay using MTT (Sigma). The absorbance was measured at 570 nm with a microplate reader (Bio-Rad). For UV, 5000 cells/ml were seeded in six-well plates. After 16 h, medium was removed, and cells were covered with 0.5 ml of PBS and 1E2 Canada. E-mail: mdaj@musica.mcgill.ca.

1 This work was supported by the Medical Research Council of Canada (to M. A. A-J.) and in part by grants from the Canadian Breast Cancer Research Initiative (to M. A. A-J.) and the National Cancer Institute of Canada (to A. E. K.).

2 These authors have contributed equally to this study.

3 To whom requests for reprints should be addressed, at Lady Davis Institute for Medical Research, Montreal, Quebec, H3T 1E2 Canada. E-mail: mdaj@musica.mcgill.ca.

4 The abbreviations used are: PKR, double-stranded RNA-dependent protein kinase; STAT1, signal transducers and activators of transcription 1; dsRNA, double-stranded RNA; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; UV, UV light; CEF, mouse embryonic fibroblast; TUNEL, terminal deoxynucleotidyltransferase-mediated nick end labeling; NER, nucleotide excision repair; IRF, interferon regulatory factor; TCR, transcription coupled repair; GGR, global genome repair; TFII, transcription factor II; XP, xeroderma pigmentosum.

Received 6/22/99; accepted 10/25/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The double-stranded RNA-dependent protein kinase PKR is a central regulator of the IFN-mediated antiviral pathway. The transformation of NIH-3T3 fibroblasts by dominant-negative, catalytically inactive PKR led to the hypothesis that PKR also acts as a tumor suppressor (1–3). The role of PKR in tumorigenesis remains enigmatic, however, because two lines of mouse knockouts have been generated and characterized, neither demonstrating an increase in cancer incidence (4, 5). Furthermore, although a decrease in PKR expression and activity has been associated with a subset of human leukemias (6) and a rearrangement of the murine homologue, TIK, has been found in a murine lymphocytic leukemia (7), the role of this kinase in malignancy and its status as a tumor suppressor remain ambiguous.

PKR is involved in a number of signaling pathways and is emerging as a mediator of several stress response, antiproliferative, and apoptotic programs (reviewed in Ref. 8). Although its classical function in virally-induced apoptosis is to inhibit protein translation by phosphorylation of the elF-2α, PKR has also been found to associate with STAT1 (9) and to phosphorylate p53 (10), as well as mediate signaling through nuclear factor-κB (NF-κB), likely via interaction with an IkB-kinase (11). An up-regulation of the FAS receptor coinciding with apoptosis is also observed in response to dsRNA in PKR-overexpressing cells (12). Interestingly, originally identified as the factor responsible for arresting cell-free translation in reticulo-cyte lysates in response to dsRNA (13, 14), it has subsequently been demonstrated that PKR can be activated in the absence of dsRNA, notably by polyanions and protein activators (15). PKR expression is induced 5–10-fold by type I interferons but is present at significant basal levels in their absence. PKR activity is tightly controlled not only at the transcriptional level but also by interaction with protein inhibitors and activators, such as p58 and PACT, respectively (15, 16).

In this study, we provide novel evidence that human and mouse PKR are translated to the nucleus after DNA damage, facilitate cisplatin adduct removal, and oppose apoptosis in response to genotoxic stress. Previously characterized PKR-knockout MEFs show hypersensitivity to bulky adducts and increased susceptibility to apoptosis after cisplatin treatment.

Materials and Methods

Cell Lines and Cell Culture. The cell lines used in this study consisted of a human breast carcinoma cell line MDA-MB231 (American Type Culture Collection) and isogenic MEFs with PKR+/+ and PKR−/− genotype (4, 5). Cells were cultured as monolayers in αMEM supplemented with 10% heat-inactivated calf serum (MDA-MB231) or in DMEM supplemented with 10% heat-inactivated fetal bovine serum (MEFs) and 100 units/ml penicillin G and 100 units/ml streptomycin. Cells were maintained in 5% CO₂/95% air at 37°C in a humidified incubator.

Retroviral Expression of PKR. A bicistronic retroviral vector (17) based on the Moloney murine leukemia virus was used for the expression of PKR. The empty vector or vector containing the coding sequence of wild-type PKR were transfected by Lipofectamine into the 2 producer cell line. Stable producer cells were selected 1 week after daily exposure to 1 μg/ml of puromycin as described earlier (17). Retroviral infection of PKR−/− cells was performed by filtering the producer cell culture supernatant through a 0.45 μm filter and by adding Polybrene to a final concentration of 80 μg/ml 48 h after infection; cells were selected until drug-resistant colonies were visible.

