Y₁-Mediated Effect of Neuropeptide Y in Cancer: Breast Carcinomas as Targets

Jean Claude Reubi,¹ Mathias Gugger, Beatrice Waser, and Jean-Claude Schauer

Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland

ABSTRACT

Overexpression of selected peptide receptors in human tumors has been shown to represent clinically relevant targets for cancer diagnosis and therapy. Neuropeptide Y (NPY) is a peptide neurotransmitter mediating feeding behavior and vasoconstriction. It has never been shown to be involved in human cancer. We show here, using in vitro receptor autoradiography, a NPY receptor incidence of 85% in primary human breast carcinomas (n = 95) and of 100% in lymph node metastases of receptor-positive primaries (n = 27), predominantly as Y₁ subtype, whereas non-neoplastic human breast expressed Y₂ preferentially. Y₁ mRNA was detected in Y₁-expressing tumors by in situ hybridization, whereas Y₂ mRNA was found in normal breast tissue. The strong predominance of Y₁ in breast carcinomas compared with Y₂ in normal breast suggests that neoplastic transformation can switch the NPY receptor expression from Y₂ to Y₁ subtype. Moreover, in Y₁-expressing human SK-N-MC tumor cells, an NPY-induced, dose-dependent inhibition of tumor cell growth of >40% was observed, suggesting a functional role of NPY in cancer, mediated by Y₁. NPY should therefore be added to the list of small regulatory peptides related to cancer. The high incidence of Y₁, in situ, invasive, and metastatic breast cancers allows for the possibility to target them for diagnosis and therapy with NPY analogues.

INTRODUCTION

Regulatory peptides can be of clinical relevance, diagnostically and therapeutically, in tumors that express their respective receptors in high amounts (1–3). Indeed, it has been shown recently that selective tumors and their metastases can be precisely localized in patients by means of in vivo peptide receptor scintigraphy. This strategy was first developed for the diagnosis of somatostatin receptor-positive tumors using radiolabeled somatostatin analogues (4) with subsequent use of ¹²³I-labeled VIP² to localize VIP receptor-expressing tumors (5–7) and radiolabeled cholecystokinin/gastrin analogues to detect cholecystokinin-B-expressing medullary thyroid carcinomas (8, 9). Another clinical application has been the radiotherapeutic targeting of receptor-expressing tumors by using high doses of these radiolabeled peptides (10, 11).

The regulatory peptides with established or prospective clinical implications based on their overexpressed receptors in cancers, such as somatostatin, VIP, gastrin-releasing peptide, cholecystokinin, gastrin, and neurotensin, belong to a group of brain-gut peptides with a variety (23–25).

Compared with other regulatory peptides, NPY has never been associated with human cancer. In the present study, we have investigated whether there is a molecular basis for a putative NPY role in tumors and/or for the development of NPY drugs for tumor targeting. We have determined NPY receptors in one of the most frequent and harmful cancers, breast carcinoma. In more than 100 human breast tumor and metastasis samples, we have evaluated the expression at the mRNA and protein levels of the two best-investigated NPY receptor subtypes, Y₁ and Y₂, using in vitro receptor autoradiography and in situ hybridization. Moreover, we have evaluated the effect of NPY on the growth of NPY receptor-expressing SK-N-MC tumor cells in culture.

MATERIALS AND METHODS

Patient Tissues. Breast tissue samples with primary breast neoplasias were obtained from 95 patients, 36 to 91 years of age, who were operated on in several institutions. Tissue samples were kept frozen at −80°C. The diagnosis was reviewed and formulated by use of cryostat sections according to the WHO guidelines stated by Tavassoli (26). In the main group of 89 patients, 64 (72%) showed an invasive ductal carcinoma. Histological evaluation identified 49 cases with intermediate (G2), 12 cases with low (G1), and 3 cases with high (G3) grade, according to a modified Bloom-Richardson grading method (26).

Received 1/24/01; accepted 4/3/01.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom requests for reprints should be addressed, at Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, P. O. Box 62, Murtenstrasse 31, CH-3010 Berne, Switzerland. Phone: 41-31-632-3242; Fax: 41-31-632-8999; E-mail: reubi@patho.unibe.ch.

1 The abbreviations used are: VIP, vasoactive intestinal peptide; NPY, neuropeptide Y; PYY, peptide YY; PP, pancreatic polypeptide.

