Interleukin 8 Expression Regulates Tumorigenicity and Metastasis in Human Bladder Cancer

Keiji Inoue, Joel W. Slaton, Sun Jin Kim, Paul Perrotte, Beryl Y. Eve, Menashe Bar-Eli, Robert Radinsky, and Colin P. N. Dinney

ABSTRACT

Interleukin 8 (IL-8) is mitogenic and chemotactic for endothelial cells. Within a neoplasm, IL-8 is secreted by inflammatory and neoplastic cells. The highly tumorigenic and highly metastatic human transitional cell carcinoma (TCC) cell line 253J-B-V overexpresses IL-8 relative to the nontumorigenic and nonmetastatic 253J-P cell line. To determine whether IL-8 expression regulates tumorigenicity and metastasis in human TCC, 253J-B-V cells were transfected with the full-sequence antisense (AS) cDNA for IL-8, whereas 253J-P cells were transfected with the full-length IL-8 DNA, and control cells for each were transfected with the neomycin resistance (Neo) gene. In vitro, sense-transfected 253J-P cells overexpressed IL-8-specific mRNA and protein, whereas both of these were markedly reduced in AS-IL-8-transfected 253J-B-V cells relative to controls. Moreover, sense-transfected cells showed up-regulation in matrix metalloproteinase type 9 mRNA, collagenase activity, and increased invasiveness through Matrigel-coated filters, whereas these measures were lower in AS-transfected cells relative to controls. After implantation into the bladders of athymic nude mice, the sense-transfected 253J-P cells acquired increased tumorigenicity and metastasis, whereas the AS-transfected cells significantly inhibited tumorigenicity and metastases in the 253J-B-V cell lines. This effect was accompanied by reduced IL-8 expression and microvessel density. These studies demonstrate that IL-8 expression enhances angiogenic activity through the induction of matrix metalloproteinase type 9 and subsequently regulates the tumorigenesis and production of spontaneous metastases of human TCC.

INTRODUCTION

TCC of the bladder is the fifth most common malignancy diagnosed in the United States (1). Although modest improvements in therapy have occurred (2, 3), most deaths from bladder cancer are caused by metastases that resist conventional therapy (4–6). Continued empiricism in the treatment of advanced TCC is unlikely to produce significant improvement over current therapy. Rather, a knowledge of the cellular and molecular properties of bladder cancer and of the tumor-host interactions that influence the dissemination of metastatic disease is essential for the design of more effective treatment.

Metastasis is a highly selective process involving multiple tumor-host interactions (4–7). A crucial step in metastasis is vascularization in and around the tumor (8–10). This process of angiogenesis is regulated by the balance between stimulatory and inhibitory factors released by the tumor and the microenvironment (11). Human bladder cancer produces a number of proangiogenic factors, including VEGF (12, 13), bFGF (14–16), midkine (17), thymidine phosphorylase (18), and IL-8 (19). MVD, a pathological surrogate for angiogenesis, correlates with stage and prognosis for patients with bladder cancer (20).

IL-8 was originally identified as a leukocyte chemottractant (21, 22), but subsequent studies have shown that IL-8 induces angiogenesis (23, 24) and is expressed by melanoma (25–27), lung (28), prostate (29), gastric (30), and ovarian (31) cancers and by TCC of the bladder (19). Although IL-8 is expressed by TCC, its exact role in the process of angiogenesis and the progression of TCC has not been elucidated.

Therefore, in the present study, we used an orthotopic model of human TCC to determine whether IL-8 regulates angiogenesis, tumorigenicity, and metastasis in TCC of the bladder.

MATERIALS AND METHODS

Cell Lines and Culture Conditions. Human TCC cells of the 253J-B-V line (highly tumorigenic and highly metastatic) and the 253J-P line (poorly tumorigenic and nonmetastatic) were grown as monolayer cultures in modified Eagle’s MEM supplemented with 10% fetal bovine serum, vitamins, sodium pyruvate, L-glutamine, nonessential amino acids, and penicillin-streptomycin (CMEM; Ref. 32).

Transfection and Selection of Tumor Cells Expressing IL-8. The tumor cells were plated onto 100-mm dishes at a density of 1 × 10^6/dish. The monolayers (60–70% confluent) were transfected with a full-length pcDNA3/sense IL-8, pcDNA3/AS-IL-8, or control pcDNA3 plasmids [EcoRI-EcoRI, 1.5 kb; a gift from Dr. K. Matsushima, University of Kanazawa, Kanazawa, Japan (21)] containing a drug-selectable marker for neomycin resistance and a strong cytomegalovirus early promoter using a stable mammalian transfection kit from Stratagene (La Jolla, CA). The cultures were placed in a 37°C incubator for 12 h and then washed and fed with CMEM. After 24 h, 500-1000 μg/ml G418 sulfate (Life Technologies, Inc., Gaithersburg, MD) were added. The CMEM/G418 medium was replaced every 3 days until individual, resistant colonies were isolated and established in culture as individual lines. All cell lines were maintained in CMEM/G418 and frozen after one to three in vitro passages. The expression of IL-8 in individual clones was identified by Northern blot analysis and ELISA. To avoid clonal variations, positive clones were then pooled for the in vivo and in vitro studies.

