Differences in Estrogen Receptor α Variant Messenger RNAs between Normal Human Breast Tissue and Primary Breast Carcinomas

Mariska A. J. van Dijk, Augustinus A. M. Hart, and Laura J. van’t Veer

Division of Experimental Therapy [M. A. J. v. D., L. J. v. V.], and Departments of Radiotherapy [A. A. M. H.] and Pathology [L. J. v. V.], Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands

Abstract

We evaluated the differences in prevalence and functional activity of human estrogen receptor α (hER) variant mRNA between 21 normal breast tissues and 41 primary breast carcinomas using a functional assay in yeast for the hER. First, we found that the presence of wild-type hER, relative to the total amount of hER, differs markedly (P < 0.0001) between normal breast tissue (median, 85% wild-type hER) and breast tumors (median, 74% wild-type hER). Second, the hER variants with altered function that are present in normal breast tissue are mainly one-exon deleted splicing variants (median, 100%), whereas in breast tumors only half of all variants lack just one single exon (median, 50%; P < 0.0001). Our results suggest that hER-dependent estrogen responsiveness of breast tissue may change during tumor outgrowth, indicating that specific hER variants may play a role in breast cancer development or progression.

Introduction

Human estrogen receptor α (hER) is a hormone-activated nuclear transcription factor that is an important regulator of growth and differentiation in estrogen-responsive cells (1–3). In the absence of estrogen, hER is thought to be associated in the cytoplasm with heat shock proteins such as HSP90 (2). Upon estrogen binding, hER dissociates from this complex and binds in the nucleus to a specific DNA sequence, the estrogen response element, located in the promoter region of target genes (1, 2, 4). By binding this estrogen response element, the receptor activates transcription of target genes in a hormone-dependent way. Tamoxifen, an antiestrogen widely used for the treatment of breast cancer, binds to hER in a manner similar to that of estrogen. However, unlike estrogen binding, tamoxifen binding represses the transcriptional activation of most of the target genes by hER, thereby inhibiting the growth of breast tumor cells. Clinical studies have shown that for postmenopausal patients with hER-positive breast tumors, adjuvant tamoxifen treatment is associated with significant improvement in both recurrence rate and overall survival (reviewed in Ref. 5). However, a major problem in treatment of these patients with tamoxifen is that ~40% of all patients with immunohistochemical hER-positive breast tumors are nonresponsive to tamoxifen, as was shown in patients with metastatic breast cancer (reviewed in Ref. 6).

Many hER splicing (related) variants have been identified in breast cancer specimens and breast cancer cell lines, whereas point mutations in hER are rare (reviewed in Ref. 7). The majority of these splicing variants lack one or more exons from the hER mRNA and have aberrant functional activity because they are either dominant negative, dominant active, or nonfunctional. Although their contribution to breast cancer development and, in particular, tamoxifen resistance is likely, their full significance in this respect is not yet clear because reports on the presence of hER variants in normal breast tissue are incomplete (8–12). These studies that have reported hER variants in normal tissue involved either only one specimen (8, 9) or a pool of normal breast tissue specimens (10) or used a method by which the presence of all hER variants among wild-type hER mRNA within one tissue specimen could not be evaluated (11, 12).

In this study we report the results of the hER-FASAY assay (13) that we used for analysis of the prevalence and functional activity of all variant receptors among wild-type hER in 21 normal human breast tissue specimens and 41 primary breast carcinomas. Our results show that hER variants are indeed prevalent in normal breast tissue but at a lower frequency and with a different molecular structure than in breast cancer.
Automated Sequencing of hER Variants. hER cDNA from all yeast colonies showing a negative (DB) or dominant active (AF-2) phenotype in the hER-FASAYs of primary breast tumor specimens were analyzed by automated sequencing. hER plasmid isolation from yeast and DNA sequencing analysis was performed as described before (13). From each tumor specimen, all yeast colonies with AF-2 phenotype and a maximum of 10 colonies with DB phenotype were analyzed.

