Hypermethylation of Multiple Genes in Pancreatic Adenocarcinoma

Takashi Ueki, Minoru Toyota, Taylor Sohn, Charles J. Yeo, Jean-Pierre J. Issa, Ralph H. Hruban, and Michael Goggins

Departments of Pathology [T. U., R. H. H., M. G.], Oncology [M. T., J-P. J. I., R. H. H., M. G.], Medicine [M. G.], and Surgery [T. S., C. J. Y.] of the Johns Hopkins Medical Institutions, Baltimore, Maryland 21205

Abstract

Hypermethylation of CpG islands is a common mechanism by which tumor suppressor genes are inactivated. We studied 45 pancreatic carcinomas and 14 normal pancreata for aberrant DNA methylation of CpG islands of multiple genes and clones using methylation-specific PCR (MSP) and bisulfite-modified sequencing. Using MSP, we detected aberrant methylation of at least one locus in 60% of carcinomas. The genes analyzed included RARβ (methylated in 20%), p16 (18%), CACNA1G (16%), TIMP-3 (11%), E-cad (7%), THBS1 (7%), hMLH1 (4%), DAP kinase (2%), and MGMT (0%). In addition, aberrant methylation was found in three CpG islands (MINT31, -1, and -2) in 38, 38, and 14% of carcinomas, respectively. Hypermethylation was largely confined to the carcinomas with only three loci (E-cad, DAP kinase, and MINT2) harboring methylation in some normal pancreas (36, 21, and 14%, respectively). Simultaneous methylation of at least four loci was observed in 5% of 16 (14%) pancreatic adenocarcinomas. We defined this subgroup of pancreatic adenocarcinomas as “CpG island-methylator-phenotype positive (CIMP+)”. Two of four carcinomas with microsatellite instability harbored promoter hypermethylation of hMLH1, and both cases were CIMP+. Thus, we conclude that many pancreatic carcinomas hypermethylate a small percentage of genes, whereas a subset displays a CIMP+ phenotype.

Introduction

Both DNA hypomethylation (1) and the more focal DNA hypermethylation have been well documented in cancers (2). aberrant DNA hypermethylation in carcinomas usually occurs at CpG islands, which are regions of the DNA rich in CpG dinucleotides. CpG islands are located mainly in 5′ regulatory regions of genes (2). The CpG islands of tumor suppressor genes that normally are unmethylated are potential targets of aberrant hypermethylation during tumorigenesis. DNA hypermethylation can inhibit transcription of tumor suppressor and mismatch repair genes (e.g., p16, Rb, VHL, and hMLH1), providing an epigenetic mechanism of selection during tumorigenesis (2–4).

Pancreatic carcinoma is a relatively well-characterized genetic disease. Multiple tumor suppressor pathways are abrogated in most pancreatic carcinomas. For example, the Rb/p16 pathway is inactivated in >95% of pancreatic cancers, and the transforming growth factor-β/DPC4 pathway is inactivated in >50% (5, 6). Similarly, p53 is inactivated by mutation in ~75%, and the K-ras oncogene is activated in ~90% of pancreatic cancers (6). A subset of pancreatic adenocarcinomas harbor MSI3 and can be recognized by their distinct pathological phenotype (7). In addition, numerous other genes are targeted for genetic inactivation at low frequency (~5% or less). These include STK11, TGFB2, M KK4, and ALK5 (6).

The identification of genes targeted by hypermethylation may provide insights into tumor-suppressive pathways inactivated in pancreatic cancer. In addition, hypermethylated genes may serve as targets for the development of novel screening tests for cancer (8). In this study, we examined a large series of pancreatic cancers for DNA hypermethylation using a panel of 13 genes and CpG islands. The panel includes several tumor suppressor genes, such as p16, and E-cad (3) and several cancer-associated genes, including TIMP-3 (9), DAP kinase, MGMT (10), RARβ (11), THBS1 (12), CACNA1G (13), and the mismatch repair gene, hMLH1 (4, 14). Four methylated clones originally recovered from a colorectal cancer cell line by methylated CpG island amplification (15) were also analyzed.