The 253J-P and 253J-B-V cells were transfected with pcDNA3/sense IL-8 and pcDNA3/AS IL-8, respectively, or with control pcDNA3 plasmids. Individual G418-resistant (500–1000 μg/ml) colonies were established as separate adherent cultures. We selected pooled sense-IL-8-transfected 253J-P cells [253J-P(IL-8)], the highest IL-8-expressing 253J-P clone [253J-P(IL-8 High)], and the lowest IL-8-expressing 253J-P clone [253J-P(IL-8 Low)] and pooled AS-IL-8-transfected 253J-B-V cells [253J B-V(AS IL-8)], the highest IL-8-expressing AS clone [253J B-V(AS IL-8 High)], and the lowest IL-8-expressing AS clone [253J B-V(AS IL-8 Low)], as indicated by the expression level of IL-8 mRNA and protein as determined by Northern blot analysis and ELISA, respectively.

Northern Blot Analysis. Polyadenylated mRNA was extracted directly from the tumors or from 10^6 cultured cells using the Fasttrack mRNA isolation kit (Invitrogen Co., San Diego, CA). The mRNA was electrophoresed onto 1% denatured formaldehyde agarose gel, electrophoresed to Genescreen nylon membranes (DuPont Co., Boston, MA), and cross-linked with a UV Stratalinker 1800 (Stratagene, La Jolla, CA) at 120,000 mJ/cm². Filters were washed twice at 65°C with 30 mM NaCl, 3 mM sodium citrate, and 0.1% SDS (w/v).
The membranes were then hybridized and probed for IL-8, bFGF, VEGF, and MMP-9; the presence of GAPDH was used to control for loading. The cDNA probes used were: a 0.5-kb EcoRI cDNA fragment corresponding to human IL-8 (a gift of Dr. K. Matsushita, University of Kanazawa, Kanazawa, Japan; Ref. 21); a 1.4-kb cDNA fragment of bovine bFGF (33); a 204-kb fragment of human VEGF cDNA inserted in a pGEM-based construct (a gift of Dr. B. Berse, Harvard Medical School, Boston, MA; Ref. 34); a 1.0-kb cDNA fragment corresponding to human MMP-9 (29); and a 1.28-kb fragment from pR GAPDH cut with PstI (35). The insert was excised with BamHI and EcoRI. Each cDNA fragment was purified by agarose gel electrophoresis, recovered using GeneClean (BIO 101, Inc., La Jolla, CA), and radioabeled by a random primer technique using a commercial kit (Boehringer Mannheim Corp., Indianapolis, IN) and [α-32P]-deoxyctydine triphosphate (Amersham Corp., Arlington Heights, IL; Ref. 36). The steady-state expressions of IL-8, bFGF, VEGF, and MMP-9 mRNA transcripts were quantified by densitometry of autoradiographs with the use of the ImageQuant software program (Molecular Dynamics, Sunnyvale, CA); each sample measurement was calculated as the ratio of the average areas of the specific mRNA transcripts to the 1.3-kb GAPDH mRNA transcript in the linear range of the film.

Assay for IL-8, bFGF, and VEGF. Viable cells (5 × 10^6) were seeded in a 96-well plate. Conditioned medium was removed after 24 h. The cells were then washed with 200 μl of HBSS, and 200 μl of 10% bovine serum supplemented by fresh MEM were added. Twenty-four h later, IL-8 and VEGF in cell-free culture supernatants and cell-associated bFGF in freeze-thaw cell lysates were determined using the commercial Quantine ELISA kit (R&D System, Minneapolis, MN). The protein concentration for each factor was then determined by comparing the absorbance with that of the standard. Results were expressed in terms of cell numbers (37).

Growth Curve. Viable cells (1 × 10^6) were seeded in a 96-well plate. Conditioned medium was removed after 24 h, the cells were washed with 200 μl of HBSS, and 200 μl of fresh CMEM or CMEM/G418 conditioned medium were added. Every 24 h, the number of viable cells in each cell line was determined by absorbance comparison. The doubling times of each cell line were determined by plotting the absorbance on a semilogarithmic axis versus time (Cricket Software, Malvern, PA; Fig. 3). The doubling times of the 253J-P sense-IL-8 transfectants (IL-8, 35.0 h; IL-8 Low, 37.2 h; and IL-8 High, 37.6 h) were similar to those for both 253J-P (35.0 h) and 253J-Neo (35.4 h), and the doubling times of the 253J B-V AS-IL-8 transfectants (AS IL-8, 26.6 h; AS IL-8 Low, 27.3 h; and AS IL-8 High, 27.1 h) were similar to 253J B-V (26.0 h) and 253J B-V(Neo) (26.9 h).

Collagenase Activity. To determine collagenase activity, electrophoresis of serum-free conditioned medium was performed as described previously (38). Cells (5 × 10^6) were seeded in six-well plates and grown to 60–70% confluence. The cells were washed with HBSS and grown for 24 h in serum-free medium; the collagenase activity of the supernatant fluid was determined, and the remaining cells were counted to confirm the cell number. Identification of a transparent band at M 72,000 or M 92,000 on the Coomassie blue background of the slab gel was considered positive for the presence of the enzymatic activity.

We next investigated whether the increase in MMP-9 activity is mediated by IL-8. Parental 253J-P cells were incubated in the presence of different doses of (0–20 μg/ml of human rIL-8) and the activity of MMP-9 was determined. Next, we investigated whether the increased activity of MMP-9 caused by rIL-8 was inhibited by neutralization with an anti-IL-8 antibody (100 μg/ml), with nonspecific IgG (100 μg/ml) serving as control.