DIG Dot-Spot Analysis of hER Splicing Variants. hER cDNA from all yeast colonies showing an aberrant phenotype in the hER-FASAYs of normal-CBR and normal-TCB specimens was analyzed for exon deletions using DIG dot-spot analysis. With this assay, the hER variants were analyzed for deletion of exons 2, 3, 4, 5, or 7 using digoxigenin (DIG)-labeled probes. A probe for detection of exon 6 was not made because deletion of exon 6 in hER mRNA from breast carcinomas has never been found (DNA sequencing data in this paper and in Ref. 15). Specific probes for detection of each exon were synthesized by PCR (primer sequences available upon request) using 10 ng pMD11 containing full length hER cDNA, 10 pmol of each primer, and the PCR DIG probe synthesis mix (all DIG reagents were obtained from Boehringer Mannheim, Germany). Fragments were amplified and labeled in 20 cycles of 20 s at 92°C, 1 min at 60°C (probes exons 2, 3, and 4) or 55°C (probes exons 5 and 7), and 2 min at 72°C and then 7 min at 72°C and a cooling down to 15°C in a PTC-200 PCR apparatus (MJ Research, Waltham, MA). Probes vary in length from 70 to 110 bp.

hER cDNA present in the hER-FASAY yeast colonies was amplified by PCR using two hER-specific primers located in exons 1 and 8 [5'-CGGTCAAATGGGACCGGCCTCCCCTAC, bp 2115–2134]. PCR was performed in a total volume of 100 μl containing 10 mM Tris-HCl (pH 8.8), 25 mM KCl, 3.5 mM MgCl2, 200 μM of each deoxynucleotide triphosphate (Pharmacia Biotech, Inc., Uppsala, Sweden), 50 pmol of each primer, 3% DMSO, and 5 units Taq polymerase (Life Technologies, Inc.), and 0.83 units Pyrococcus furiosus DNA polymerase (Stratagene, La Jolla, CA). A matchhead of yeast and 3 μl Triton X-100 were added to the PCR mixture. The mixture was preheated for 10 min at 95°C and amplified in 35 cycles of 20 s at 92°C, 1 min at 64°C, and 2 min at 72°C and then 7 min at 72°C and a cooling down to 15°C in a PTC-200 PCR apparatus (MJ Research). PCR products were heated for 5 min at 100°C and 1 μl of each PCR product was spotted on five separate N8 nylon membranes (Boehringer Mannheim). Membranes were dried and DNA was cross-linked to filters by exposure to UV light for 90 s. Filters were prehybridized in DIG Easy Hyb (30 min), hybridized in DIG Easy Hyb containing a DIG-labeled probe (2 h at 42°C), washed twice with 2× SSC + 0.1% [5 min at rt] and twice with 0.5× SSC + 0.1% SDS (15 min at 68°C), blocked with 1× blocking reagent (30 min at rt), hybridized with anti-DIG 1:10,000 in 1× blocking reagent (30 min at rt), washed twice with 0.3% Tween 20, 0.1 M maleic acid, 0.15 M NaCl (pH 7.5; 15 min at rt), and soaked in detection reagent (2 min at rt). Finally, filters were soaked in CDP-star and diluted 1:100 in detection reagent. Hyperfilms (Amersham Corp., Arlington Heights, IL) were exposed to the filters for 10–20 min.

Analysis of hER Δ22bpE7 by PCR. Deletion of the first 22 bp of exon 7 of hER (Δ22bpE7) was determined by a triple-primer PCR, for which two primers were located 5’ and 3’ of the deletion and one primer was located within the location of the deletion (primer sequences available upon request). PCR was performed with 1 μl of the same PCR product that was used for DIG dot-spot analysis in a total volume of 50 μl containing 10 mM Tris-HCl (pH 8.3), 25 mM KCl, 1.5 mM MgCl2, 200 μM of each deoxynucleotide triphosphate (Pharmacia Biotech, Inc.), 50 pmol of each primer, 3% DMSO, and 5 units Taq polymerase (Life Technologies). DNA was amplified in 35 cycles of 20 s at 92°C, 1 min at 56°C, and 2 min at 72°C and then 7 min at 72°C and a cooling down to 15°C in a PTC-200 PCR apparatus (MJ Research).

Results

Breast Tissue Specimens Evaluated in This Study. Twenty-one normal breast tissue specimens and 41 primary breast carcinomas were analyzed for the prevalence and functional activity of hER mRNA variants. Fourteen specimens of normal breast tissue were obtained from cosmetic breast reduction surgery (normal-CBR) and 7 specimens of normal breast tissue originated from primary tumor-containing breast mastectomy (normal-TCB).

