Dendritic Cell-based Immunotherapy of Prostate Cancer: Immune Monitoring of a Phase II Clinical Trial

Patricia A. Lodge, Lori A. Jones, Robert A. Bader, Gerald P. Murphy, and Michael L. Salgaller

Abstract
We assessed both non- and peptide-specific immune responses in prostate cancer patients before and after immunotherapy with dendritic cells exogenously pulsed with the prostate-specific membrane antigen-derived peptides, PSM-P1 and PSM-P2. For all subjects, we observed that clinical responses were strongly associated with two indicators of immunocompetence: skin test responses to recall antigens and cytokine secretion by T cells after nonspecific stimulation. In a subset of responders, we observed cytokine secretion or cytotoxicity against the immunizing peptides or an immunodominant epitope from an influenza recall antigen. The clinical results support the use of monitoring for overall immunocompetence to help determine why a patient has or has not responded to therapy. Moreover, it could be useful as an inclusion criterion to select those more likely to benefit from treatment.

Introduction
The concept of the immune system being responsible for policing the body for aberrant cells was initially put forth years ago by F. MacFarlane Burnet, who named it immune surveillance (1). With the recent explosion in the identification of tumor-specific and tumor-associated antigens (reviewed in Refs. 2 and 3), there is renewed interest in the theory of immune surveillance. Multiple strategies for using immune cells as adjuvant therapy to eradicate residual cancer cells after primary treatment have recently been, or are currently, in clinical trials (4–9). In addition to assessing the clinical outcome in these trials, investigators have also begun developing methods to monitor the immune response during, as well as after, therapy (10, 11). Evaluation of the immune response for patients involved in immunotherapy is important for several reasons. It should help determine the underlying mechanism(s) responsible for the clinical response. Once the mechanism is understood, the treatment can be refined and improved. Immunological monitoring assays aim to provide a surrogate marker for clinical response, allowing for earlier evaluation of the efficacy of the treatment. Finally, patients may be prescreened to determine which are viable candidates for immune-based therapy. We recently completed a Phase II clinical trial treating prostate cancer patients with autologous dendritic cells pulsed with peptides derived from PSMA, designated PSM-P1 (peptide sequence, LLHETDSAV) and PSM-P2 (peptide sequence, ALFDIESKV; Refs. 12 and 13). As many as 30% of the patients achieved clinical benefit, based on PSA changes and other established criteria. Participants were evaluated for both non- and vaccine-specific reactivity. Most importantly, the realization of clinical responses allowed us to assess whether any immune parameters correlated with treatment outcome. Although we detected occasional and anecdot al immune reactivity to PSM-P1 and PSM-P2, it did not show relevance to the patient’s clinical situation. Overall immunocompetence prior to the initial infusions, as assessed by: (a) skin test; and (b) cytokine secretion after nonspecific T cell stimulation, displayed an association with clinical status. Our data confirm well-established conceptions about a link between immune status and the ability to mount an effective antitumor response. However, this is the first demonstration of such a link in actual clinical responders after DC-based vaccination against prostate cancer.

Materials and Methods
Peptides and Cytokines. The source of peptides and cytokines used in these experiments has been delineated in prior studies (14). Briefly, PSMA peptides with HLA-A0201-specific motif (PSM-P1, LLHETDSAV; PSM-P2, ALFDIESKV) were synthesized and purified (>95%) by Peninsula Laboratories, Inc. (Belmont, CA). The influenza matrix peptide M15 8–6 6 (GILGFVFTL), derived from the influenza matrix protein M1, was synthesized by Multiple Peptide Systems (San Diego, CA). It is also presented in the context of HLA-A0201 (15). Granulocyte-macrophage colony-stimulating factor was provided by Immunex Corp. (Seattle, WA). IL-4 was purchased from Peprotech, Inc. (Rocky Hill, NJ).

DC Generation and Infusion. The generation of DCs from PBMCs has been described previously (14). Briefly, PBMCs were isolated using Lymphoprep (Life Technologies, Inc., Gaithersburg, MD) or Histopaque 1077 (Sigma Chemical Co., St. Louis, MO). After a 1-h, 37°C incubation step in tissue culture flasks, adherent PBMCs were cultured with granulocyte-macrophage colony-stimulating factor (500 units/ml) and IL-4 (500 units/ml) for 7 days.

