Prognosis of Primary Testicular Seminoma: A Report on 57 New Cases

Keita Fujikawa, Yoshiyuki Matsui, Hiroya Oka, Shigeki Fukuzawa, Miharu Sasaki, and Hideo Takeuchi

Department of Urology, Kobe City General Hospital, Kobe City [K. F., Y. M., H. O., S. F., H. T.], and Department of Urology, Shizuoka City Hospital, Shizuoka City 420 [M. S.], Japan

ABSTRACT

Most urologists perform adjuvant radiation therapy for stage 1 (T_N_M) testicular seminoma after orchiectomy, although the majority of patients with clinical stage 1 seminoma do not have occult metastases and therefore do not require elective nodal irradiation. However, there are currently no clinical or histological parameters that can be used to distinguish patients who need radiation therapy from those who do not. We reported previously that estimates of volume-weighted mean nuclear volume (MNV) were a better predictor of the prognosis of prostate cancer and renal cell carcinoma than subjective histological grading. Here, we examined the usefulness of estimation of MNV for predicting the prognosis of primary testicular seminoma. A retrospective study of 57 patients with testicular seminoma diagnosed between April 1981 and March 1997 at Kobe City General Hospital was performed. Unbiased estimates of MNV were compared with the levels of β-human chorionic gonadotropin (β-HCG), α-fetoprotein (AFP), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH). Fifty patients were stage 1 (T_N_M), and 7 patients were stage 2 (T_N_M). All patients received orchiectomy, followed by radiation therapy. Estimates of MNV of stage 2 patients were significantly larger than that of stage 1 patients (P = 0.0142). Although the LDH level was also significantly higher in stage 2 (P = 0.001), there were no significant differences between stages 1 and 2 with respect to β-HCG (P = 0.997), ALP (P = 0.226), and AFP (P = 0.467). Multivariate logistic regression analysis revealed that the estimate of MNV was the only variable predicting lymph node metastasis (P = 0.0315). In stage 1 patients, only the estimate of MNV was significantly correlated with progression-free survival (P = 0.0118). These findings indicate that the estimate of MNV may be an important prognostic indicator for testicular seminoma. Estimates of MNV may also be useful for excluding patients from surveillance protocols.

INTRODUCTION

Remarkable improvement in the prognosis of testicular tumors has recently been achieved. Metastatic disease can be cured in the majority of patients by multiagent systemic chemotherapy after orchiectomy (1, 2). Patients with clinical stage 1 seminoma are treated by orchiectomy plus external radiation to the retroperitoneal lymph nodes at risk of harboring subclinical micrometastases (the ipsilateral pelvic and para-aortic nodes), and this approach has achieved long-term cure rates of greater than 90–95% (3, 4). It is generally accepted that approximately 10–20% of clinical stage 1 seminoma patients have occult disease in the abdomen (5). Therefore, this policy of elective adjuvant regional nodal irradiation means that ~85% of patients are being treated unnecessarily (6). If it were possible to more accurately stage seminoma, many patients could avoid the side effects of radiation therapy, and medical costs would also be decreased. However, conventional histopathological findings cannot be used to identify patients with occult retroperitoneal metastases (7).

Calculation of the volume-weighted MNV1 is the only method by which an unbiased estimate of a three-dimensional parameter can be obtained from single two-dimensional sections (8). The MNV was developed by Gunderson and Jensen (9, 10), based on a stereological method. We have reported previously that this parameter is prognostically important for prostate cancer (11–14), renal cell carcinoma (15), and bladder cancer (16). However, the relationship between MNV and the prognosis of seminoma has not been investigated thus far. In an effort to identify the subset of patients with clinical stage 1 seminoma who may be monitored after orchiectomy rather than requiring elective regional nodal irradiation, we examined the clinical and pathological features of 57 patients, including calculation of their MNV values.

