Suppression of Skin Tumorigenesis in c-Jun NH$_2$-Terminal Kinase-2-Deficient Mice

Nanyue Chen, Masaaki Nomura, Qing-Bai She, Wei-Ya Ma, Ann M. Bode, Linan Wang, Richard A. Flavell, and Zigang Dong

The Hormel Institute, University of Minnesota, Austin, Minnesota 55912 [N. C., M. N., Q.-B. S., W.-Y. M., A. M. B., Z. D.]; Department of Pathology, Hiltom 11, Mayo Clinic, Rochester, Minnesota 55905 [L. W.]; and Department and Section of Immunology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520 [R. A. F.]

ABSTRACT

Previous studies have shown that c-Jun NH$_2$-terminal kinase (JNK) belongs to the mitogen-activated protein kinase (MAPK) family of signal transduction components that are rapidly initiated and activated by many extracellular stimuli. However, the potential role of JNK in mediating tumor promotion and carcinogenesis is unclear. We show here that in JNK2-deficient (Jnk2$^{-/-}$) mice, the multiplicity of papillomas induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) was lower than that in wild-type mice. Papillomas on wild-type mice grew rapidly and were well vascularized compared with Jnk2$^{-/-}$ mice. After the 12th week of TPA treatment, the mean number of tumors per mouse was 4.13–4.86 in wild-type mice but only 1.13–2.5 in Jnk2$^{-/-}$ mice. TPA induced phosphorylation of extracellular signal-regulated kinases and activator protein-1 DNA binding activity in wild-type mice, but the phosphorylation of extracellular signal-regulated kinases and activator protein-1 DNA binding were inhibited in Jnk2$^{-/-}$ mice. These data suggest that JNK2 is critical in the tumor promotion process.

INTRODUCTION

The MAPK family, comprised of Erks, JNKs, and p38 kinases (1), activates distinct groups of substrates and is implicated in the regulation of cell proliferation, tumorigenesis, differentiation, and apoptosis (1, 2). JNKs (i.e., stress-activated protein kinases) are activated in response to cellular stresses including osmotic shock, UV irradiation, arsenic, and tumor necrosis factor-α (2–5). The physiological significance of JNK signaling was documented by genetic analysis in Drosophila and mice (6, 7). JNKs were shown to phosphorylate c-Jun and increase AP-1 transcription activity (8). JNKs are implicated in the regulation of extracellular signal-regulated kinases and activator protein-1 DNA binding activity. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

<Advertisement>

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 10/26/00; accepted 3/19/01.

The abbreviations used are: MAPK, mitogen-activated protein kinase; Erk, extracellular signal-regulated protein kinase; JNK, c-Jun NH$_2$-terminal kinase; AP-1, activator protein-1; TPA, 12-O-tetradecanoylphorbol-13-acetate; DMBA, 7,12-dimethylbenz[a]anthracene.

MATERIALS AND METHODS

Materials. DMBA, TPA, aprotinin, and leupeptin were from Sigma Chemical Co., St. Louis, MO. Antibodies used were rabbit polyclonal anti-phosphorylated Erks (New England BioLabs, Inc., Beverly, MA) and monoclonal antibodies for JNK1 and JNK2 (Santa Cruz Biotechnology Inc., Santa Cruz Biotechnology, CA). Primers for PCR were synthesized by Life Technologies, Inc. (Rockville, MD).

Tumor Induction Experiments. Jnk2$^{-/-}$ mice were originally from C57BL/6(B6)-injected D3 ES cells with the construct pJNK2KO (11). The expression of the endogenous Jnk2 gene was examined by reverse transcription-PCR using total RNA isolated from the thymus, and Jnk2 mRNA was not detected in homozygous Jnk2$^{-/-}$ mice (11).

Experimental groups consisted of 29–35 mice, 5 mice/cage. Mice were shaved at 7–8 weeks of age and treated once with 100 µg of DMBA. Two weeks later, tumor growth was promoted by treating with 17 nmol of TPA twice each week for 29 weeks. Visible skin tumors were counted every 2 weeks. The papilloma incidence, expressed as the percentage of animals with one or more papillomas, and the papilloma multiplicity, expressed as the number of papillomas per surviving mouse, were calculated each time tumors were counted.