The treatment regimen has been detailed in previous work (12, 13, 16, 17). All patients had confirmed locally recurrent prostate cancer or hormone-refractory, advanced disease. Immediately prior to treatment, DCs were exogenously pulsed with peptide via incubation with 10 μg/ml PSMA-P1 and PSMA-P2 for 2 h. After washing, the DC suspension was infused i.v. over 30 min in a total volume of 10 ml of 0.9% saline. Patients received six infusions of peptide-pulsed autologous DCs at 6-week intervals. Patients were followed before, during, and after therapy with periodic PSA (Tandem-E PSA kit; Hybritech, Inc., San Diego, CA), chest X-rays, bone scans, and ProstaScint scans (18). Clinical responses were determined by modified criteria of the National Prostatic Cancer Project (19) as well as PSA determinations.

Measurement of DTH. DTH was measured prior to the first infusion and after the final treatment with a Multitest CMI (Pasteur Merieux Connaught, Swiftwater, PA). The recall antigens included in the test were: tetanus, diphereria, streptococcus, tuberculosis, glycerin, Candida, trychophyton, and protexus. Antigen (0.1 ml) was injected intradermally. The skin test was read 48–72 h after administration. The widest diameter of distinctly palpable induration was recorded in millimeters. A 5-mm or greater induration was scored as a positive test.

Measurement of Nonspecific T-Cell Response. Blood was drawn from patients prior to the first infusion and at time points after every infusion. PBMCs were isolated at each time point and stored in liquid nitrogen. PBMCs from all time points were evaluated in the same assay for any one patient. To stimulate with anti-CD3, 100 μl of monoclonal antibody (Biosource International, Camarillo, CA) at three concentrations (0.5, 0.25, and 0.1 μg/ml) was...
added in triplicate in a 96-well, round-bottomed plate. After incubation overnight at 4°C, antibody was removed, and 2 × 10^4 PBMCs were added in 0.2 ml of AIM V (Life Technologies, Inc., Gaithersburg, MD). After a 48-h incubation, supernatant was removed. A sandwich ELISA was used to determine the amount of IFN-γ in the supernatant. ELISA plates (Greiner, Palatine, IL) were coated with 100 μl of capture antibody (Endogen, Inc., Woburn, MA) diluted in PBS at 1 μg/ml. After overnight incubation at 4°C, antibody was removed, and the plate was blocked with 100 μl of PBS/BSA for 1 h at room temperature. Plates were then washed four times. Sample or IFN-γ effectors for IFN-γ assays were diluted in PBS at 1:100,000 in each effector T-cell suspension were added to 100 μl of each plate at room temperature. Plates were washed four times with PBS/0.05% Tween 20 using a Microplate Autowasher (Bio-Tek Instruments). Strep-avidin-horseradish peroxidase (Zymed, South San Francisco, CA), diluted 1:10,000 in PBS/Tween, was added in a volume of 100 μl and incubated for 30 min at room temperature. Plates were washed four times, and then 100 μl of OPD substrate (Zymed) was added to each well. The reaction was incubated for 30 min at room temperature and then stopped with 100 μl of 2N H2SO4. The plates were read at 490 nm with a 630-nm reference using an EL 340 Microplate reader (Bio-Tek Instruments).

Microwell Cytokine Assay. Our procedure was a modification of the semi-quantitative assay described recently by Romero et al. (Ref. 11; Fig. 1). PBMCs from prostate cancer patients enrolled in the clinical trial were used. IFN-γ secretion was measured using PBMCs collected before the onset of therapy (pretreatment) and during or after the completion of the regimen (posttreatment). They were added to 96-well plates at a concentration of 1 × 10^3/ml in a volume of 100 μl. They were cocultured with autologous DCs exogenously pulsed for 2 h with 25 μg of peptide(s) consisting of either: (a) PSM-P1 and PSM-P2, or (b) M1. An E/T ratio of 10:1 was used. DMEM (Biofluids, Inc., Gaithersburg, MD) supplemented with 10% human serum (Sigma Chemical Co., St. Louis, MO), antibiotics, and gentamicin was used for all cultures. Cells were cultured in a total volume of 200 μl. Three days after initial stimulation, 300 IU/ml IL-2 were added to each 96-well culture. Cultures were restimulated with peptide-pulsed DCs at day 10 of culture. On day 11, 1 day after restimulation, 300 IU/ml IL-2 were added to each microculture.

