Methylation Patterns in Human Androgen Receptor Gene and Clonality Analysis

Se Jin Jang and Li Mao

Molecular Biology Laboratory, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030

Abstract

Tumor clonality, an important issue in tumor biology, has been analyzed using X-chromosome inactivation studies based on the differential methylation patterns of active and inactive alleles. Recently, a PCR-based androgen receptor gene (AR) analysis method was developed that takes advantage of highly polymorphic CAG repeats and nearby HpaII and HhaI sites in exon 1 of AR at the Xq13 region. However, the data from this assay, which is now widely used, are sometimes uninterpretable and irreproducible for some currently unclear reason. To determine that reason, we analyzed a panel of lung cancer cell lines, using HpaII or HhaI restriction enzymes, methylation-specific PCR, and bisulfite genomic sequencing of the polymorphic CAG repeat site of AR exon 1, including nearby CpG sites. We found direct evidence of a variable methylation pattern at the restriction sites that prevented proper enzyme cleavage in two lung cancer cell lines (NCI-H292 and NCI-H1944) obtained from female patients who had a polymorphic CAG repeat in AR exon 1. Our data suggest that methylation patterns at the CpG sites of AR exon 1 are complicated and vary among different individuals. Therefore, the reliability of the PCR-based clonality analysis may require further evaluation.

Introduction

In the somatic cells of female mammals, one of the X chromosomes is inactivated through extensive methylation of cytosine residues in the promoter regions of genes in the chromosome (1, 2). The inactivation occurs randomly between one of the two chromosomes, is somatically heritable, and is believed to be a necessary part of normal mammalian development (3, 4). A fundamental difference between an inactive X chromosome and an active one is the hypermethylation of CpG islands located at the 5′ ends of genes (5–8). On the basis of this feature, assays of RFLP and variable number tandem repeats, using methylation-sensitive restriction enzymes, methylation-specific PCR, and bisulfite genomic sequencing of the polymorphic CAG repeat site of AR exon 1 are sometimes uninterpretable and irreproducible for some currently unclear reason. To determine that reason, we analyzed a panel of lung cancer cell lines, using HpaII or HhaI restriction enzymes, methylation-specific PCR, and bisulfite genomic sequencing of the polymorphic CAG repeat site of AR exon 1, including nearby CpG sites. We found direct evidence of a variable methylation pattern at the restriction sites that prevented proper enzyme cleavage in two lung cancer cell lines (NCI-H292 and NCI-H1944) obtained from female patients who had a polymorphic CAG repeat in AR exon 1 to this study. Non-small cell lung cancer samples from female patients were obtained from surgical specimens; of these, three were found to be informative and were subjected to analysis. Tumor and normal tissues were separated. Genomic DNA was extracted by phenol-chloroform extraction and ethanol precipitation in the presence of glycerol.

HpaII and HhaI Enzyme Digestion and PCR-based AR Analysis. DNA samples (0.2–2 μg of each DNA) were incubated overnight at 37°C with 20 units of HpaII or HhaI (Life Technologies, Inc.) in a 20-μl reaction volume. Simultaneously, the same amount of each DNA was incubated without enzyme in a mock reaction. Three pairs of PCR primers were used to amplify AR exon 1: AR1 forward (5′-GTGCGGGAAGGTATCCCG AGA-A-3′) and AR1 reverse (5′-TCTGGGACGCAAACCTCTCTC-3′); AR2 forward (5′-AGA GGGCCCA-GACCGACACCCTC-3′) and AR2 reverse (5′-GCTGTGAA GTTGTGGGTTCTCTCAT-3′); AR3 forward (5′-AGCACCTCCGGCCAGTTGGG-3′) and AR3 reverse (5′-TTCCCTCATCCAGGGAAGTGGCC-3′). One of the primers was end labeled with [γ-32P]-dATP (4500 Ci/mmol; ICN Biomedicals, Costa Mesa, CA) and T4 DNA polymerase (New England Biolabs, Beverly, MA). Each PCR amplification was performed in an 8-μl volume containing 200 μM dNTP, 1.5 mM MgCl2, 0.4 μM of PCR primers including 0.01 μM [γ-32P]-labeled primer, and 0.5 units of Hotstart Taq DNA polymerase (Qiagen). Reactions were performed under the following conditions: one initial cycle of 95°C for 1 min, annealing temperature for 1 min, and 72°C for 1 min; 39 cycles of 94°C for 30 s, annealing temperature for 1 min, and 72°C for 1 min; and a final extension for 5 min at 72°C. The annealing temperatures for each primer were 56–62°C. The PCR products were separated on 6% denaturing acrylamide-formamide gel for 2–4 h and autoradiographed to X-ray film.