2 The abbreviations used are: VIP, vasoactive intestinal peptide; NPY, neuropeptide Y; PYY, peptide YY; PP, pancreatic polypeptide.
following compounds were added: 0.1% BSA, 0.05% bacitracin (pH 7.4), and the radioligand at an approximate concentration of 22 pm 125I-labeled PYY. The slides were incubated at room temperature with the radioligand for 120 min. To estimate nonspecific binding, paired serial sections were incubated as described above, except that 25 nm PYY were added to the medium. To be able to distinguish Y1 from Y2 subtypes, displacement experiments were performed with 22 pm 125I-labeled PYY and increasing amounts of nonradioactive NPY, the Y1-selective ligand [Leu11, Pro34]-NPY, and the Y2-selective ligand PYY(3–36) to generate competitive inhibition curves on successive sections using the same incubation medium as above. Additional analogues used as competitors in these displacement experiments included PP and PYY.(13–36).

Displacement curves were performed for all compounds in a series of neoplastic and non-neoplastic tissues and led us to conclude that a 25-nM concentration of [Leu11, Pro34]-NPY or PYY(3–36) was adequate to evaluate their rank order of potencies in a given tumor and, therefore, to distinguish Y1 from Y2 subtype expression in that tumor tissue. On completion of the incubation, the slides were washed four times for 5 min each in ice-cold preincubation solution (pH 7.4). The slides were rinsed twice in ice-cold distilled water, and then dried under a stream of cold air at 4°C, as opposed to H-Hyperfilms, and solution (pH 7.4). The slides were rinsed twice in ice-cold distilled water, and exposed for 7 days in X-ray cassettes.

To further distinguish Y1 from Y2 receptors, all cases demonstrating binding with 125I-labeled PYY were evaluated with the Y1-selective radioligand 125I-labeled [Leu11, Pro34]-PYY and with the Y2-selective 125I-labeled PYY(3–36) (29, 30). The experiments were performed with 125I-labeled [Leu11, Pro34]-PYY as radioligand and unlabeled PYY or [Leu11, Pro34]-PYY as competitors or with 125I-labeled PYY(3–36) as radioligand and PYY or PYY(3–36) as competitors. Identical experimental conditions as mentioned for 125I-labeled PYY were used. The autoradiograms were quantified using a computer-assisted image processing system, as described previously (27, 31). Tissue standards for iodinated compounds (Amersham, Aylesbury, UK) were used for this purpose. A tissue was defined as receptor-positive when the absorbance measured in the total-binding section was at least twice that of the nonspecific-binding section (in the presence of 25 nm PYY). In each experiments, we have included as positive controls Y1-expressing tissue (rat cortex) and Y2-expressing tissues (stratum oriens and radiatum of the rat hippocampus; Ref. 28).

In Situ Hybridization Histochemistry. Y1 and Y2 receptor mRNAs were identified in selected normal and tumoral breast tissue samples with in situ hybridization histochemistry on cryostat sections, as described previously in detail (32). Oligonucleotide probes complementary to nucleotides 493–529 or 850–879 (33) of the human Y1 receptor gene and to nucleotides 223–252 (33) of the human Y2 receptor gene, or 1008–1052 (34) of the rat Y2 receptor gene (that sequence having 96% homology to the corresponding human one), were synthesized and purified on a 20% polyacrylamide-8 M urea sequencing gel (Microsynth, Balgach, Switzerland). They were labeled at the 5’-end by using [α-35P]dATP (>3000 Ci/mmol; NEN, Life Science Products, Boston, MA) and terminal deoxynucleotidyl transferase (Boehringer, Mannheim, Germany) to specific activities of 0.9–2.0 × 107 Ci/mmol. Control experiments were carried out as reported previously (32) with the probes used in the present study to determine the specificity of the hybridization signal obtained.

Growth of SK-N-MC Tumor Cells in Culture. Human neuroblastoma SK-N-MC cells were obtained from the American Type Culture Collection (Manassas, VA) and grown in Eagle’s minimal essential medium supplemented with 2 mM glutamine, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin, in a humidified 5% CO2 atmosphere at 37°C. All culture reagents were supplied by Life Technologies, Inc. (Grand Island, NY).

For cell growth assay, cells were plated in 24-well dishes at 2 × 104 cells per well and cultured for 3 days to allow cell attachment and growth. The medium was then replaced by fresh medium containing peptides [NPY or NPY(3–36)] at various concentrations (10–7 to 10–9 μM), and cells were incubated for 48 h. Media were refreshed after 24 h and peptides added again after 12 and 36 h. Cell growth was measured by cell counting using a Coulter Counter (Model ZB; Coulter Electronics, Hialeah, FL) and a hemocytometer after the trypsinization and the dispersion of cells.