Each 96-well plate contained two rows (24 wells) of the following: (a) preimmune PBMCs stimulated in vitro with PSM-P1 and PSM-P2 peptides; (b) preimmune PBMCs stimulated in vitro with M1 peptide (c) postimmune PBMCs stimulated in vitro with PSM-P1 and PSM-P2, and (d) postimmune PBMCs stimulated in vitro with M1. The aforementioned microcultures were set up in duplicate; one set of plates was dedicated to ELISA, and one set was dedicated to cytokotoxicity analysis.

On day 17, all microcultures were gently resuspended. One hundred μl of each effector T-cell suspension were added to 100 μl of T2 cells (5 × 10^3/ml) that had previously been exogenously pulsed with whichever peptide(s) (PSM-P1 and PSM-P2, or M1) were used for the stimulations in vitro. The remaining 100 μl of each effector T-cell suspension was added to 100 μl of T2 cells (5 × 10^5/ml) alone (unpulsed). Twenty-four h later, the supernatants were harvested and measured for IFN-γ and IL-10 production in an ELISA using paired antibodies from the manufacturer (Endogen, Inc., Woburn, MA). All experimental assay points were in singlicate. Specific cytokine secretion was determined by subtracting the amount of IFN-γ and IL-10 from a particular microwell in response to T2 alone from that secreted in response to T2 plus peptide(s). Standards were performed in duplicate.

Microwell Cytotoxicity Assay. The procedure was identical to that of the microwell cytokine analysis, with the exception that the T2 cells were 111In labeled. Target cells (1 × 10^6) were labeled with 111In (Nycomed Amersham, Buckinghamshire, United Kingdom) in 0.5 ml of PBS or AIM-V (Lymphoprep; Life Technologies, Inc.) for 10 min at 37°C, then washed three times before the addition of T cells. Incubation of target and effector cells was carried out for 4 h at 37°C. Supernatants were collected and counted on a gamma counter. The percentage of specific lysis was calculated as: (sample counts – spontaneous counts/maximum counts – spontaneous counts) × 100%. Spontaneous release was determined from targets incubated with AIM-V. Maximum release was determined from targets incubated with 2% SDS. All experimental assay points were in singlicate. Spontaneous and maximum releases were determined in triplicate. Spontaneous counts did not exceed 30% of maximum 111In labeling. The percentage of specific cytotoxicity was determined by subtracting the percentage of cytotoxicity from a particular microwell in response to T2 alone from the lytic activity in response to T2 plus peptide(s). Only the percentage of specific cytotoxicity >10% was scored as an antigen-specific microwell.

Results

A total of 107 patients with either local recurrence of prostate cancer after primary treatment failures or with hormone-refractory metastatic prostate cancer were treated in this Phase II clinical trial (13). Patients received six infusions of autologous DCs pulsed with two HLA-A2 binding, PSMA-derived peptides every 6 weeks. The treatment was well tolerated by all study participants. Approximately 30% of the trial participants had clinical responses defined by modified National Prostate Cancer Project criteria including a 50% reduction in PSA.

A cohort of patients was clinically evaluable (i.e., 46 for DTH testing), and it is those patients who were assessed for this report. The immune status of the patient was evaluated using two different assays: (a) DTH; and (b) cytotoxic secretion. The first assay was a skin test measuring DTH to six different recall antigens: tetanus, diphtheria, streptococcus, tuberculin, glycerin, Candida, trychophyton, and protex. Patients were tested prior to infusion and after completion of all six infusions. As shown in Table 1, patients that responded clinically to DC-based immunotherapy were more likely to have a DTH response than those patients who did not. Moreover, there was an association between response to treatment and the number of patients with three or more positive skin tests. Because of the small number of complete responders and the number of patients in each group overall, both Kruskal-Wallis analysis and P test did not indicate that the differences between groups were statistically significant. However, the tendency was for partial and complete responders to have a greater

Fig. 1. Methodology for the microwell (96-well) analysis of single-epitope-restricted T cells in multiple, single-cell dose microcultures. Three cycles of stimulation of bulk PBMCs (10^5) in microtiter plates were used to obtain the expansion of T-cell effectors for IFN-γ and cytotoxicity assays. For one set of 96-well plates, effectors were stimulated with autologous DCs that were exogenously pulsed with the PSMA-derived peptides, PSM-P1 or PSM-P2. A second, identical set of 96-well plates was stimulated with autologous DCs that were exogenously pulsed with the influenza matrix epitope, M1. Both the IFN-γ and cytotoxicity assays involve a split-well analysis of the activity of each microculture on T2 cells without peptide antigen or sensitized with the PSM-P1 and PSM-P2, or (in a parallel set of cultures) the M1 peptide.
percentage of patients with three or more positive reactions, and this greater reactivity remained constant throughout treatment.