Bisulfite Modification of Genomic DNA. Genomic DNA (1 μg) was treated with sodium bisulfite in a 50-μl reaction volume as described previously (24). Chemical conversion of cytosine to uracil is known to occur at rate of nearly 100%; however, methylated cytosine cannot be converted to uracil by the reaction (25). After modification, the two strands of DNA are no longer complementary. Therefore, strand-specific primers were designed for differential amplification of the methylated fragments of bisulfite-modified AR genes. To amplify an allele with unmethylated HpaII sites, the following primer pair was used: ARU1 forward (5′-TGTTGGTGAGGTTGATTTTA GAATTG-3′) and ARU1 reverse (5′-GTTAACC TATAAAAACCTTCTTACAATAA-3′). To amplify both alleles regardless of methylation status at the HpaII and HhaI sites in AR exon 1, the following primers were designed and used: ARS forward (5′-AAGATTTATGGGAGTTT TTTT TTAATG-3′) and ARS reverse (5′-TAAACCTTATAAAAACCTTCTTACAATA A-3′). PCR was performed under the same conditions as described above. Annealing temperatures ranged from 56°C to 62°C. The PCR products were separated on 6% denaturing acrylamide-formamide gel for 2–4 h and autoradiographed to X-ray film.
denaturing acrylamide-formamide gels for 2–4 h and autoradiographed on X-ray film.

Cloning of PCR Products and Bisulfite Genomic Sequencing. A TA cloning kit (Invitrogen) was used for cloning AR gene segments. Fresh PCR products using ARS primers that contained both methylated and unmethylated sequences in a 1-µl volume were cloned into TA vectors as specified by the manufacturer. For sequencing, 500 ng of plasmid DNA containing inserts was used as template for a sequencing reaction with AmpliCycle sequencing kit (Perkin-Elmer). T7 primer for vector sequence was end labeled. Cycling condition were followed as specified by the manufacturer.

Results and Discussion

In the last few years, a PCR-based assay of clonality that uses the methylation-sensitive restriction enzymes HpaII and HhaI has become widely used to analyze clonality in clinical specimens, including paraffin-embedded tissues. However, the data from the assay are sometimes uninterpretable for reasons currently unclear. Using the methodology in our laboratory, we have experienced similar problems in analyzing tumor specimens (Fig. 1). We analyzed a panel of lung cancer cell lines from females and found that two of them (NCI-H292 and NCI-H1944) were polymorphic at the CAG repeat site of AR exon 1. Using HpaII or HhaI as restriction enzymes, we found that different experiments could produce inconsistent results in both these cell lines (Fig. 1A), suggesting that even in a clonal cell population the assay might produce results that are difficult to interpret. We hypothesized that variable methylation patterns at the restriction sites prevented proper enzyme cleavage. To test this hypothesis, we modified genomic DNA from the two cell lines, using sodium bisulfite to convert unmethylated cytosine to uracil. We then designed PCR primer sets specific for an unmethylated sequence at a HpaII site and used them to amplify the modified DNA. We found that the primer sets could not be used to amplify unmodified DNA but could amplify both alleles of the AR exon 1 fragment, suggesting that the unmethylated sequence was present in both parental alleles (Fig. 1B).

To directly analyze methylation status at these restriction sites,
specific primer sets were designed to amplify fragments that included two HpaII and two HhaI sites and the CAG repeats in AR exon 1 regardless of its methylation status. Amplified PCR fragments were cloned, and sequences in individual clones were analyzed. Clones from line NCI-H292 contained either 16 or 19 CAG repeats, and clones from line NCI-H1944 contained 20 or 24 CAG repeats, representing alleles from either the maternal or paternal parent, respectively.

In line NCI-H292, the shorter allele was methylated at 12 cytosine residues, including those at the HhaI site, but not at the HpaII sites (Fig. 2A). The longer allele was methylated at three cytosine residues, including one at a HpaII site (Fig. 2A). This result theoretically suggests that when HpaII is used for cleavage, no PCR product should be obtained from the cell line. Thus, the inconsistent patterns of PCR amplification after the different enzyme digestions observed in Fig. 1 were likely due to the incomplete cleavage and preferential amplification of one of the remaining undigested alleles in some experiments. In fact, the longer allele contains unmethylated HhaI sites and therefore could have been digested, which is consistent with our results (Fig. 1A).

Line NCI-H1944 exhibited different methylation patterns from line NCI-H292. The shorter allele was methylated at three cytosine residues, including one at a HhaI site, whereas the longer allele was methylated at only one cytosine (i.e., at the same HhaI site as in the shorter allele; Fig. 2B). Because the HpaII sites were not methylated in both alleles in the cell line, digestion using HpaII could not generate a desirable result. Similarly, because one of the two HhaI sites was not methylated in both alleles, the use of HhaI could cleave both alleles as well. Therefore, the clonality of line NCI-H1944 could not be assessed reliably by either HpaII or HhaI. Together, our data suggest that methylation patterns at the CpG sites of AR exon 1 are complicated and vary among different individuals. Thus, the reliability of the PCR-based clonality analysis may require further evaluation.

Acknowledgments

We thank Y. H. Fan, M. Rodriguez, L. Wang, W. Wu, and X. M. Tang for technical assistance and helpful discussions, and Jude Richard for careful editing.

References

Methylation Patterns in Human Androgen Receptor Gene and Clonality Analysis

Se Jin Jang and Li Mao

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/4/864

Cited articles
This article cites 22 articles, 9 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/4/864.full#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/4/864.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.