RESULTS

Table 1 summarizes the NPY receptor incidence in breast tissue in the main group of 89 patients. They were expressed in a total of 76 of 89 breast carcinomas tested. These were found in 61 of 69 ductal carcinomas (58 of 64 invasive and 3 of 5 in situ) and 10 of 12 lobular carcinomas. Within the group of NPY receptor-positive invasive ductal carcinomas, we identified 15 cases with concomitant in situ ductal carcinoma lesions sufficiently large to evaluate their NPY receptor status: 14 of these in situ carcinomas expressed NPY receptors. Of the special types of invasive carcinomas, two of three mucinous carcinomas, two of two medullary and one of one tubular carcinoma were NPY receptor-positive. The 13 NPY receptor-negative cases consisted of 8 ductal carcinomas (6 invasive and 2 in situ), 2 lobular carcinomas, 1 mucinous, and 2 apocrine carcinomas. For Y1 and Y2 subtype characterization, the two approaches used in the present study, i.e., the use of the universal radioligand 125I-labeled PYY and its displacement by unlabeled Y1 and Y2 subtype-selective analogues (28) or the use of the two Y1- and Y2-selective radioligands (30), gave congruent results: Y1 was the predominantly expressed receptor subtype in NPY receptor-positive tumors, with 100% incidence of this subtype in receptor-positive tumors, whereas Y2 was found only in 24% of cases (Table 1). In 58 of 76 (76%) of the receptor-positive tumors, Y1 was found to be the only (46 cases) or the predominant (12 cases containing more than 90% of Y1 compared with Y2) receptor subtype expressed; whereas in 24%, both Y1 and Y2 were highly expressed. In none of the tumors was Y2 found alone. In general, a comparable pattern of Y1 and Y2 expression was seen in the in situ and invasive part of a ductal carcinoma from a single patient.

Another important observation was that Y1 was much more often distributed homogeneously within the tumor than was the Y2 receptor, which was expressed focally, i.e., in restricted areas of the tumor only, in 55% of the cases. Even in tumors concomitantly expressing Y1 and Y2, we found no tumor area that expressed Y2 alone; Y2 was only found in areas where Y1 was also expressed. In the majority of receptor-positive tumors, the density of NPY receptors was high. The mean density value for the 58 Y1-expressing tumors was 4946 ± 485 dpm/mg tissue (mean ± SE; n = 58). The mean density values for the 18 cases expressing Y1 and Y2 were the following: (a) 9754 ± 684 dpm/mg tissue (mean ± SE; n = 18) for Y1; and (b) 5681 ± 782 dpm/mg tissue (mean ± SE; n = 18) for Y2. It should be noted that, in the latter group, the values for Y2 were based, in the majority of the cases, on measurements in a very restricted area of the tumor where

Table 1 Incidence of NPY receptors Y1 and Y2 in human breast tissues

<table>
<thead>
<tr>
<th>Tissue</th>
<th>NPY-R incidencea</th>
<th>Differentiation by Y1 and/or Y2 expressionb</th>
<th>Cases with focal R distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast carcinomas</td>
<td>76/89 (85%)</td>
<td>Y1, tumor type:</td>
<td>58/76 (76%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixed Y1/Y2 tumor type:</td>
<td>18/76 (24%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y1;</td>
<td>21/58 (36%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y2;</td>
<td>3/18 (17%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y1-only breast type:</td>
<td>19/45 (42%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y2/Y1 breast type:</td>
<td>26/45 (58%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y1-only breast type:</td>
<td>0/45 (0%)</td>
</tr>
<tr>
<td>Non-neoplastic breast (ducts and lobules)</td>
<td>45/45 (100%)</td>
<td>Y1, tumor type:</td>
<td>0/76 (0%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y2-only breast type:</td>
<td>19/45 (42%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y1/Y2 breast type:</td>
<td>26/45 (58%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y1-only breast type:</td>
<td>0/45 (0%)</td>
</tr>
</tbody>
</table>

a Detected with “universal” ligand 125I-labeled PYY.

b Detected with Y1-selective ([Leu11, Pro34]-NPY) or Y2-selective ([125I]-labeled PYY(3–36)) radioligands.

c Tumor density was defined as those tumors expressing predominantly Y1 but not Y2. Forty-six cases had only Y1; the remaining 12 cases had a density of Y2 amounting to <10% of the Y1 density.
the receptors were focally expressed. Conversely, the Y1 values were based, in most cases, on measurements in the whole tumor sample characterized by a homogenous receptor distribution. In an additional group of six patients listed in Table 2, from whom primary breast tumors could be obtained together with all lymph node metastases, we found that the six primaries as well as all of the metastases were expressing NPY receptors; Y1 was present in all cases, Y2 in a few cases only, both in primaries as well as in metastases (Table 2).