Nuclear Protein Analysis. Gel shift assays were used to detect AP-1 binding activity. Nuclear extracts were prepared as described previously (12). In brief, the skin tissues were lysed with 500 µl of lysis buffer (50 mM KCl, 0.5% NP40, 25 mM HEPES, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, 20 µg/ml aprotinin, and 100 µM DTT). After centrifugation at 14,000 rpm for 1 min, the nuclei were washed with 500 µl of the same buffer but without NP40 and then placed into 200 µl of extraction buffer (500 mM KCl and 10% glycerol with the same concentration of the other reagents as in the lysis buffer). After centrifugation at 14,000 rpm for 5 min, the supernatant fraction was harvested as the nuclear protein extract and stored at −70°C. An AP-1 binding sequence from the human collagenase promoter region, 5′-AGCATGAGTCAGACACCTCTGGC-3′, was synthesized and labeled with [32P]dCTP using the Klenow fragment (Life Science Co., Gaithersburg, MD). Protein concentration was determined using the Modified Lowry Protein Assay (Pierce Chemical), and equal amounts of nuclear protein (3 µg) were added to the DNA binding buffer, which contained 5 × 10$^{-6}$ cpm 32P-labeled oligonucleotide probe, 1.5 µg of poly(deoxy)inosinic-deoxyribocytic acid, and 3 µg of BSA. The reaction mixture was incubated on ice for 10 min, followed by incubation at room temperature for 20 min. The DNA-protein complexes were resolved in a 6% nondenaturing acrylamide gel. The gel was dried and scanned using the Storm 840 PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

Western Blotting. Skin was harvested from mice and placed on dry ice. Each sample was cut into small pieces, placed on ice, and incubated in 500 µl of SDS lysis buffer [62.5 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, and 50 mM DTT] for 60 min. The lysate was sonicated four times, 5 s each, at power 3 and centrifuged at 14,000 rpm in a microcentrifuge at 4°C for 10 min. The supernatant fraction was diluted with three volumes of acetone and left on ice for 10 min. The suspension was centrifuged at 14,000 rpm at 4°C for 10 min, and the pellet was resuspended in 800 µl of acetone and centrifuged at 14,000 rpm at 4°C for 10 min. The pellet was then dissolved in 200 µl of SDS lysis buffer. The protein concentration was measured using the Bradford method (Bio-Rad Laboratories, Hercules, CA).

Samples containing equal amounts of protein were resolved on a 10% SDS-polyacrylamide gel, and proteins were subsequently transferred and analyzed by as described previously (13). Immunoblotting for proteins of Erks and JNKs was carried out using MAPK antibodies against Erks, JNK1, and JNK2 as described previously (13). Antibody-bound proteins were detected by chemiluminescence (ECF; Amersham Pharmacia Biotech, Piscataway, NJ) and analyzed using the Storm 840 PhosphorImager (Molecular Dynamics).

3908
RESULTS

Identification of Phenotype of Genomic DNA and Proteins of Jnk2−/− Mice. The genomic DNA phenotype and protein expression of JNK2 in knockout mice were confirmed by PCR and Western blotting, respectively. Results indicated that Jnk2−/− mice did not express JNK2 protein, whereas expression of JNK1 and Erk were unaffected, agreeing with the results of others (Fig. 1; Ref. 11). Thus, the knockout of the Jnk2 gene was effective and specific, and mice deficient in JNK2 were used in the present experiments.