PCR Analysis. RT-PCR analysis was performed as described previously (39). Briefly, total cellular RNA (1 mg) extracted from various cell lines was transcribed into cDNA using downstreaming primers IL-8 receptor type A and IL-8 receptor type B, respectively (Reverse Transcriptase System; Promega Corp., Madison, WI). The reverse transcription reaction was performed at 42°C for 50 min. PCR was performed with 40 cycles of denaturation (94°C for 1.5 min), annealing (58°C for 45 s), extension (72°C for 2.5 min), and 7 min of extension after completion of all cycles. Amplified fragments were analyzed on the 2% gel, and bands of expected sizes were confirmed by sequencing. The primer sequences used were as follows: IL-8 receptor type A, sense 5′-AGT TCT TGG CAC GTC ATC G-3′ and AS 5′-CTT GGA GGT ACC TCA ACA GC-3′; and IL-8 receptor type B, sense 5′-ACA TTC TCG TGC AAG GTG G-3′ and AS 5′-CAG GGT GAA TCC TCA GTA GCA GA-3′.

Invasion through Matrigel. Polyvinylpyrrolidone-free polycarbonate filters (8-μm pore size; Nucleopore; Becton Dickinson Labware, Franklin Lakes, NJ) were coated with a mixture of basement membrane components (Matrigel; 25 μg/filter) and placed in modified Boyden chambers. The cells (2 × 10^6) were released from their culture dishes by short exposure to EDTA (1 mM), centrifuged, resuspended in 0.1% BSA/DMEM, and placed in the upper compartment of the Boyden chamber. Fibroblast-conditioned medium was placed in the lower compartment as a source of chemoattractants. After incubation for 6 h at 37°C, the cells on the lower surface of the filter were stained with Diff-Quick (American Scientific Products, McGaw Park, IL) and quantified with a cooled charge-coupled device Optotrons Tec 470 camera (Optotrons Engineering, Goleta, CA) linked to a computer and digital printer (Sony Corp., Tokyo, Japan). The results were expressed as the average number of cells over the five highest spots identified within a single ×200 field on the lower surface of the filter (40).

Animals. Male athymic BALB/c nude mice were obtained from the Animal Production Area of the National Cancer Institute, Frederick Cancer Research Facility (Frederick, MD). The mice were maintained in a laminar airflow cabinet under specific pathogen-free conditions and used at 8–12 weeks of age. All facilities were approved by the American Association for Accreditation of Laboratory Animal Care in accordance with the current regulations and standards of the United States Department of Agriculture, the Department of Health and Human Services, and the NIH.

Orthotopic Implantation of Tumor Cells. Cultured 253J-P, 253J B-V, Neo-transfected, and sense- and AS-IL-8-transfected cells (60–70% confluent) were prepared for injection as described previously (32). Mice were anesthetized with methoxyflurane. For orthotopic implantation, a lower midline incision was made, and viable tumor cells (2 × 10^5 in 0.05 ml) of HBSS were implanted into the bladder wall. The formation of a bulla indicated a satisfactory injection. The bladder was returned to the abdominal cavity, and the abdominal wall was closed with a single layer of metal clips. The mice were killed and necropsied 6 weeks after implantation of tumor cells. The primary tumors were removed and weighed, and the presence of metastases (in lymph nodes and lung) was determined grossly and microscopically. The bladders were then either quickly frozen in liquid nitrogen for mRNA extraction, fixed in 10% buffered formalin, placed in OCT compound (Miles Laboratories, Elkhart, IN), or mechanically dissociated and put into tissue culture.

In Situ mRNA Hybridization Analysis. Specific 5′ oligonucleotide DNA probes were designed complementary to the mRNA transcripts based on published reports of the cDNA sequence: IL-8, CTC CAC AAC CCT CTG CAC CC, 66% GC content (21); bFGF, CGG GAA GCC GCT GCC GCC, 85.7% GC content (33); VEGF/PVF, TGG TGA TGT TGG ACT CTT CAG TGC GCC, 57.7% GC content (34); and MMP-9, CCG GTC CAC CTC GCC GCC GCC GC, 80.0% GC content (29). The specificity of the oligonucleotide sequence was initially determined by a Gene Bank European Molecular Biology Library database search with the use of the Genetics Computer Group sequence analysis program (Genetics Computer Group, Madison, WI), based on the FastA algorithm; these sequences showed 100% homology with the target gene and minimal homology with nonspecific mammalian gene sequences. The specificity of each of the sequences was also confirmed by Northern blot analysis (41). A poly d(T)100 oligonucleotide was used to verify the integrity and lack of degradation of mRNA in each sample. All DNA probes were synthesized with six biotin molecules (hyperbiotinylated) at the 3′ end via direct coupling, with the use of standard phosphoramidite chemical methods (Research Genetics, Huntsville, AL). The lophyrid probes were reconstituted in a stock solution at 1 μg/ml in 10 mM Tris (pH 7.6) and 1 mM EDTA. Immediately before use, the stock solution was diluted with probe dilution (Research Genetics).

ISH mRNA hybridization was performed as described previously with minor modifications (42, 43). ISH was performed using the Microprobe Manual Staining System (Fisher Scientific, Pittsburgh, PA; Ref. 44). Tissue sections (4 μm) of formalin-fixed, parafilm-embedded specimens were mounted on silane-treated ProbeOn slides (Fisher Scientific; Refs. 42 and 43). The slides were placed in the Microprobe slide holder, dewaxed, and rehydrated with Autodewaxer and Autoalcohol (Research Genetics), followed by enzymatic digestion with pepsin. Hybridization of the probe was performed for 45 min at 45°C, and the samples were then washed three times with 2× SSC for 2 min at 45°C. The samples were incubated with alkaline phosphatase-labeled avidin for 30 min at 45°C, rinsed in 50 mM Tris buffer (pH 7.6), rinsed
with alkaline phosphatase enhancer for 1 min, and incubated with a chromogen substrate for 15 min at 45°C. If necessary, samples were incubated a second time with fresh chromogen substrate to enhance a weak reaction. A red stain indicated a positive reaction. To control for endogenous alkaline phosphatase, the sample was treated in the absence of the biotinylated probe, using chromogen alone.