Functional Assay for hER. A functional assay in yeast, the hER-FASAY, was used to determine the prevalence and functional activity of hER in all breast tissue specimens. The hER-FASAY is a relatively fast and simple screening method for the presence and functional activity of hER (13). In one experiment, it allows for the determination of the relative abundance and functional activity of all variant and wild-type hER mRNA present in a tissue specimen. With the hER-FASAY, the functional activity of individual hER cDNA molecules is...
tested in yeast by their ability to activate transcription of a reporter gene from an estrogen response element-containing GAL1 promoter. The assay can discriminate among wild-type hER, constitutively active hER [transcription activation function 2 (AF-2) mutant] and inactive hER [DNA binding (DB) mutant].

In Fig. 1 the hER-FASAY results of the three groups of tissue are shown. Fig. 1A shows that all of the 14 normal-CBR specimens have a percentage of wild-type hER ≥75%, whereas that is true for 6 of the 7 normal-TCB specimens and only 20 of the 41 breast cancer specimens. In the normal-CBR specimens the median percentage of hER that is wild-type is 85% (SD, 5%); and in the normal-TCB specimens this percentage is 88% (SD, 10%). In contrast, in breast tumors the median percentage of wild-type hER is 74% (SD, 17%; data not shown). In Fig. 1B one can see that all of the 14 normal-CBR specimens have a percentage of DB mutants ≤20%, whereas that is the case for 5 of the 7 normal-TCB specimens and only for 15 of the 41 breast cancer specimens. The percentage of AF-2 mutants is generally low in all three groups (Fig. 1C).

The differences in expression levels of wild-type and DB mutant hER mRNA (Fig. 1, A and B) between normal-CBR specimens and breast tumor specimens are significant. In normal tissue, the percentage of wild-type hER is proven to be generally higher than in breast cancer (normal-CBR versus breast cancer, P < 0.0001; Mann-Whitney test), whereas the percentage of DB mutants is lower (normal-CBR versus breast cancer, P < 0.0001; Mann-Whitney test). No differences are found regarding the percentage of AF-2 mutants (normal-CBR versus breast cancer, P = 0.25; Mann-Whitney test). Furthermore, although the number of normal-TCB specimens is too low to draw definite conclusions, comparison of the hER-FASAY data of normal-CBR specimens with those of normal-TCB specimens did not show any apparent difference.

Analysis of hER Variants. For 18 of the 41 primary breast carcinomas, the molecular structure of the hER functional variants that were detected by the hER-FASAY was determined by automated sequencing (data summarized in Fig. 2, black bars). In these carcinomas, only splicing variants and no point mutations were detected. Most frequently, splicing variants were observed which lack one or more complete exons. The only other splicing variant that is detected more than once in these breast carcinomas is Δ22bpE7, which is caused by the use of an alternative splicing acceptor site in exon 7. For detection of the exon-skipping splicing variants in the normal breast tissue specimens, we developed a “DIG dot-spot analysis” with exon-specific probes. Besides this, Δ22bpE7 was detected with a specific PCR test.

The exact nature of the hER variants detected with the hER-FASAY was determined for 12 of the normal-CBR specimens, 6 of the normal-TCB specimens, and 18 of the primary breast carcinoma specimens (Fig. 2, white and hatched bars respectively). These results are shown as the expression of a specific variant relative to the total amount of variant hER of each specimen. The variants present in normal-CBR specimens are mostly one-exon deleted splicing variants (median, 100%; SD, 11%; Fig. 2A), which in most cases are variants lacking exon 7 (median, 68%; SD, 28%; Fig. 2B). In contrast, in breast tumors a much more heterogeneous set of hER splicing variants is present. The median percentage of one-exon deletions in breast tumors is only 50% (SD, 22%; Fig. 2A) and the median percentage of variants lacking exon 7 is only 35% (SD, 21%; Fig. 2B). This difference in presence of one-exon deleted hER splicing variants between normal-CBR tissue and breast cancer cannot be attributed to chance (P < 0.0001; Mann-Whitney test on one-exon deleted splicing variants as a percentage of observed variants). Moreover, no apparent differences are seen when the hER variants found in normal-CBR specimens are compared with those found in normal-TCB specimens.