Materials and Methods

Patient Population and Tissue Samples. Normal and neoplastic tissues were obtained from pancreatic adenocarcinomas resected at The Johns Hopkins Hospital. The institutional review committee on clinical investigation reviewed and approved the collection of the tissue samples for genetic analysis. Pancreatic cancer xenografts were established from the primary carcinomas as described previously, and carcinoma and normal tissues were stored at −70°C (16). Thirty-two xenografts were selected at random from a total of 90 xenografts. In addition, three MSI+ carcinoma xenografts reported previously (7) and another MSI+ primary carcinoma were added to the panel of pancreatic carcinomas. Genomic DNA was prepared from these 35 xenografts, the primary pancreatic carcinoma, and from 9 pancreatic adenocarcinoma cell lines. The pancreatic carcinoma cell lines were BxPc3, Capan1, Capan2, Panc1, CFPAC1, MiaPaca2, Hs766T (all from American Type Culture Collection, Rockville, MD); Colo357 (from ECACC, Salisbury, United Kingdom); and PL45, a low-passage cell line established in our laboratory. Where available, DNA was obtained from fresh-frozen (~70°C) pancreatic cancer and normal pancreatic tissues for comparison with the DNA methylation obtained from the pancreatic cancer xenografts. Frozen tissues were microdissected to obtain DNA from normal pancreatic tissue and the pancreatic carcinoma.

Patient records were reviewed to determine each patient’s history of cigarette smoking, and diabetes mellitus; the patient’s status at last follow-up; and the patient’s family history of pancreatic cancer. These data were then correlated with the DNA methylation data.

Bisulfite Modification and Genomic Sequencing. The bisulfite treatment was carried out for 16 h at 50°C on 1 μg of genomic DNA, according to the procedure of Herman et al. (3). Usually CpG islands are uniformly methylated at each CpG. To rule out variations in methylation patterns that could prevent optimal design of MSP primers, sequencing was performed on promoter regions of RARβ, THBS1, CACNA1G, and hMLH1 genes and the CpG islands MINT1, -2, -31, and -32. For each locus, DNA from ~14 pancreatic tissues (8 carcinomas and 6 normal pancreata) were sequenced to screen for methylation.

Received 10/19/99; accepted 2/15/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

3 The abbreviations used are: MSI, microsatellite instability; E-cad, E-cadherin; TIMP, tissue inhibitor of metalloproteinase-3; DAP, death-associated protein; MGMT, O6-methylguanine DNA methyltransferase; RARβ, retinoic acid receptor β; THBS1, thrombospondin-1; CACNA1G, T-type calcium channel; MSP, methylation-specific PCR; CIMP, CpG island methylator phenotype.
PX240
C
T
A
G
PX196
C
T
A
G

Fig. 1. Bisulfite-modified sequencing of RARβ. The sequence demonstrated was the 5’
region of RARβ gene, beginning at +100 with respect to a transcription start site
(GenBank accession no. X57849). All cytosines in the PX240 have been converted to
thymines, whereas all of cytosines located in CpG dinucleotides in PX196 remain as C.
Two CpG sites at the top of these sequence were selected for the sense primer of RARβ
MSP.

Modified DNA was purified and eluted into 50 μl of LoTE buffer. The primers
used for genomic sequencing of bisulfite-treated DNA are available at our
website.4 PCR was performed on 1–2 μl of bisulfite-treated DNA; prior to
sequencing, PCR reactions were incubated with exonuclease I and shrimp
alkaline phosphatase (Amersham), according to the manufacturer’s recommen-
dations. Sequencing of PCR products was performed in microtiter plates as
recommended by the manufacturer (Sequitherm Excel; Epicentre Technolo-
gies, Madison, WI).

MSP Assay. The methylation status of each gene was determined by MSP
as described by Herman et al. (3), in which the sequence difference of
bisulfite-treated DNA was detected by PCR using primers specific for either
the methylated or for the unmethylated DNA. Primer sequences and the
specific annealing temperatures for the 13 CpG islands are available at our
website.4 MSP was performed on 1 μl of bisulfite-treated DNA under follow-
ing conditions: 95°C for 3 min; 35–40 cycles of 95°C for 30 s, the specific
annealing temperature for 30 s, and 72°C for 30 s; and a final extension of 4
min at 72°C. Five μl of each PCR product were directly loaded onto 3%
agarose gels or 10% acrylamide gels, stained with ethidium bromide, and
visualized under UV illumination. All PCR reactions were performed with
positive controls for both unmethylated and methylated alleles, and no DNA-
loaded control. Finally, three to six CpG sites were included in each primer
pair, and the specific annealing temperatures were used for each gene to obtain
optimal specificity.