Cytotoxicity Assay. For drug cytotoxicity assays, exponentially growing cells (1–3 × 10⁵ cells/well) were seeded in 96-well plates. The next day, cells were exposed continuously to cisplatin (Oncology Pharmacy at the Jewish General Hospital), Adriamycin, or melphalan (Sigma Chemical Co., St. Louis, MO) for 96 h. Cell survival was evaluated by the MTT assay using MTT (Sigma). The absorbance was measured at 570 nm with a microplate reader (Bio-Rad). For UV, 5000 cells/ml were seeded in six-well plates. After 16 h, medium was removed, and cells were covered with 0.5 ml of PBS and...
irradiated using a UV source. PBS was then removed, and cells were collected and cultured in 96-well plates as described above.

Apoptosis Assay. Cells were seeded at 1×10^5 cells/T75 cm2 plate and continuously exposed to cisplatin for 72 h. Briefly, cells were collected by trypsinization and washed twice with PBS and then diluted to 1×10^6 cells/100 μl of PBS and placed in a 96-well plate. After fixation, cells were permeabilized with 1% Triton X-100 in 0.1% sodium citrate and labeled in 50 μl/well TUNEL reaction mixture (Boehringer Mannheim In Situ Cell Death Detection kit; Laval, Quebec, Canada) at 37°C in the dark for 1 h. Cells were then washed three times with 1% BSA in PBS and resuspended in 500 μl of PBS for analysis by flow cytometry.

Cisplatin Accumulation, DNA Adduct Formation, and Removal. Cells (5×10^5) were seeded in T75 cm2 flasks. When cells reached 80–90% confluence, they were treated with 25 μM cisplatin for 3 h in serum-free medium. Treatment was stopped by washing cells three times with a solution of cold PBS. Cells were collected immediately to determine the total intracellular accumulation of cisplatin, using total cell extract or genomic DNA extract to measure the initial amount of DNA adducts formed. Cells from duplicate flasks were maintained in culture in drug-free complete medium to allow DNA repair. At the indicated times, total DNA was isolated using DNAzol solution (Life Technologies, Inc.) added directly to the flasks. Platinum-DNA was determined by injecting a volume of 20 μl of sample into a pyrocoated graphite cuvette using a Hitachi polarized Zeeman Model z-8100 flameless atomic absorption spectrophotometer. A calibration curve was established using standard platinum solutions. Total cisplatin accumulation was expressed per μg protein, whereas the amount of DNA adducts was expressed per μg of DNA.

Comparisons between DNA adducts in PKR-deficient and PKR-proficient cells were done by the Student’s t test.

Immunoblotting. Total proteins from PKR$^{-/-}$, PKR$^{+/+}$, and PKR$^{+/+}$ transduced with empty or wild-type PKR were collected from subconfluent cells, using a lysis buffer [0.5% NP40, 10 mM Tris-HCl (pH 8.0), 50 mM KCl, and 1 mM orthovanadate] containing protease inhibitors. Proteins (50 μg) were resolved by 10% SDS-PAGE and transferred into nitrocellulose (Bio-Rad) in transfer buffer [25 mM Tris-HCl (pH 7.5), 190 mM glycine, and 20% v/v methanol]. Transfer of proteins was confirmed by staining with Ponceau S. The membrane was then blocked with 10% (w/v) skim milk in PBS for analysis by flow cytometry. After washing, cells were incubated with secondary antibodies (Jackson Immuno Research) for 1 h at room temperature to reduce nonspecific binding. The cells were then incubated with the mouse monoclonal antibody against α-tubulin, ICN, Mississauga, Ontario, Canada) for 1 h at room temperature. After washing, cells were incubated with secondary antibodies (Jackson Immuno Research Laboratories, West Grove, PA) for 30 min at room temperature with Texas Red goat anti-rabbit to reveal anti-PKR and incubated with Cy2 goat antimouse to reveal anti-α-tubulin. After labeling, the coverslips were mounted in Airvol (Air Products and Chemicals, Inc., Allentown, PA) and viewed with a Zeiss Axioshot fluorescent microscope equipped with 63× Plan Apochromat objectives and selective filters. Confocal analyses were performed with a Zeiss LSM 410 inverted confocal microscope (Institut Universitaire de Geriatrie de Montreal, Montreal, Quebec, Canada).