JNK2 Deficiency Inhibited TPA-promoted Tumor Growth. To induce tumor formation in skin of these mice, we used a classical multistage model in which tumors were initiated with DMBA and promoted with TPA. The dorsal epidermis of mice was shaved 2 days before topical application of 100 μg of DMBA in acetone. Two weeks later, 200 μl of acetone (control group) or acetone with 17 nmol of TPA was applied to each mouse twice a week for 29 weeks. After 10 weeks of TPA treatment, tumors appeared. Although tumors of Jnk2−/− mice displayed an identical external appearance to tumors of wild-type mice, differences in morphology were observed after 2 more weeks. Most papillomas on wild-type mice grew rapidly and were well vascularized, whereas papillomas on Jnk2−/− mice appeared growth arrested and desiccated (Fig. 2).

The percentage of mice that developed tumors was similar until week 17 (Fig. 3A and Table 1). Nonetheless, at the end of 15 weeks, the total number of tumors/group was 55 for wild-type mice and 13 for Jnk2−/− mice (P < 0.01). After 17 weeks of TPA treatment, a rapid, consistent increase in the percentage of wild-type mice having papillomas was found, whereas the incidence of papillomas on Jnk2−/− mice rose more slowly (Fig. 3A and Table 1; P < 0.02). By week 29, 86% of wild-type mice had tumors compared with 62% of Jnk2−/− mice with tumors (Fig. 3A). Significantly, the total number of tumors in the wild-type group was 164 (35 mice) compared with 57 (29 mice) in the Jnk2−/− group (P < 0.0002).

In those mice that developed tumors, the average number was greater in wild-type mice than in Jnk2−/− mice. Specifically, the average number of tumors/mouse in the wild-type group was 2.7 at week 11 and 5.5 tumors/mouse at week 29. In contrast, the average number in Jnk2−/− was 1.1 tumors/mouse at week 11 (P < 0.001) and 3.2 tumors/mouse at week 29 (P < 0.001; Fig. 3B). These results suggest that JNK2 is an important mediator for tumor growth. In addition to differences in the average number of tumors, we found that tumor size was significantly greater in wild-type mice compared with Jnk2−/− mice. Although similar from weeks 11 to 16 (Table 2; Fig. 3C), the percentage of tumors >1.5 mm in diameter was greater in wild-type mice than in Jnk2−/− mice beginning at week 17 until the end of the study (P < 0.003; Table 2 and Fig. 3C). At 29 weeks, 62% (n = 101) of the total number of tumors (n = 164) in the wild-type group were >1.5 mm, whereas only 46% (n = 26) of the total number of tumors (n = 57) were >1.5 mm in diameter in Jnk2−/− mice (Fig. 3C; P < 0.01). These data strongly suggest that deficiency of the Jnk2 gene represses formation and growth of DMBA/TPA-induced skin tumors.

JNK2-deficient Papillomas Appear to Have a Decreased Risk of Undergoing Malignant Conversion. Malignant lesions grew rapidly and appeared as ulcers. Wild-type mice began to develop malignant skin tumors around week 23 after TPA treatment. The malignant tumors were identified histologically as squamous cell carcinomas (Fig. 4). At week 29, 4 tumors (2.5% in a total of 160 tumors) in wild-type mice became malignant, whereas none became malignant in JNK2-deficient mice, suggesting that JNK2 plays an important role in preventing malignant conversion.

JNK2 Deficiency Blocked TPA-induced AP-1 DNA Binding Activity. AP-1 was originally described as a transcription factor that mediates gene expression in response to TPA (14). Evidence indicates...
that acquisition of constitutive AP-1 DNA binding and transactivating ability may be related to carcinogenesis (15). AP-1 binding to the TPA-response element (14) in the promoter of target genes is a key step in TPA-induced tumor promotion. To examine the effect of JNK on TPA-induced AP-1 DNA binding, the dorsal skins of wild-type and Jnk2−/− mice were shaved and either treated with acetone (for control) or TPA (17 nmol/mouse). AP-1 DNA binding activity was analyzed by gel-shift assay 24 h later (12). Results show that TPA induced AP-1 DNA binding activity in wild-type mice but not in Jnk2−/− mice (Fig. 5), indicating that JNK2 plays a key role in mediating TPA-induced AP-1 DNA binding activity. We also tested whether the fast mobility gel shift bands in samples from Jnk2−/− mice were also related to AP-1 by using antibodies to identify AP-1 protein components, including c-Jun, JunB, JunD, c-Fos, Fra1, and Fra2, by super gel shift analysis. Compared with TPA-treated wild-type mice, no significant changes were found in Jnk2−/− mice (data not shown).