All hER variants with aberrant functional activity that were analyzed by DIG dot-spot analysis or PCR in this study turned out to be splicing variants lacking one or more complete exons or Δ22bpE7. The chance of missing a splicing-related variant that is combined with an exon deletion is small, a percentage that is on average 4% of all variants detected in breast carcinomas (data not shown).

Discussion

This paper is the first to show the quantity as well as the functional activity of all hER splicing variants that are present in specimens of normal breast tissue. Only such a complete investigation can determine the full significance of the presence of these variants in breast cancer. From the results of the hER-FASAY experiments presented here, we can conclude that on average primary breast cancer has a significantly lower amount of wild-type hER (P < 0.0001) and a significantly higher amount of DB mutants (P < 0.0001) present than
normal breast tissue does. Also, the molecular structure of the variants is markedly different in that the variants present in normal-CBR specimens are mainly one-exon deleted splicing variants (median, 100%; SD, 11%), whereas in breast tumors only half of all variants lack just one single exon (SD, 22%; Fig. 2A; P < 0.0001). When the molecular structure of the hER variants present in each specimen is evaluated in more detail, even more differences are seen. In the normal-CBR group, 9 of the 12 specimens express only one-exon deleted hER variants, whereas that was the case in none of the 18 tested breast tumors (data not shown). The only additional variant that was seen in the remaining three normal-CBR specimens was hER Δ22bpE7. In contrast, in breast tumors two-exon deletions (nine tumors) and three-exon deletions (three tumors) were also observed (Fig. 2A).

The differences in the amounts and molecular structures of hER variants between normal tissue and breast cancer implicates that the hER-dependent estrogen responsiveness of breast tissue might change during tumor development. It also suggests that breast cells that contain high levels of hER variants (Fig. 1) or those containing variants lacking multiple exons (Fig. 2) may infer a selective advantage during breast cancer development or progression. Interestingly, despite the age differences and the presence or absence of cancer, there are no apparent differences in amounts or molecular structures of hER variants between normal-CBR and normal-TCB. Apparently, the higher amount of hER variants and the different molecular structure of the variants detected in breast cancer are specific for tumor cells and not for the complete breast with malignant disease.

hER ΔE7 is the predominant variant in normal breast tissue. Fig. 2B shows that the relative amount of this variant (i.e., the presence of hER ΔE7 compared with the total amount of variant hER) is much higher in normal breast tissue than in tumors. Nevertheless, the absolute amount of hER ΔE7 (i.e., the presence of hER ΔE7 compared with the total amount of variant and wild-type hER) is not found to be higher in normal-CBR (mean, 9.9%; SD, 5.8%) or normal-TCB (mean, 9.9%; SD 5.8%) than in breast tumors (data not shown) [mean 10.8%, SD 9.1%; data not shown; ANOVA, P = 0.96 (confidence interval, −5.1 to +6.8%)]. This may indicate that the presence of hER ΔE7 should be considered normal in human breast tissue and that this variant may even play a physiological role in normal breast tissue. hER ΔE7 has been shown to have a dominant negative function (i.e., not only inactive itself but also preventing the function of wild-type hER) in yeast but was nonfunctional in HeLa cells (16, 17). Because the functional activity of hER ΔE7 in breast tissue is not yet clear, we can only speculate on its function in normal breast tissue. It recently was shown that during specific embryonic stages hER variants lacking exon 3 or 4 or both are expressed in the rat pituitary gland where they may be involved in pituitary gland development (18). Analogous to this finding we could hypothesize that hER ΔE7 may play a physiologically relevant role as a regulator of estrogen-dependent transcription in the mammary gland. On the other hand, hER ΔE7 expression also could be the remains of a development-specific expression of this hER variant, as is also seen for hER ΔE3, ΔE4, and ΔE3,4 in the adult rat pituitary gland (18).

Acknowledgments

We thank Erik Thunnissen for collecting the normal breast tissue specimens from cosmetic breast reductions, Hans Peterse for histopathological reviewing of all tissue sections, and Harry Bartelink for his helpful comments on the manuscript.

References

Differences in Estrogen Receptor α Variant Messenger RNAs between Normal Human Breast Tissue and Primary Breast Carcinomas

Mariska A. J. van Dijk, Augustinus A. M. Hart and Laura J. van't Veer

Cancer Res 2000;60:530-533.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/3/530

Cited articles
This article cites 17 articles, 4 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/3/530.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/3/530.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.