Results

The impact of PKR on sensitivity to chemotherapeutics was measured by the MTT cytotoxic assay. As shown in Fig. 1, PKR$^{-/-}$ cells showed approximately 3–4-fold sensitization to cisplatin, 2–3-fold sensitivity to melphalan, and approximately 5-fold sensitization to UV radiation. Interestingly, we observed no difference in sensitivities of these cell lines to Adriamycin. To determine whether the observed differences in cytotoxicity correlate with induction of apoptosis, we exposed both lines to 5 or 10 μM cisplatin for 48 h and then examined DNA fragmentation by a fluorescence-activated cell sorter TUNEL assay. Fig. 2 demonstrates significantly higher levels of cisplatin-induced apoptosis in the PKR$^{-/-}$ cells.

The specific sensitivity of PKR$^{-/-}$ cells to bulky adducts induced by cisplatin and UVC, both preferred substrates of nucleotide excision repair, led us to question whether the observed difference in apoptosis might be attributable to a defect in this repair pathway. To assay for repair capacity, we measured the accumulation and removal of cisplatin adducts in PKR$^{+/+}$ and PKR$^{-/-}$ cells by atomic absorption spectrometry. Cells were incubated with cisplatin for 3 h and then maintained in culture for various periods of time to allow for repair. Fig. 3a demonstrates that there were no significant differences in either cisplatin uptake (147 ± 27 and 135 ± 17 pg/μg total protein for PKR$^{-/-}$ and PKR$^{+/+}$, respectively) or adduct formation (29.9 ± 2.8 and 28.8 ± 3.7 pg/μg DNA for PKR$^{+/+}$ and PKR$^{-/-}$, respectively) between the two cell lines. Strikingly, however, the kinetics of adduct removal are significantly impeded in PKR$^{-/-}$ cells. After a 4-h incubation in drug-free medium, PKR$^{+/+}$ cells had removed 1.5-fold more adducts than their PKR$^{-/-}$ counterparts (90% versus 60% of adducts removed, respectively). By 8 h of incubation in drug-free medium, the PKR$^{+/+}$ cells had removed virtually all adducts, whereas the PKR$^{-/-}$ cells had removed only 66% of adducts (Fig. 3b). The specificity of these effects is confirmed by restoration experiments in which PKR$^{-/-}$ cells were stably transected with either wild-type PKR (PKR$^{-/-}$ + WT) or with empty vector (PKR$^{-/-}$ + empty vector), using a retroviral expression system. PKR is expressed to a lower level than the endogenous protein of PKR$^{+/+}$ cells (Fig. 4a) and was also found to be phosphorylated (data not shown). Restoration of PKR confers resistance to cisplatin and UVC (Fig. 4, b and c). However, this resistance is not restored to the same level as that observed in PKR$^{+/+}$ cells, possibly because of the lower expression level of wild-type PKR in PKR$^{-/-}$ + WT cells. Although neither of these transfections alters cisplatin uptake or adduct formation, by 8 h
PKR antagonism of bulky adduct DNA damage

PKR is believed to modulate signaling to the nucleus via interactions with STAT1 and IκB-kinase. It also interacts with the nuclear proteins p53 and DRBP76. To gain insight into whether the observed differences in repair capacity were the result of a PKR-mediated signaling cascade or direct PKR action in the nucleus, we used immunofluorescence to observe the localization of PKR in response to cisplatin. As shown in Fig. 5, untreated PKR−/− MEFs (A) and MDA-MB231 (a human breast adenocarcinoma cell line; B) show diffuse cytoplasmic labeling and nuclear exclusion of PKR. Upon treatment with cisplatin, however, PKR rapidly localizes to the nucleus (Fig. 5). This translocation was not observed in PKR−/− cells.

Discussion

In addition to the established role of PKR as a mediator of antiviral signaling, PKR is now recognized as a central molecule in several stress-related signaling pathways. Within the cytoplasm, PKR functions in response to infection by halting translation via phosphorylation of eIF-2α (18). It has also been reported to interact with STAT1,
perhaps limiting its DNA binding and transactivation in the absence of PKR activation by IFN (10). Furthermore, PKR interacts with p53, and PKR-deficient cells show a reduction in p53 phosphorylation and induction of p53-mediated transcription upon DNA damage. Interestingly, this reduction in phosphorylation was seen after treatment with Adriamycin or \(\gamma \)-radiation but not UV (19).