JNK2 Deficiency Blocked TPA-induced Phosphorylation of Erks. AP-1 activity is modulated by the phosphorylation of c-Jun and c-Fos, whereas MAPks are the upstream activator kinases responsible for the phosphorylation of the AP-1 family proteins (16–18). Erks, JNks, and p38 kinases are the three major classes of MAPks. Because the Jnk2 gene was absent and p38 kinase is not affected with TPA stimulation, we tested the effect of TPA on Erks phosphorylation. The dorsal skins of wild-type and Jnk2−/− mice were shaved and treated with either acetone (control) or TPA (17 nmol/mouse). The skin samples were harvested and lysed in SDS buffer 3 h after treatment. As shown in Fig. 6, TPA-induced phosphorylation of Erks was blocked in Jnk2-deficient mice. These results indicate that Jnk2 modulation of TPA-induced AP-1 binding activity may be through the inhibition of Erks phosphorylation.

DISCUSSION

Increasing evidence suggests that JNK signaling mediates oncogenic transformation. However, no direct evidence that JNK is required for tumorigenesis has been reported. We used the well-characterized multistep model of mouse skin carcinogenesis to examine the effect of TPA on tumorigenesis in mice lacking the Jnk2 gene. Our results demonstrated that JNK2 is involved in enhancing the formation and growth of tumors.

Chemically induced skin cancer in mice has three chronological stages, initiation, promotion, and progression (15, 19). Tumor initiation is a rapid and irreversible process, whereas promotion is a long-term process that requires chronic exposure to a tumor promoter. A tumor promoter increases proliferation of initiated cells, accelerating cancer progression; however, the exact mechanism of promotion is more complicated (19, 20). The role of JNK in mediating carcinogenesis is not clear. Recently, the JNK signaling pathway was found to be constitutively activated in pre-B cells transformed by the leukemogenic oncogene bcr-abl (21). The expression of JIP-1, a cytoplasmic inhibitor of JNK, markedly inhibits transformation of pre-B cells by bcr-abl (22). These data provide strong support for the hypothesis that the JNK signaling pathway contributes to malignant transformation of pre-B cells. From the current results, after 10 weeks of TPA treatment, tumors appeared in wild-type and Jnk2 knockout mice at almost the same time, and the incidence of tumors was similar.

Table 1 Comparison of the percentage of mice with tumors per groupa

<table>
<thead>
<tr>
<th>Group</th>
<th>Weeks 11–15</th>
<th>Weeks 17–29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>26.4 ± 3.2b</td>
<td>66.3 ± 6.4</td>
</tr>
<tr>
<td>Jnk2−/−</td>
<td>28.5 ± 2.1</td>
<td>46.4 ± 4.5</td>
</tr>
<tr>
<td>P</td>
<td>0.6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

a Data are expressed as average percentage ± SE.

Table 2 Comparison of percentage of tumors with a diameter >1.5 mmb

<table>
<thead>
<tr>
<th>Group</th>
<th>Weeks 11–16</th>
<th>Weeks 17–29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>25.6 ± 4.6b</td>
<td>51.7 ± 3.5</td>
</tr>
<tr>
<td>Jnk2−/−</td>
<td>28.1 ± 1.9</td>
<td>35.8 ± 2.4</td>
</tr>
<tr>
<td>P</td>
<td>0.6</td>
<td>0.003</td>
</tr>
</tbody>
</table>

b Data are expressed as average percentage ± SE.
between the two groups until week 17. This suggests that JNK2 deficiency does not affect tumor initiation and the beginning of promotion. However, the growth, external appearance and number of tumors were significantly different between the two groups. Moreover, at the end of the experiment (week 29 after TPA treatment), four tumors in wild-type mice were found to be malignant, whereas none were malignant in JNK2-deficient mice. These data indicate that JNK2 may play a more important role in tumor growth and progression than in tumor initiation.