Quantification of Color Reaction. Stained sections were examined in a Zeiss photomicroscope (Carl Zeiss, Thornwood, NY) equipped with a threechip, charge-coupled device color camera (model DXC-969 MD; Sony Corp.). The images were analyzed using the Optimas image analysis software (version 4.10; Bothell, WA). The slides were prescreened by one of the investigators to determine the range in staining intensity of the slides to be analyzed. Images covering the range of staining intensities were captured electronically, a color bar (montage) was created, and a threshold value was set in the red, green, and blue mode of the color camera. All subsequent images were quantified based on this threshold. The integrated absorbance of the selected fields was determined based on its equivalence to the mean log inverse gray value multiplied by the area of the field. The samples were not counterstained; therefore, the absorbance was attributable solely to the product of the ISH reaction. Three different fields in each sample were quantified to derive an average value. The intensity of staining was determined by comparison with the integrated absorbance of poly d(T)20. The results were presented as the number of each cells per field compared with the control, which was set to 100 (37).

Quantification of MVD. MVD was determined by light microscopy after immunostaining of sections with anti-CD31 antibodies according to the procedure of Weidner et al. (46). Clusters of stained endothelial cells distinct from adjacent microvessels, tumor cells, or other stromal cells were counted as one microvessel. The tissue was recorded using a cooled charge-coupled device (Optotronics Tec 470 camera (Optotronics Engineering) linked to a computer and digital printer (Sony Corp.). The density of microvessels was expressed as the average number of the five highest areas identified within a single ×200 field.

Quantification of Intensity of Immunostaining. The intensity of immunostaining of IL-8, bFGF, VEGF, and MMP-9 was quantified in three different areas of each sample by an image analyzer using the Optimas software.

Fig. 1. Northern blot analysis of mRNA for IL-8, bFGF, VEGF, and MMP-9 in poorly tumorigenic human prostate cancer cell line 253J-P, Neo transfectant 253J-P(Neo), and sense-IL-8 transfectants (IL-8, IL-8 Low, and IL-8 High; A) and in highly metastatic human bladder cancer cell line 253J B-V, Neo transfectant 253J B-V(Neo), and AS-IL-8 transfectants (AS IL-8, AS IL-8 Low, and AS IL-8 High; B). The difference in expression is shown by the ratio of mRNA expression of transfectants to that of parental cells defined as 1.0. GAPDH served as control for loading. 253J-P(IL-8) and 253J-P(IL-8 High) cells overexpressed IL-8-specific mRNA, with 3.3- and 4.6-fold increases, whereas mRNA expression of IL-8 was decreased 2.0- and 3.3-fold, respectively. Moreover, the mRNA expression of MMP-9 was increased 2.2- and 2.6-fold in 253J-P(IL-8) and 253J-P(IL-8 High) cells, respectively, whereas it was markedly reduced by 40 and 30% in the 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) cells, respectively. This is one representative experiment of three.
IL-8 REGULATES TUMORIGENICITY IN BLADDER CANCER

Northern blot analyses for IL-8, bFGF, VEGF, and MMP-9 steady-state gene expression by the nontumorigenic human TCC cell line 253J-P; the sense-IL-8 transfectants 253J-P(IL-8), 253J-P(II-8 High), and 253J-P(II-8 Low); and the Neo-transfected 253J-P (Neo) are shown in Fig. 1A. Northern blot analyses for the highly metastatic human TCC cell line 253J B-V; its AS-IL-8 transfectants 253J B-V(AS IL-8), 253J B-V(AS IL-8 Low), and 253J B-V(AS IL-8 High); and the Neo-transfected 253J-BV(Neo) are shown in Fig. 1B. The level of expression is shown as the ratio of mRNA expression of the transfectants to that of both the corresponding parental and Neo transfectant cell lines.

RESULTS

Expression of IL-8, bFGF, VEGF, and MMP-9. Northern blot analyses for IL-8, bFGF, VEGF, and MMP-9 steady-state gene expression by the nontumorigenic human TCC cell line 253J-P; the sense-IL-8 transfectants 253J-P(II-8), 253J-P(II-8 High), and 253J-P(II-8 Low); and the Neo-transfected 253J-P (Neo) are shown in Fig. 1A. Northern blot analyses for the highly metastatic human TCC cell line 253J B-V; its AS-IL-8 transfectants 253J B-V(AS IL-8), 253J B-V(AS IL-8 Low), and 253J B-V(AS IL-8 High); and the Neo-transfected 253J-BV(Neo) are shown in Fig. 1B. The level of expression is shown as the ratio of mRNA expression of the transfectants to that of both the corresponding parental and Neo transfectant cell lines.

IL-8 expression was increased 3.3- and 4.6-fold, and 2.0-fold by the 253J-P(II-8), 253J-P(II-8 High), and the 253J-P(II-8 Low) cell lines, respectively, whereas there was no change in the mRNA expression of bFGF or VEGF. The mRNA expression of IL-8 by 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) was decreased 2.0- and 3.3-fold, respectively, whereas there was no change in either bFGF or VEGF mRNA expression. IL-8, bFGF, and VEGF protein production by 253J-P, 253J B-V, and the transected cell lines was evaluated by ELISA (Fig. 2). Changes in protein expression by the transfectants paralleled the changes seen in mRNA expression. Levels of IL-8 expression were 3.5- and 4.3-fold higher in the 253J-P(II-8) and 253J-P(II-8 High) cell lines, respectively, and decreased 2.1- and 2.4-fold by the 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) cell lines. bFGF and VEGF protein expression was unchanged.