The second assay used to assess the immune response of the patients was cytokine secretion by T cells after nonspecific stimulation. PBMCs, from the pretreatment time point, were stimulated with anti-CD3 monoclonal antibody, and IFN-γ production was measured 48 h later by ELISA. As shown in Table 2, production of low amounts of IFN-γ (<2000 pg/ml) correlated with poor clinical response, whereas production of greater amounts (>300 pg/ml) indicated a probability of a positive clinical outcome. Although two patients with progressive disease demonstrated high cytokine secretion from primary PBMCs, it is important to point out that this reactivity was not durable. That is, when using PBMCs from posttreatment time points, only low IFN-γ secretion was observed. This is in contrast with PBMCs from responders, whose high IFN-γ secretion was maintained throughout treatment. In total, our cytokine secretion data suggest that DC-based immunotherapy is more effective in patients with a functional immune system.

To assess specific immunity induced by the therapy, DTH responses against vaccine components were measured. Patients were given autologous DCs alone and autologous DCs pulsed with both PSMA-derived peptides. Six partial responders demonstrated enhanced DTH responses to both DCs plus peptides as well as DCs alone (data not shown). Therefore, such reactivity could not be classified as peptide-restricted in nature. In fact, only one partial responder demonstrated an enhanced DTH response solely to DCs plus peptides after treatment when compared with the pretreatment response.

We performed a semiquantitative analysis (Fig. 1) for PSMA- and M1-restricted T-cell reactivity by using a modified microwell ELISA (Fig. 2) and cytotoxicity assay (Fig. 3). Instead of a bulk method, usually using 24-well culture dishes, we established singlicate microcultures of PBMCs in 96-well plates. For patients in our clinical trial, both pre- and posttreatment PBMCs were studied. In addition, both PSMA- and M1-restricted T-cell reactivity was determined by conducting two stimulations in vitro by testing against T2 cells with and without the stimulating peptide in a split-well analysis.

Patient 114, who had stage D2 prostate cancer, had a history of radical prostatectomy and a negative bone scan. His pretreatment PSA was baseline and thus was not used as response criteria. After the completion of our DC regimen, he was classified as a complete responder, based on a complete resolution of nodal disease detected earlier in the periaortic and right common iliac lymph nodes (12).

PBMCs from this patient demonstrated a Th1-type response to the immunizing peptides, PSM-P1 and PSM-P2 (Fig. 2). Twelve of 24 microwells (50%) from pretreatment PBMCs showed specific IFN-γ secretion >100 pg/ml. This reactivity was durable, because 50% of microwells from posttreatment PBMCs showed specific IFN-γ secretion. When IL-10 was analyzed, no microwells producing ≥100 pg/ml were observed.

In several patients achieving partial responses, the results of microwell cytolytic assays again demonstrated the importance of preexisting immunity (Fig. 3A). For Patient 122, who achieved a 50% decrease in PSA with no new lesions as a result of treatment (thereby being classified as a partial responder), demonstrated the same strong lytic activity against the immunizing peptides both before and after therapy (16 of 24 microwells; 67%). PBMCs from a patient demonstrating progressive disease (no. 126), set up at the same time, demonstrated minimal activity. In a smaller cohort of partial responders, specific cytolytic activity began fairly low but increased during treatment (Fig. 3B). Using PBMCs from patient 94, cytotoxicity against the recall antigen M1 was low prior to the first DC infusion (7 of 24 microwells; 29%) but was quite vibrant after the sixth infusion (17 of 24 microwells; 71%). When performed concurrently, PBMCs from patient 69, who did not respond to treatment, showed minimal lytic activity.