Results

We sequenced bisulfite-treated DNA from the promoter regions of
RARβ, THBS1, CACNA1G, and hMLH1 genes and the CpG islands
MINT1, -2, -31, and -32. Methylation of each CpG site of these genes
was determined by the presence of unconverted cytosines (Fig. 1).
Partial methylation at CpG sites of some CpG islands was identified
in normal tissue, e.g., hMLH1 and MINT32 (data not shown). Loci
with CpG methylation specific to pancreatic carcinoma cell lines or
xenografts were selected for MSP to provide specific amplification of
methylated alleles.

The results of MSP of these genes are summarized in Table 1.
MINT32 was methylated in 67% of the 35 xenografts, the 1 primary
carcinoma, and 100% of cell lines. In colorectal carcinomas, methy-
lization of this clone occurred frequently in normal colonic mucosae

and was thus characterized as aging-specific (17). Twenty-seven of
the 45 carcinomas (60%) showed methylation at ≥1 of the remaining
12 loci, and the frequency of methylation ranged from 0 to 38%. As
shown in Fig. 2, the methylation patterns of each gene were usually
clonal. For example, whereas PX26 contained only methylated
THBS1, PX29 contained both methylated and unmethylated templates
(Fig. 2A). The presence of methylated templates in primary carcino-
mas was confirmed when frozen tissues were available. Almost all of
the primary carcinomas displayed amplification of methylated tem-
plates of all genes that were detected in corresponding xenografts
(PX26, -196, -198, -240, -248, -281, and -287; Fig. 2D). Xenograft
PX287 had weak amplification of methylated templates of MINT31,
but the corresponding primary carcinoma did not.

MSP of E-cad, DAP kinase, and MINT2 revealed weak amplifica-
tion of methylated templates in 36, 21, and 14% of normal pancreata,
respectively. No methylated templates of the other 11 genes were
detected by MSP in all 14 normal pancreata.

Hypermethylation of these CpG islands did not occur randomly in
these carcinomas but instead clustered in specific carcinomas (Fig. 3),
suggesting that there is a CpG island hypermethylator phenotype
(CIMP+) in a subset of pancreatic carcinomas (17, 18). In defining a
CIMP+, we excluded genes that were either not methylated in any
pancreatic cancer or methylated at some frequency in histologically
normal tissue sections. Thus, we excluded MGMT (not methylated in
pancreatic cancer), and E-cad, DAP kinase, MINT2 (methylated in nor-
mal tissue at low frequency), and MINT32 (evidence for age-related
methylation in normal tissue; Ref. 17). Carcinomas having methylation
at four or more of eight loci were defined as CIMP+, those showing
methylation at two or three loci were defined as CIMP-I (intermediate),
whereas those showing only one or no methylation were classified as
CIMP−. Of the 35 xenografts and 1 primary carcinoma, 5 (14%) were
CIMP+, 4 (11%) were CIMP-I, and 26 (72%) were CIMP−. When we
compared the observed distribution of methylated loci in each group
[CIMP− (n = 27), CIMP-I (n = 4), and CIMP+ (n = 5)] to the expected
distribution if the frequency of gene methylation were randomly distrib-
uted around the mean number of methylated loci in our pancreatic
carcinomas [CIMP− (n = 23), CIMP-I (n = 12), and CIMP+ (n = 1)],
a statistically significant difference in the proportions in each group was
observed (P < 0.0005; χ2 goodness-of-fit analysis; Ref. 18). The cell
lines harbored more methylated CpG islands than the pancreatic cancer
xenografts/primary cancers. Three of the nine cell lines (33%) were
CIMP+. In the xenograft panel, 11.6% of loci were methylated, whereas
28% of loci in the cell lines were methylated. (χ2 = 18; P < 0.001).