PATIENTS AND METHODS

Patients. Ninety-seven patients with primary testicular tumors were diagnosed at Kobe City General Hospital between 1981 and 1997. All patients underwent orchiectomy, and 57 patients had a final diagnosis of primary pure seminoma after examination of orchiectomy specimens (classic in 53, spermatocytic in 1, and anaplastic in 3). Pretreatment staging was done with physical examination, excretory urography, chest X-ray, bone scan, and computerized tomography of the retroperitoneum. Fifty patients were classified as clinical stage 1 (T_N_M), and 7 patients were classified as stage 2 (T_N_M). All patients received radiation therapy to the ipsilateral pelvic and para-aortic nodes. Four patients who had residual retroperitoneal masses after irradiation were treated with platinum-based chemotherapy and retroperitoneal lymph node dissection. Patients were followed up every 1–3 months. Routine tests included physical examination, chest X-rays, skeletal survey, ultrasonography, or computerized tomography of the abdomen and serum tumor markers. In this study, unbiased estimates of MNV were compared with the levels of β-HCG, AFP, ALP, and LDH to assess their relative prognostic value. At the time of study completion, 52 patients were still alive, and 5 had died. The mean follow-up period for the surviving patients was 61.1 months (range, 24–192 months).

MNV. The slides used for histological tumor grading were used for the stereological calculation of MNV. An Olympus BHS microscope (Olympus, Tokyo, Japan), with a projection attachment and a ×100 oil immersion lens (numerical aperture, 1.4), was used to obtain the quantitative histopathological variables. The final calibrated magnification was ×1600. A section from each seminoma was projected onto the used test system. In each specimen, the three-dimensional nuclei were first sampled in proportion to height by the histological slide. The nuclei were then resampled in proportion to the sectional area with a point-grid, and only nuclear profiles hit by points were sampled for the estimation of MNV, i.e., nuclei are sampled proportional to height × sectional area = volume (8). On the point-sampled nuclear profiles, nuclear intercepts were measured from nuclear boundary to nuclear boundary through the sampling point in one direction, as indicated by the test system. A minimum of four visual fields and a minimum of 50 nuclei are needed to calculate MNV (9, 10); thus, 4–10 fields of vision (average, 6.3) obtained at random and 60–120 intercepts (average, 85.1) were examined in each patient. An unbiased estimate of MNV was obtained by multiplying the mean of the cubed intercept length by π/3. A detailed description of the techniques used, including the formulae and calculations, has been published previously (8–10).

Statistics. Progression-free survival was estimated from Kaplan-Meier plots, and differences between groups were assessed with the log-rank test.

1 The abbreviations used are: MNV, mean nuclear volume; β-HCG, β-human chorionic gonadotropin; AFP, α-fetoprotein; ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
PROGNOSIS OF TESTICULAR SEMINOMA

RESULTS

Lymph Node Metastasis. The mean estimate of MNV calculated for stage 2 patients was 891.4 μm², whereas that of stage 1 patients was 626.2 μm². Therefore, the MNV was significantly larger in stage 2 (P = 0.0142, Table 1). Although the LDH level was significantly higher in stage 2 than in stage 1 (P = 0.0016), there were no significant differences between the two stages with regard to the levels of β-HCG (P = 0.9977), ALP (P = 0.2266), and AFP (P = 0.4673, Table 1). Multivariate logistic regression analysis revealed that estimates of MNV were the only prognostic factor predicting lymph node metastasis (P = 0.0315, Table 2).

Progression-free Survival. Factors predicting disease progression were analyzed for the stage 1 patients. Five stage 1 patients showed progression during the follow-up period, with four developing mediastinal lymph node metastasis and one developing inguinal lymph node metastasis. Fifty stage 1 patients were classified by their MNV values, which ranged from 259.4 to 1066.7 μm², with a median of 620 μm². Progression-free survival curves are shown in Fig. 1. The proportion of the MNV ≥ 620 μm² group was significantly worse than that of the MNV < 620 μm² group (P = 0.0118). LDH (P = 0.3274), β-HCG (P = 0.3424), ALP (P = 0.1210), and AFP (P = 0.9870) were of no prognostic value.