Because IL-8 regulates protease activity by human melanoma, we...
first evaluated whether the expression of MMP-9 was altered in the 253J-P and 253J B-V cells after transfection with sense or AS IL-8 transcripts. Fig. 1 shows that MMP-9 mRNA expression was increased 2.2- and 2.6-fold by 253J-P(IL-8) and 253J-P(IL-8 High) cells, respectively, and reduced 2.5- and 3.3-fold by 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low), respectively, after transfection with IL-8 sense or AS transcripts. These results show that IL-8 regulates MMP-9 expression by the 253J-P and 253J B-V human TCC cells.

Collagenase Activity. To demonstrate that MMP-9 expressed by the transfected cells is biologically active, collagenase activity was determined by zymography after normalizing the volume of supernatant for cell number (Fig. 3). By densitometry, the collagenase activity of 253J-P(IL-8) and 253J-P(IL-8 High) was increased 5.5- and 7.7-fold, respectively, compared with 253J-P and 252J-P(Neo) (Fig. 4A), whereas that of 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) was decreased 3.0- and 3.6-fold, respectively, compared with either 253J B-V or 252J B-V(Neo) (Fig. 4B).

We next analyzed whether the increase in MMP-9 activity is mediated by IL-8 (Fig. 4). To that end, parental 253J-P cells were incubated in the presence of different doses of human rIL-8, and the activity of MMP-9 was determined by zymography after normalizing the volume of supernatant for cell number. The results shown in Fig. 4A indicate that IL-8 increased an increase in the activity of MMP-9. Moreover, the increased activity of MMP-9 by rIL-8 was inhibited by neutralization with anti-IL-8 antibody (Fig. 4B).

RT-PCR Analysis. RT-PCR analysis revealed that 253J-P, 253J-P(Neo), and sense-IL-8-transfected 253J-P and also 253J B-V, 253J B-V(Neo), and AS-IL-8-transfected 253J B-V express mRNA for both types of IL-8 receptors (Fig. 5).

Invasion assay through Matrigel. We analyzed whether the activation of MMP-9 in the IL-8-transfected cells correlated with an increase in penetration through the basement membrane, an important step in the process of tumor invasion and metastasis. 253J-P(IL-8) and 253J-P(IL-8 High) cells exhibited increased ability to penetrate through Matrigel-coated filters, with a 6.5- and 10.0-fold increase, respectively, compared with either 253J-P or 253J-P(Neo) (P < 0.005; Fig. 6A). Invasion by 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) was reduced 63% and 78%, respectively, compared with invasion by 253J B-V or 253J B-V(Neo) (P < 0.005; Fig. 6B).

Stability of MMP-9 mRNA. To determine the mechanism by which IL-8 enhanced the expression of MMP-9 mRNA, the stability of MMP-9 mRNA was investigated by examining its half-life. The half-life of MMP-9 mRNA in 253J-P(IL-8) and 253J B-V(AS IL-8) cells was similar to that in 253J-P or 253J-P(Neo), and 253J B-V or 253J B-V(Neo), respectively (data not shown).

CAT Activity. The full sequence MMP-9 promoter was linked upstream of the CAT reporter gene and transfected into sense-IL-8-transfected, AS-IL-8-transfected, each Neo-transfected, and each parental cell to examine the effect of IL-8 expression on MMP-9 transcription. Forty-eight h after transfection, cell extracts were prepared, and equivalent amounts of extracts exhibiting the same β-actin activity were tested for CAT activity. CAT activity driven by the MMP-9 promoter in 253J-P(IL-8) and 253J-P(IL-8 High) was increased 1.4- and 1.8-fold, respectively (Fig. 7A), compared with either 253J-P or 253J-P(Neo), and decreased 1.4- and 1.7-fold by 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low), respectively (Fig. 7B).
compared with either 253J B-V and 253J B-V(Neo). CAT activity driven by the SV-40 promoter was the same in both cell populations and served as an additional internal control for transfection efficiency.

Tumorigenicity and Production of Metastasis. To evaluate whether IL-8 expression regulates tumorigenicity and metastases of TCC, we implanted 253J-P, 253J B-V, Neo-transfected, and IL-8-transfected cells into the bladders of athymic nude mice and evaluated tumor growth and metastasis 6 and 12 weeks later (Table 1). The 253J-P(IL-8) and 253J-P(IL-8 High) cells formed tumors that were palpable at 6 weeks and demonstrated a significant enhancement of
tumorigenesis compared with either 253J-P or 253J-P(Neo). No tumors were detected either grossly or microscopically in mice implanted with 253J-P or 253J-P(Neo) at 6 or 12 weeks. Three of 10 animals implanted with 253J-P(IL-8) developed tumors with a median weight of 124 mg (range, 25–303 mg; P < 0.05 compared with both controls); and three of nine animals implanted with 253J-P(IL-8 High) developed tumors with a median weight of 161 mg (range, 26–364 mg; P < 0.05 compared with either control). None of the mice implanted with 253J-P(IL-8 Low) developed tumors by 6 weeks. By 12 weeks, lymph node metastasis were observed in the mice implanted with 253J-P(IL-8) and 253J-P(IL-8 High) cells.