Four carcinomas included in this study were not chosen at random,
but instead were included because they showed MSI. hMLH1 methy-
lization was found in two of four of them. Notably, whether or not we
included hMLH1 methylation as a marker of CIMP status in these
cancers did not affect their status as a CIMP+ or CIMP− cancer. The
two MSI+ carcinomas that were methylated at hMLH1 were CIMP−.
All of the MSI+ pancreatic cancers lacked hMLH1 expression by
immunohistochemistry (not shown). Despite a lack of hMLH1
promoter methylation, the other two MSI+ carcinomas also harbored
aberrant methylation of other CpG islands; one case was classified as
CIMP−, and the other case, as CIMP+. None of 32 microsatellite-
stable carcinomas showed hypermethylation of hMLH1 promoter
region. The CIMP+ pancreatic carcinoma with MSI that lacked hMLH1
methylation by MSP was from a 34-year-old male who also developed
a synchronous right-sided colon carcinoma that was MSI+ and lacked
hMLH1 expression.5 These features suggest that the patient harbors a

5 R. Wilentz et al. Genetic, immunohistological, and clinical features of medullary
carcinoma of the pancreas: a newly described and characterized entity, submitted for
publication.
germline defect in a mismatch repair gene. Sequencing of the promoter region of \(hMLH1 \) in the pancreatic cancer from this patient identified methylation in regions of the promoter often methylated in normal tissues but no methylation in the region of the promoter thought to require methylation to silence \(hMLH1 \) expression (Ref. 14; and data not shown). The methylation pattern of \(hMLH1 \) in this carcinoma raises the possibility that methylation outside the \(hMLH1 \) promoter region identified by Deng et al. (14), can inactivate transcription. Alternatively, the presence of the CIMP+ phenotype in this cancer despite an apparent lack of \(hMLH1 \) methylation is consistent with the mismatch repair defect predating the CIMP+ defect. Observations made by others suggest that the CIMP phenotype usually predates the mismatch repair defect (4).

There was no significant correlation between CIMP status and clinicopathological parameters among the 36 patients with pancreatic carcinomas with respect to age, sex, survival, smoking, presence of a family history of pancreatic cancer, the size of the tumor, lymph node status, or concomitant diabetes mellitus.

Discussion

In this study, 60% of pancreatic carcinomas harbored CpG island methylation of at least 1 of 12 cancer-related markers. Aberrant promoter methylation was detected in several genes in the panel in pancreatic carcinoma (\(p16, \) RAR\(\beta \), CACNA1G, TIMP-3, THBS1, and \(hMLH1 \)), and occurred at a rate of \(~5\%\)–\(20\%\) for each gene. These data suggest that aberrant hypermethylation may be a common mechanism of tumor suppressor gene inactivation in pancreatic carcinoma. Promoter methylation of these genes has been shown to be associated with loss of their expression (4, 9, 11–14). Aberrant methylation of the four CpG islands studied (MINT1, -2, -31, and -32) occurred at a higher rate (11–73\%). Presently, it is not known whether these CpG islands are part of genes (15).

Current evidence supports the notion that subsets of cancers (e.g., bladder, prostate cancer, colorectal carcinoma, leukemia, and gastric cancer) harbor the CIMP+ phenotype (17–20). Colorectal carcinomas with \(p16 \) methylation are more often right-sided (21) and have different patterns of genetic inactivation (22). Among an unselected group of both pancreatic and stomach carcinomas, the proportion of methylated genes appears to nonrandomly cluster to a subset of cases (18). We believe that classifying carcinomas that are particularly prone to methylate tumor suppressor genes may help to identify a subset of carcinomas that have a different etiology, natural history, and/or response to treatment. All of the CIMP+ pancreatic carcinomas had methylation of \(p16 \) as well as one or more other cancer-related genes (RAR\(\beta \), CACNA1G, THBS1, TIMP-3, or \(hMLH1 \)). The three CIMP+ cases with MSI histologically displayed the medullary phenotype as reported previously (7), and one other CIMP+ case was an adenosquamous carcinoma. Three of the CIMP+ cases previously have been well characterized genetically, and two of these had an unusual pattern of genetic alterations. These two carcinomas (PX26 and PX29) harbored genetic alteration of only one of the four genes commonly mutated in pancreatic carcinoma (K-ras, \(p16 \), p53, and DPC4; Ref. 16), providing supportive evidence that at least some CIMP+ pancreatic carcinomas may evolve as a result of predominantly epigenetic rather than genetic events. Ultimately, confirmation of the validity of such a classification and refinement of a definition of CIMP+ carcinomas will require additional studies into the causes of the CIMP phenotype.