Our study demonstrates that, relative to PKR\(^{+/+}\) MEFs, PKR\(^{-/-}\) are hypersensitive to melphalan, UV, and cisplatin but not to Adriamycin. Neither differences in uptake nor adduct formation contribute to the cisplatin-sensitive phenotype of PKR\(^{-/-}\) cells, whereas the removal of these adducts is severely impeded. To preclude the possibility that the genetic background of the wild-type and knockout cells was responsible for the observed phenotype, we restored expression of PKR in the PKR\(^{-/-}\) cells and found that its expression does indeed confer resistance to cisplatin. The partial restoration of cisplatin resistance compared with that observed with isogenic PKR\(^{+/+}\) can be attributed to differences in the level of PKR expression. Although we used a highly efficient retroviral system to express PKR, the amount obtained is significantly lower than the endogenous level expressed within PKR\(^{+/+}\) cells. Given that no significant difference in intracellular accumulation of cisplatin was observed between PKR\(^{+/+}\) and PKR\(^{-/-}\), it is logical to speculate that decreased removal of cisplatin-adducts in PKR\(^{-/-}\) may be attributable to impaired DNA repair or associated cell cycle checkpoint mechanisms.

Bulky adducts, such as those induced by UV and cisplatin, are substrates for NER (reviewed in Ref. 20). Recognition of damage results in sequential recruitment of TFIH, XPF, and XPG. Assembly of the repair complex then leads to 3' and 5' incisions around the site of damage and excision of a 28–32-base fragment, leaving a gap that is then filled and ligated. This repair process has two classical branches: TCR and GGR. TCR is mediated by stalling of transcription at the site of bulky lesions. It is possible that such stalling facilitates secondary structure formation in the nascent mRNA, allowing binding of PKR or other double-stranded RNA binding motif proteins. GGR occurs after damage sensing and recognition, likely by a combination of XPC, XPA, and/or RPA, and the subsequent recruitment of the several other repair proteins including TFIH (reviewed in Ref. 20). The adduct removal assays presented here do not, however, distinguish between GGR and TCR; it is not known whether PKR is involved in one or both branches of NER nor whether RNA is required. To date, no direct interaction has been demonstrated between PKR and any proteins known to be involved in NER, with the exception of p53. Interestingly, PKR localization to the nucleus is unimpaired in p53-null SaOS-2 (data not shown), suggesting that PKR

Fig. 5. Cellular localization of PKR after exposure to cisplatin. MEFs (A) and MDA-MB231 (B) were treated with 20 \(\mu \)M cisplatin for 60 min, fixed for immunocytochemistry, and double-labeled for PKR (red) and microtubules (green). Untreated cells (Control) show diffuse cytoplasmic localization of PKR in both PKR\(^{+/+}\) and MDA-MB231. Upon treatment with cisplatin (cis-DDP), PKR becomes predominantly localized to the nucleus. In contrast, PKR\(^{-/-}\) cells show very weak and nonspecific labeling with the anti-PKR antibody. MT, microtubule; DIC, differential interference contrast.
trafficking in response to bulky adduct damage is p53-independent. It is also interesting to recall that p53 phosphorylation in response to UV is unaltered in PKR knockout MEFs (19).

It is also worth mentioning that another protein that is induced in response to viral infection, IRF-7, has been shown recently to localize to the nucleus after genotoxic stress. The activation and localization of IRF-7 are reported to be mediated by c-Jun NH2-terminal kinase 1 (JNK1) and mitogen-activated protein kinase kinase-4 (MKK4) (21), which is also notable because c-Jun NH2-terminal kinase inhibition reportedly sensitizes cells to cisplatin (22). Furthermore, IRF-1, which is involved in a novel pathway facilitating repair and opposing apoptosis.

The role of these checkpoint defects in the G2-M checkpoint induced by Adriamycin treatment (19). Our unpublished observations indicate a similar defect in the G2-M checkpoint in response to cisplatin; the role of these checkpoint defects in the observed bulky adduct-sensitive phenotype must also be examined. In summary, our results provide compelling evidence that PKR is involved in a novel pathway facilitating repair and opposing apoptosis in response to bulky adduct DNA damage.

Acknowledgments

We thank Y-L. Yang and J. B. Bell for providing us with the PKR−/− cells (4, 5). We also acknowledge Michael Tong for technical assistance.

References

Identification of the Interferon-inducible Double-Stranded RNA-dependent Protein Kinase as a Regulator of Cellular Response to Bulky Adducts

Josée Bergeron, Naciba Benlimame, Nie Zeng-Rong, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/24/6800

Cited articles
This article cites 26 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/24/6800.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
/content/60/24/6800.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.