The effect of AS IL-8 transfection on the tumorigenicity and metastatic potential of the highly tumorigenic and metastatic cell line 253J B-V was also evaluated (Table 1). By 6 weeks, tumors were palpable in all mice implanted with 253J-B-V (median weight, 188 mg; range, 112–284 mg) and 253J B-V(Neo) (median weight, 237 mg; range, 88–516 mg). Tumors also were detected in 9 of 10 mice implanted with 253J-B-V(IL-8 High) (median weight, 105 mg; range, 26–333 mg). In contrast, tumorigenicity was significantly reduced after implantation of the 253J B-V(IL-8) and 253J B-V(IL-8 Low) cells. Only five of eight mice implanted with 253J B-V(IL-8) developed tumors at 6 weeks, and these tumors were significantly smaller than the 253J B-V or 253J B-V(Neo), [median weight, 40 mg; range, 25–321 mg; P < 0.01 compared with 253J B-V and 253J B-V(Neo)]. Four of eight mice implanted with 253J B-V(IL-8 Low) developed tumors by 6 weeks, and these tumors were also significantly smaller than either 253J B-V or 253J B-V(Neo), [median weight, 40 mg; range, 27–72 mg; P < 0.01 compared with 253J B-V or 253J B-V(Neo)]. Furthermore, no spontaneous lymph node metastases were detected in mice implanted with either 253J B-V(IL-8) or 253J B-V(IL-8 Low) at 6 weeks [P < 0.05, compared with either 253J B-V (four of eight) or 253J B-V(Neo) (eight of nine)]. Therefore, IL-8 expression regulates both the tumorigenicity and metastasis of human TCC.

Expression of IL-8, bFGF, VEGF, and MMP-9. The in vivo expressions of IL-8, bFGF, VEGF, and MMP-9 mRNA and protein were evaluated by ISH (Table 2; Fig. 8) and immunohistochemical staining (Table 2; Fig. 9), respectively, and correlated directly with the in vitro expression of these factors. Both the 253J-P(IL-8) and 253J-P(IL-8 High) tumors expressed equal amounts of IL-8 and MMP-9 mRNA and protein. Both IL-8 and MMP-9 expression was downregulated in the 253J IL-8-transfected tumors. IL-8 mRNA expression was down-regulated 30 and 55%, and MMP-9 mRNA was down-regulated 29 and 32% in the 253J B-V(IL-8) and 253J B-V(IL-8 Low) tumors, respectively. IL-8 protein expression was likewise down-regulated 28 and 40%, and MMP-9 protein was down-regulated 30 and 37% by 253J B-V(IL-8) and 253J B-V(IL-8 Low), respectively. No difference was observed in the in vivo expression of bFGF or VEGF mRNA or protein after transfection with IL-8 sense or AS transcripts.

MVD. Tumor-induced neovascularization (MVD) was determined by immunohistochemical staining using anti-CD31 antibodies (Table 2; Fig. 9). The number of CD31+ microvessels counted per ×200 field in the 253J-P(IL-8) and 253J-P(IL-8 High) tumors was 65 ± 21 and 74 ± 25, respectively. Because the 253J-P and 253J-P(Neo) cells did not develop tumors, we could not evaluate the effect of the overexpression of IL-8 on tumor-induced neovascularization. However, AS-IL-8 transfection significantly inhibited tumor-induced neovascularization of the 253J B-V cells. The MVD was significantly reduced from 116 ± 41 and 134 ± 50 in the 253J B-V and 253J B-V(Neo) tumors, respectively, to 65 ± 12 and 47 ± 13 in the 253J B-V(IL-8) and 253J B-V(IL-8 High) bladder tumors (P < 0.005; Table 2; Fig. 9). Tumor-induced neovascularization correlates directly with the IL-8 expression of the tumors and tumor growth and metastasis.

DISCUSSION

Tumor growth and metastasis depend upon the ability of the tumor to induce its own blood supply (8–10). This process, angiogenesis,

<table>
<thead>
<tr>
<th>Cell line</th>
<th>IL-8 mRNA expression indexa</th>
<th>bFGF Protein expression indexa</th>
<th>VEGF Protein expression indexa</th>
<th>MMP-9 Protein expression indexa</th>
<th>MVDb (per ×200 field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS transfection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253J BV</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>253J B-V(AS Neo)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>253J B-V(AS IL-8)</td>
<td>104</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>253J B-V(AS IL-8 Low)</td>
<td>69</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>253J B-V(AS IL-8 High)</td>
<td>45</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>253J B-V(IL-8 Low)</td>
<td>73</td>
<td>104</td>
<td>100</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>253J B-V(IL-8 High)</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

a The intensity of the cytoplasmic color reaction was quantified by an image analyzer and compared with the maximal intensity of the poly d(T) color reaction in each sample. The results are presented as the number of cells for each line with sense-IL-8-transfected 253J-P(AS-IL-8) and 253J B-V defined as 100.

b The intensity of the cytoplasmic immunostaining was quantified by an image analyzer in three different areas of each sample to yield an average measurement. The results are presented as the number of cells for each cell line, with sense-IL-8-transfected 253J-P(AS-IL-8) and 253J B-V defined as 100.

MVD was expressed as an average number of five highest areas identified within a single ×200 field.