Discussion

We have demonstrated that clinical responses to DC-based immunotherapy strongly correlated with two measurements of immunity: DTH responses to recall antigens, and secretion of cytokine by T cells after nonspecific stimulation. Using skin testing, we showed that human subjects achieving treatment benefit displayed strong, durable DTH responses against a panel of recall antigens, as compared with subjects treated similarly whose disease was not impacted. Using cytokine release by T cells after nonspecific stimu-

Table 1 DTH response

<table>
<thead>
<tr>
<th>Clinical response</th>
<th>Total no. of patients</th>
<th>No. of patients with 3 or more positive reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressor</td>
<td>21/18^a</td>
<td>5 (24)</td>
</tr>
<tr>
<td>No change</td>
<td>6</td>
<td>2 (33.3)</td>
</tr>
<tr>
<td>Partial responder</td>
<td>12</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Complete responder</td>
<td>2</td>
<td>2 (100)</td>
</tr>
</tbody>
</table>

^a Total number of evaluable patients after treatment. Four patients did not complete the treatment regimen because of disease progression.

Table 2 IFN-γ secretion after anti-CD3 stimulation of PBMCs

<table>
<thead>
<tr>
<th>Clinical response</th>
<th>Low secretor(^b)</th>
<th>Mid secretor</th>
<th>High secretor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressor</td>
<td>4</td>
<td>0</td>
<td>2^a</td>
</tr>
<tr>
<td>No change</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Partial responder</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Complete responder</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

^a Low secretors produced <2000 pg/ml, mid secretors 2000–3000 pg/ml, and high secretors >3000 pg/ml.

^b Became a low secretor at posttreatment time points.

Fig. 2. T cells from patient 114 (C.R.) demonstrate Th1-type cytokine secretion against T2 + PSM-P1/2. PBMCs from a prostate cancer patient were stimulated in vitro with bacillus Calmette-Guérin-treated, autologous DCs osmotically loaded with 15 μg of PSM-P1/2 at an E:T stimulator ratio of 10:1. Three days after initial stimulation, 300 IU/ml IL-2 were added to each 24-well culture. Cultures were restimulated with PSMA-loaded DCs at day 10 of culture and at weekly intervals thereafter; IL-2 was subsequently added 1 day after each restimulation. Effector T cells (5 x 10^5/ml) and 5 x 10^6/ml DC stimulators were added in duplicate to 96-well plates in a volume of 100 μl each. Twenty-four h later, the supernatants were harvested and measured for IFN-γ and IL-10 production in an ELISA using standard, matched antibody pairs. The ELISA was set up as shown in Fig. 1 and as described in “Materials and Methods.” Briefly, half of each effector T-cell stimulus was added to T2 cells that had previously been exogenously pulsed with PSM-P1 and PSM-P2, or M1. The remaining volume was added to unpulsed T2 cells. Specific cytokine secretion was determined by subtracting the amount of IFN-γ or IL-10 from a particular microwell in response to T2 alone from that secreted in response to T2 plus peptide(s). Therefore, we defined specific cytokine secretion as IFN[pg/ml](T2/M1 – T2 alone) or IL-10[pg/ml](T2/M1 – T2 alone). PBL, peripheral blood lymphocytes; PRE, pretreatment; POST, posttreatment.
We defined the percentage of specific cytotoxicity as described previously: % specific CTL from responders but not progressors demonstrate specific lytic activity of T2 percentage of lysis (T2/PSM percentage of lysis from a particular microwell in response to T2 alone from the unpulsed T2 cells. Specific cytokine secretion was determined by subtracting the exogenously pulsed with PSM-P1 and PSM-P2, or M1. The remaining volume was added half of each effector T-cell suspension was added to T2 cells that had previously been pulsed with PSM-P1/2. ELISA was set up as described in “Materials and Methods.” Briefly, each T-cell suspension was added to T2 cells that had previously been exogenously pulsed with PSM-P1 and PSM-P2, or M1. The remaining volume was added to unpulsed T2 cells. Specific cytokine secretion was determined by subtracting the percentage of lysis from a particular microwell in response to T2 alone from the percentage of lysis observed in response to T2 plus peptide(s). Therefore, we defined the percentage of specific cytotoxicity as the percentage of lysis (T2/PSM − T2 alone). B. CTL from responders but not progressors demonstrate specific lytic activity of T2 + M1. We defined the percentage of specific cytotoxicity as described previously: % specific cytotoxicity − % lysis (T2/M1 − T2 alone). PBL, peripheral blood lymphocytes; PRE, pretreatment; POST, posttreatment.