DISCUSSION

The prognosis of testicular tumors has improved remarkably with the development of techniques for imaging the retroperitoneum, as well as introduction of new chemotherapy agents and identification of sensitive tumor markers (7). Many seminoma patients can be cured by radiation therapy and platinum-based chemotherapy, even when they have distant metastases (1–4). On the other hand, most urologists irradiate the retroperitoneal lymph nodes after orchiectomy for clinically localized (stage 1) seminoma. In fact, the majority of stage 1 seminomas can be cured by orchiectomy alone; therefore it would be desirable to spare patients the unpleasant side effects of irradiation, such as gastrointestinal disturbance, reduced fertility, a risk of secondary retroperitoneal tumors, and anxiety. In a recent study performed in England, 7 of 52 patients (13%) with clinical stage 1 seminoma managed by surveillance after orchiectomy developed recurrence during a follow-up period of 12–41 months (5). Unfortunately, computed tomographic scans cannot identify micrometastases, and conventional histopathological findings cannot identify the patients who have occult retroperitoneal metastases (6, 7). Pathological assessment remains difficult and is subject to interobserver variation. Nativ et al. (7) reported on the importance of the nuclear DNA ploidy pattern in seminoma, whereas Hiltmair et al. (17) stated that a diploid seminoma on flow cytometry is most likely associated with extensive lymphatic infiltration. The present study focused on whether accurate prediction of the malignant potential of seminoma was possible by using ordinary histological slides.

An estimate of MNV is the only method by which an unbiased estimate of three-dimensional parameters can be obtained from a single two-dimensional histological section (8). This parameter was developed by Gunderson and Jensen (9, 10) and is based on a stereological method. It has been proven by Sørensen et al. (18), Baak et al. (19), Nielsen et al. (20), and ourselves (21) to be highly reproducible. Since Weibel (22) discussed the application of stereology to cancer research, the value of MNV as a prognostic factor has been demonstrated for several tumors (11–16, 23–25). We reported previously that MNV was a better predictor of the prognosis of prostate cancer (11–14) and renal cell carcinoma (15) than subjective histological grading. Sørensen and Muller (26) reported that the MNV of testicular carcinoma in situ was significantly larger than that of morphologically normal spermatogonia, but no previous study has assessed the relationship between estimates of MNV and the prognosis of seminoma.

When we analyzed the relationship between lymph node metastasis and several prognostic factors, multivariate analysis showed that the estimate of MNV was the only factor predicting lymph node metastasis. It would have been better to study a group of pathologically staged cancer patients, but unfortunately, this is not possible in clinical practice. Despite this limitation, our findings revealed a clear trend. Furthermore, no stage 1 patient with a small estimate of MNV showed disease progression during the follow-up period. These findings suggest that patients with a small MNV and no apparent lymph node metastasis could have surveillance alone.
node metastasis on computed tomographic scans may be candidates for surveillance rather than radiotherapy.

Several problems remain to be solved before clinical use of estimates of MNV will become possible. The cut-off value that best reflects the biological characteristics of seminoma needs to be determined. Although we used the median as the cut-off value in the present study, further investigation of a larger number of patients at multiple institutions will be required to provide a more definitive answer. There have been no objective criteria for predicting the outcome of patients with seminoma. However, the present study suggested the possibility that MNV might be one such criterion; therefore, additional studies must be performed to assess the reproducibility of this finding.

In conclusion, estimates of MNV may be prognostically important for seminoma. No special training is needed to measure MNV; only a projector and microscope are required, and evaluation can be performed in 10–15 min with excellent reproducibility. Taking this into account, we recommend MNV estimation for predicting the outcome of patients with seminoma. MNV may also be a useful criterion for excluding patients from surveillance.

ACKNOWLEDGMENTS

We thank Dr. Sørensen, Stereological Research Laboratory, and University Institute of Pathology, Aarhus Kommunehospital, University of Aarhus, Denmark, for technical assistance.

REFERENCES

Prognosis of Primary Testicular Seminoma: A Report on 57 New Cases

Keita Fujikawa, Yoshiyuki Matsui, Hiroya Oka, et al.

Cancer Res 2000;60:2152-2154.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/60/8/2152

Cited articles This article cites 25 articles, 3 of which you can access for free at: http://cancerres.aacrjournals.org/content/60/8/2152.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.