Downloaded from cancerres.aacrjournals.org on April 14, 2017. © 2000 American Association for Cancer Research.
depends on the outcome between stimulatory and inhibitory regulation by the tumor and its microenvironment (10, 11). Human TCC expresses a number of angiogenesis factors including VEGF (12, 13), bFGF (14–16), midkine (17), thymidine phosphorylase (18), and IL-8 (19). IL-8 is expressed by a number of human malignancies, and its expression correlates with the metastatic potential of that tumor (22–26). Direct evidence for the role of IL-8 in tumor growth and metastasis was provided by Luca et al. (27), who enforced expression of IL-8 in the SB-2 melanoma cell line and increased its tumorigenic and metastatic potential. Recently, Moore et al. (49) demonstrated that

Fig. 8. ISH in 253J-P, 253J-P(Neo), sense-IL-8 transfectants (IL-8, IL-8 Low, and IL-8 High; A), and in 253J B-V, 253J B-V(Neo), and AS-IL-8 transfectants (AS IL-8, AS IL-8 Low, and AS IL-8 High; B). The intensity of staining was determined by comparison with the integrated absorbance of poly dT20, which was set to 100. The mRNA expression of IL-8 and MMP-9 was increased 1.3-fold in the tumor of 253J-P(II-8 High) relative to 253J-P(II-8-Low). The tumor of 253J B-V(AS IL-8) showed ~30% reduction in the mRNA expression of IL-8 and MMP-9 relative to that of either parental 253J B-V or 253J B-V(Neo). This is one representative experiment of three.

Fig. 9. Immunohistochemistry and MVD in 253J-P, 253J-P(Neo), and sense-IL-8 transfectants (IL-8, IL-8 Low, and IL-8 High; A) and in 253J B-V, 253J B-V(Neo), and AS-IL-8 transfectants (AS IL-8, AS IL-8 Low, and AS IL-8 High; B). Three different areas in each sample were quantified to yield an average measurement of intensity of immunostaining. The density of microvessels was expressed as an average number of five highest areas identified within a single ×200 field. The protein expression of IL-8 and MMP-9 was increased 1.3-fold in the tumor of 253J-P(II-8 High) relative to 253J-P(II-8-Low). The tumor of 253J B-V(AS IL-8) showed 30% reduction in the protein expression of IL-8 and MMP-9 relative to that of either parental 253J B-V or 253J B-V(Neo). The number of CD31 immunostained microvessels counted per ×200 field in bladder tumors of 253J-P(II-8-Low) and 253J-P(II-8 High) cells was 65 ± 21 and 74 ± 25, respectively. The number of CD31 immunostained microvessels was reduced from 116 ± 41 or 134 ± 50 in the tumors of parental 253J B-V or 253J B-V(Neo), respectively, as control to 65 ± 12 and 47 ± 13 in the bladder tumor of 253J B-V(AS IL-8) and 253J B-V(AS IL-8 Low) cells, respectively (P < 0.005). This is one representative experiment of three.
IL-8 regulated the growth of the human prostate cancer PC-3. They reported that neutralizing antibodies to IL-8 reduced the angiogenic activity of PC-3 homogenates and inhibited tumor growth after ectopic implantation in SCID mice, suggesting that the growth inhibition seen after treatment with IL-8 neutralizing antibodies is secondary to inhibition of tumor-induced angiogenesis.

The present study confirms and expands upon these studies. Our goal was to evaluate whether the level of expression of IL-8 directly regulates tumor-induced neovascularization and subsequent tumor growth and metastasis of human TCCs growing within the bladder of athymic nude mice. We enforced IL-8 expression by transfecting the poorly tumorigenic and nonmetastatic human TCC cell line 253J-P (which expresses relatively low levels of IL-8) with the sense-IL-8 construct and were able to establish several cell lines that overexpressed IL-8. Two of these cell lines, 253J-P(IL-8) and 253J-P(IL-8 High), demonstrated enhanced tumorigenicity and spontaneous lymph node metastasis compared with the 253J-P or 253J-P(Neo) controls. Conversely, after AS-IL-8 transfection, we were able to reduce IL-8 expression by the highly tumorigenic and metastatic 253J B-V cell line (which expresses relatively high levels of IL-8) and establish cell lines that were significantly less tumorigenic (lower incidence and smaller tumors) and metastatic than 253J B-V or 253J B-V(Neo) controls. Because neither bFGF nor VEGF expression was altered by IL-8 transfection, we conclude that these effects are independent of the activity of these angiogenesis factors. Furthermore, because IL-8 transfection did not affect in vitro proliferation of 253J-P or 253J B-V, the effects on growth and metastasis are independent of proliferation, although the cells do have both type A (CXCR1; Refs. 50 and 51) and type B (CXCR2; Refs. 50 and 51) IL-8 receptors. Therefore, our results provide direct evidence for the involvement of IL-8 in the induction of in vivo angiogenesis and in the subsequent growth and metastasis of TCC. These results are similar to previous reports in which transfection with VEGF or bFGF increased MVD and enhanced tumor growth and metastasis of melanoma and breast cancer (52–54).