MSP can detect 1 methylated allele among 1000 unmethylated ones (3), suggesting that hypermethylated loci could ultimately serve as targets in screening tests for the early detection of pancreatic carcinomas in clinical samples such as stool, blood, duodenal fluid, or pancreatic juice (8, 10). The percentage of methylated loci in the pancreatic cancers in this study was lower than that found for colorectal cancers (17). This may reflect the fact that additional hypermethylated genes that provide a growth advantage for pancreatic cancers remain to be identified. Techniques such as methylated CpG island amplification, restriction landmark fragment scanning, and methylation-sensitive arbitrarily primed PCR can be used for this purpose (17, 19, 23). Another explanation for the lower rate of
methylated loci in pancreatic carcinoma is that the carcinogens associated with pancreatic cancer target genetic pathways more often than epigenetic pathways. Support for this possibility comes from association between a smoking history of patients and a low incidence of methylation of the estrogen receptor gene (ER) in lung cancer and association between radiation and a high incidence of ER methylation (24).

As described previously for other cancer cell lines (25), pancreatic cell lines in this study had higher rates of DNA methylation (28% of loci) than the pancreatic cancer xenografts and primary carcinomas (11.6% of loci; Fig. 3. Methylation profile of pancreatic cancer. Methylation status of 13 loci in 36 pancreatic carcinomas (top group) and 9 cell lines (bottom group). Filled boxes, methylated loci; open boxes, unmethylated loci. MSI+, tumor with microsatellite instability; MSI−, tumor without microsatellite instability. CIMP+, methylated at four or more loci; CIMP−, methylated at two or three loci; CIMP−, methylated at one or no loci. (The CIMP classification excluded E-cad, DAP kinase, MGMT, MINT2, and MINT32; see text.) The methylated loci were not randomly distributed among the 36 pancreatic carcinomas. P < 0.0005.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MSI</th>
<th>p16</th>
<th>RARβ</th>
<th>CACNA1G</th>
<th>TIMP3</th>
<th>THBS1</th>
<th>RBL1H1</th>
<th>MINT1</th>
<th>MINT31</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC666</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX26</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX196</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX17</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX29</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX198</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX132</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX186</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX240</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX30</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX102</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX108</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX125</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX185</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX195</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX248</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX281</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX287</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>MSI</th>
<th>p16</th>
<th>RARβ</th>
<th>CACNA1G</th>
<th>TIMP3</th>
<th>THBS1</th>
<th>RBL1H1</th>
<th>MINT1</th>
<th>MINT31</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiaPaca2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colo357</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL45</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capan2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capan1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFPAC1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BxPC3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs768T</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panc1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Methylation profile of pancreatic cancer. Methylation status of 13 loci in 36 pancreatic carcinomas (top group) and 9 cell lines (bottom group). Filled boxes, methylated loci; open boxes, unmethylated loci. MSI+, tumor with microsatellite instability; MSI−, tumor without microsatellite instability. CIMP+, methylated at four or more loci; CIMP−, methylated at two or three loci; CIMP−, methylated at one or no loci. (The CIMP classification excluded E-cad, DAP kinase, MGMT, MINT2, and MINT32; see text.) The methylated loci were not randomly distributed among the 36 pancreatic carcinomas. P < 0.0005.
\(x^2 = 18; P < 0.001; \) Table 1). These findings may reflect the small number of cell lines studied, or they may signify the selection of subclones of tumor cells with DNA hypermethylation throughout the establishment of an immortal cell line. Alternatively, carcinomas that are CIMP+ may be more likely to be established as cell lines.

This study represents our ongoing attempts to refine the molecular classification of pancreatic carcinoma. Additional studies are needed to refine our understanding of the role of DNA hypermethylation in pancreatic cancer biology.

Acknowledgments

We thank Dr. Scott E. Kern, Johns Hopkins Medical Institutions, Baltimore, MD, for providing the DNA from pancreatic cancer xenografts.

References

Hypermethylation of Multiple Genes in Pancreatic Adenocarcinoma

Takashi Ueki, Minoru Toyota, Taylor Sohn, et al.