TPA activates protein kinase C and, subsequently, transcription factor AP-1 (23). The activation of signal transduction pathways leading to stimulation of AP-1 is a common mechanism for tumor promotion (24–28). Blocking AP-1 activity prevents TPA-induced cell transformation in JB6 cells and tumor promotion in a mouse skin model (12, 24, 29, 30). The AP-1 family of transcription factors consists of homodimeric or heterodimeric complexes of c-Jun and c-Fos proteins (31). A transgenic mouse model overexpressing c-fos developed osteosarcomas and chondrosarcomas (32), and transgenic mice expressing an oncogenic form of jun developed fibrosarcomas at sites of wound healing (33). The c-jun knockout mutation is embryonically lethal, whereas c-fos-deficient tumors fail to undergo malignant conversion (34). Expression of a dominant-negative c-jun (Tam67) blocked tumor promoter-induced AP-1 transactivation and showed a dramatic inhibition of papilloma induction in these transgenic animals (35). Topical application of perillyl alcohol inhibited UVB-induced AP-1 transactivation and significantly inhibited tumor incidence and multiplicity (36). All of these data show that components of AP-1 are very important in modulating normal development and carcinogenesis.

AP-1 is one target of MAPK signaling. MAPKs modulate AP-1 activity both by increasing the abundance of AP-1 components and stimulating their activity (37). JNK has been shown to phosphorylate c-Jun at serine 63 and serine 73 residues, resulting in activation of AP-1 (1, 18). The other MAPKs, Erks and p38 kinases, were found to induce c-Fos and c-Jun expression, resulting in increased AP-1 transcriptional activity (38–41). Considering that TPA does not induce AP-1 activity in JNK2-deficient mice (Fig. 5), our present work...
suggests that the JNK2 pathway may be very important in mediating TPA-induced AP-1 binding activity. However, we found that TPA-induced c-Jun phosphorylation was not different between wild-type and JNK2-deficient mouse skin (data not shown), suggesting that JNK2 deficiency does not affect TPA-induced c-Jun phosphorylation. Because the phosphorylation of Erks induced by TPA was blocked in JNK2-deficient mice (Fig. 6), the inhibition of Erks phosphorylation may lead to a decrease in AP-1 DNA binding activity. The exact mechanism by which JNK2 mediates Erks phosphorylation is not clear. Because of the lack of direct evidence that JNK2 activates Erks, we suggest that other molecules may mediate the activation of Erks by JNKs. Increasing numbers of additional proteins or protein kinases have been found to be substrates of JNKs. In our laboratory, we reported recently that p90Rsk (42), histone 3 (43), and p53 (44) are also substrates of JNKs. Increasing numbers of additional proteins or protein kinases have been found to be substrates of JNKs. Increasing numbers of additional proteins or protein kinases have been found to be substrates of JNKs. Increasing numbers of additional proteins or protein kinases have been found to be substrates of JNKs.

In summary, our studies show that deficiency of the Jnk2 gene inhibits the incidence, size, and number of TPA-promoted tumors. The fact that TPA treatment does not induce AP-1 DNA binding activity in JNK2-deficient mice may be related to the inhibition of Erks phosphorylation. These results strongly support a critical role for JNK2 in the tumor promotion process. The suppression of TPA-induced tumorigenesis in Jnk2 gene-deficient mice may be related to the inhibition of AP-1 DNA binding activity.

REFERENCES

Q-B. She and Z. Dong, unpublished data.
Suppression of Skin Tumorigenesis in c-Jun NH₂-Terminal Kinase-2-Deficient Mice

Nanyue Chen, Masaaki Nomura, Qing-Bai She, et al.

Cancer Res 2001;61:3908-3912.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/10/3908

Cited articles
This article cites 39 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/10/3908.full.html#ref-list-1

Citing articles
This article has been cited by 87 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/61/10/3908.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.