The metastatic potential of bladder cancer depends upon the expression of several metastasis-related genes, such as IL-8, that regulate endothelial cell proliferation and capillary morphogenesis (55), and other genes, such as MMP-9, that regulate the degradation of the extracellular matrix (56–61). The local production of MMP-9 or other proteases such as plasminogen activator by bladder cancer cells or stroma facilitates the local degradation of the extracellular matrix and results in tumor invasion and subsequent metastasis (56–61). The proteolytic effect of MMPs facilitates the migration of endothelial cells through the altered extracellular matrix toward the source of the angiogenic stimulus; in this manner, MMPs are an integral component of the angiogenesis pathway. The highly metastatic 253J B-V cell line expresses high levels of the metalloproteinase MMP-9 compared with the nonmetastatic 253J-P cell line. Recently, Luca et al. (27) reported that IL-8 induces MMP-2 activity by malignant melanoma cells. The up-regulation of collagenase activity by IL-8 was considered to be an important mechanism to explain the associated increase in metastatic ability. Similarly, we found that the activity of MMP-9 by the TCC cells directly correlated with their expression of IL-8. Moreover, when we altered the expression of IL-8 by sense or AS transfection, we observed a corresponding change in MMP-9 expression and activity. The MMP-9 induced by transfection is biologically active, because it induced collagenase activity and increased cellular invasion through Matrigel; when it was reduced after AS transfection, both collagenase activity and invasion through Matrigel were decreased. When the 253J B-V (AS IL-8) and 253J B-V (AS IL-8 Low) cells were implanted in vivo, the expression of MMP-9 was reduced within the tumors. These tumors were smaller than their controls, which may reflect relative growth inhibition secondary to the inability to induce as robust a microcirculation, and were nonmetastatic, attributable perhaps to a reduction in MMP-9 activity.

It is likely that IL-8 regulates MMP-9 expression at the transcriptional level. To investigate this mechanism, we evaluated MMP-9 mRNA stability and the level of gene transcription of MMP-9 in IL-8 transfectants and control cells. Although the expression of MMP-9 mRNA varied among the IL-8 transfectants and controls, the stability of MMP-9 mRNA was not changed by transfection with sense-IL-8 or AS-IL-8. However, CAT activity driven by the MMP-9 promoter was up-regulated in IL-8 sense transfectants and down-regulated after AS transfection. It is well established that bFGF regulates MMP activity in TCC (62). Because bFGF levels are not affected by IL-8 transfection, in our cells the regulation of MMP-9 transcription is independent of bFGF and likely attributable to the level of IL-8. These results are in keeping with the report of Luca et al. (27), who found that IL-8 regulated MMP-2 gene transcription.

In summary, our present study demonstrates that IL-8 regulates angiogenesis, tumorigenesis, and metastasis by human TCC, which may be mediated in part by regulating the expression and activity of MMP-9.

REFERENCES

a human monocytode-derived neutrophil chemotactic factor (MNDCF) and the induc-

of MNDCF mRNA by interleukin 1 and tumor necrosis factor. J. Exp. Med., 167:

22. Matsushima, K., Baldwin, E. T., and Mukaida, N. Interleukin-8 and MCAF: novel

V. M., Eliner, S. G., and Strier, R. M. Interleukin-8 as a macrophage-derived

mediator of angiogenesis [see comments]. Science (Washington DC), 258: 1798–

P. J., and Eliner, S. G. Interleukin-8: A novel factor that induces neovascularization.

25. Schadendorf, O., Moller, A., Algermissen, B., Worm, M., Sticherling, M., and

Czarnetzki, B. IL-8 produced by human malignant melanoma cells in vitro is an

essential autocrine growth factor. J. Immunol., 151: 2667–2675, 1993; erratum 153:

of interleukin 8 correlates with the metastatic potential of human melanoma cells

27. Luca, M., Huang, S., Gershenson, J. E., Singh, R. K., Reich, R., and Bar-Eli, M.

Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity

28. Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., and

Strier, R. M. Inhibition of interleukin-8 reduces tumorigenesis of human non-small

Fidler, I. J. Correlation of metastasis-related gene expression with metastatic potential

in human prostate carcinoma cells implanted in nude mice using an in situ messenger

30. Kitadai, Y., Haruma, K., Sumii, K., Yamamoto, S., Ue, T., Yokozaki, H., Yasui, W.,

Hara, K., Kurihara, K., Takai, T., and Lotan, R. Inhibition by retinoic acid of type IV collagenolysis

31. Murphy, P. M., and Tiffany, H. L. Cloning of complementary DNA encoding a

functional human interleukin-8 receptor. Science (Washington DC), 253: 1280–1283,

32. Singh, R., Reich, R., Radinsky, R., Berry, K., Dave, B., and Fidler, I. J. Expression of

basic fibroblast growth factor is necessary but insufficient for production of metastas-

I. J. A rapid colorimetric assay for quantitating tumor cell invasion. Invasion

permeability factor (vascular endothelial growth factor) gene is expressed differen-

35. Fort, P., Marty, L., Piechaczyk, M., El Sabrouty, S., Dani, C., Jeanpault, E.,

and Blanchard, J. M. Various rat adult tissues express only one major mRNA species from the

glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res.,

36. Feinberg, A. P., and Vogelstein, B. A technique for radiolabeling DNA restriction

38. Estle, J. F., and Tiffany, H. L. Cloning of complementary DNA encoding a

functional human interleukin-8 receptor. Science (Washington DC), 253: 1280–1283,

39. Singh, R., Reich, R., Radinsky, R., Berry, K., Dave, B., and Fidler, I. J. Expression of

basic fibroblast growth factor is necessary but insufficient for production of metastas-

I. J. A rapid colorimetric assay for quantitating tumor cell invasion. Invasion

41. Kitadai, Y., Bucana, C. D., Ellis, L. M., Anzai, H., Tahara, E., and Fidler, I. J. In situ

Interleukin 8 Expression Regulates Tumorigenicity and Metastasis in Human Bladder Cancer

Keiji Inoue, Joel W. Slaton, Sun Jin Kim, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/60/8/2290

Cited articles
This article cites 58 articles, 25 of which you can access for free at:
http://cancerres.aacrjournals.org/content/60/8/2290.full.html#ref-list-1

Citing articles
This article has been cited by 25 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/60/8/2290.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.