Fig. 3. A. CTL from responders but not progressors demonstrate specific lytic activity of T2 + PSM-P1/2 ELISA was set up as described in “Materials and Methods.” B. CTL from responders but not progressors demonstrate specific lytic activity of T2 + M1. We defined the percentage of specific cytotoxicity as described previously: % specific cytotoxicity − % lysis (T2/M1 − T2 alone). PBL, peripheral blood lymphocytes; PRE, pretreatment; POST, posttreatment.

Lastly, for those whose cancer is of an earlier stage, monitoring a patient’s immune reactivity will be an important adjunct to imaging studies such as bone scans for the clinician to assess whether a patient is responding to immunotherapy.

It is noteworthy that the durable complete responder in our protocol demonstrated a Th1-type of immune response. This patient demonstrated specific cytokine secretion in when stimulated in vitro and subsequently tested against either the immunizing peptides or the recall antigen M1. The number of complete responders sampled is far too small to draw any firm conclusions. But it must be recognized that our results are interesting in light of the difficulty in producing any partial or complete responders in patients with hormone-refractory, metastatic prostate cancer.

Finally, in a finite cohort of partial responders, we demonstrated an association between clinical outcome and either cytokine secretion or lytic activity against the immunizing PSM-P1/P2 peptides or against the recall epitope M1. Pre-existing immunity seemed to be most strongly associated with clinical outcome for those microwell analyses that demonstrated antigen-specific cytokine secretion or cytotoxicity. But it must be mentioned that this observation, although not anecdotal, was not observed in a vast majority of patients. That is, we did not observe any repeatable, reliable correlation between peptide-specific immunoreactivity and clinical outcome. Therefore, it is highly questionable whether the time, effort, and cost of setting up microwell analyses of this sort are justified, and any observed correlation must be considered far from conclusive.

The paucity of immunological data concerning PSMA could be attributable to several reasons. The antigen may be poorly immunogenic. It is not inconsequential to note that there is not a single report in the literature of T-cell reactivity against PSMA-derived peptides. Alternatively, the assays used may not have been sensitive enough to detect PSMA-specific responses. T-cell receptor-ligand interactions are relatively weak compared with antigen-antibody interactions. In addition, there is great variation in the sensitivity of immune monitoring methods, depending upon the approach used (11), and if the precursor T-cell frequency was below 1/10^4, it would likely be below the threshold of detection of the methods we used. Perhaps PSMA-specific cells are sequestered at tumor sites and not found in the peripheral blood. Finally, the mechanism responsible for the clinical response may have not been addressed. For example, DCs have been reported recently to stimulate natural killer cells (20): natural killer activity would not have been detected by any of the assays used in our evaluation.

There has been a great deal of work concerning immune monitoring (reviewed in Ref. 10). Five methods commonly used to detect B- or T-cell responses in PBMCs are: (a) antibody titer determinations; (b) cytotoxicity; (c) cytokine release (via ELISA, ELISPOT, or intracellular staining); (d) molecular analysis of T-cell receptor usage; and (e) direct quantification of antigen-specific cells using tetramers (11). A complimentary tactic is to look for defects in a patient’s immune cells (21–23), or prostate tumor escape mechanisms (24, 25), as reasons for a subject to fail treatment. There is currently no consensus on which methods to use or how a monitoring scheme should be designed. This is appropriate, considering that the field of cancer vaccines directed against defined antigenic targets is in its infancy. One fundamental, inherent problem with true immunological monitoring is that a sufficient number of clinical responses must be achieved before statistical correlations between in vitro and in vivo parameters are declared; for experimental immunotherapy of advanced cancers, this is not trivial. For tumor types other than melanoma, there exists another dilemma:
the glaring lack of basic knowledge concerning human tumor-associated antigens. It is a problem that must be addressed if monitoring and the immune-based therapies they are based upon are to fulfill their early promise.

References
Dendritic Cell-based Immunotherapy of Prostate Cancer: Immune Monitoring of a Phase II Clinical Trial

Patricia A. Lodge, Lori A. Jones, Robert A. Bader, et al.

Cancer Res 2000;60:829-833.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/4/829

Cited articles
This article cites 24 articles, 3 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/4/829.full.html#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
/content/60/4/829.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.