As reported in Table 1, NPY receptors can be detected in all tested normal breast tissues as well. In 42% of the cases, the Y2 receptor is expressed alone, whereas in none of the tested breast tissues is the Y1 receptor expressed alone. However, in the remaining breast tissues, Y1 and Y2 can be expressed concomitantly (58%). The density of Y1 and Y2 receptors in all investigated individual breast tissue samples is high and comparable with the density found in breast cancers. The mean density values in non-neoplastic breast are higher for Y2 than for Y1, with 7377 ± 497 dpm/mg tissue (mean ± SE; n = 45) for Y2 and 3793 ± 500 dpm/mg tissue (mean ± SE; n = 26) for Y1.

Fig. 1a shows a typical and representative example of the NPY receptor expression in a sample containing a breast carcinoma surrounded by normal breast tissue. The breast carcinoma expresses Y1 receptors only, as shown by the labeling of the tumor by 125I-labeled PYY and its displacement with [Leu31, Pro34]-NPY but not by PYY(3–36). These results are confirmed further by the additional experiments using two other radioligands: the tumor is labeled by the Y1-selective 125I-labeled [Leu31, Pro34]-PYY but not by the Y2-selective 125I-labeled PYY(3–36) (Fig. 1a). Conversely, in the same tissue sections, the surrounding breast expresses predominantly Y2 receptors, as shown by the opposite rank order of potency of NPY analogues, i.e., the high affinity of labeled and unlabeled PYY(3–36) but the low affinity of [Leu31, Pro34]-NPY and [Leu31, Pro34]-PYY.

Fig. 1b shows representative displacement curves using the universal 125I-labeled PYY radioligand and increasing concentrations of Y1- and Y2-selective analogues. Whereas, in a typical Y1-expressing breast carcinoma, the Y1-selective [Leu31, Pro34]-NPY and [Leu31, Pro34]-PYY completely displaced the radiotracer with high affinity, the Y2-selective PYY(3–36) displaced it with low affinity only. The contrary is observed in the Y2-only-expressing normal breast tissue, whereas surrounding vessels preferentially express Y1. Another Y2-ligand, PYY(13–36), also displaced 125I-labeled PYY with high af-

Table 2. Incidence and density of Y1 and Y2 subtypes in the primary tumor and in all lymph node metastases of six patients with breast cancer

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Y1</th>
<th>Y2</th>
<th>No. of metastases</th>
<th>Y1</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1 (ductal Ca)</td>
<td>7200</td>
<td>0</td>
<td>5/5</td>
<td>3091 ± 617</td>
<td>0/5</td>
</tr>
<tr>
<td>Case 2 (lobular Ca)</td>
<td>1398</td>
<td>0</td>
<td>3/3</td>
<td>5429 ± 27</td>
<td>0/3</td>
</tr>
<tr>
<td>Case 3 (ductal Ca)</td>
<td>12262</td>
<td>0</td>
<td>9/9</td>
<td>10906 ± 368</td>
<td>0/9</td>
</tr>
<tr>
<td>Case 4 (ductal Ca)</td>
<td>12542</td>
<td>6535</td>
<td>6/6</td>
<td>11446 ± 373</td>
<td>3/6</td>
</tr>
<tr>
<td>Case 5 (lobular Ca)</td>
<td>9797</td>
<td>2879</td>
<td>3/3</td>
<td>7854 ± 699</td>
<td>3/3</td>
</tr>
<tr>
<td>Case 6 (ductal Ca)</td>
<td>9445</td>
<td>0</td>
<td>1/1</td>
<td>8627</td>
<td>1/1</td>
</tr>
</tbody>
</table>

* Density is expressed as dpm/mg tissue (mean ± SE where n > 2).
finity in Y₂-expressing normal breast and was inactive in Y₁ tumors. Furthermore, PP, known to have high-affinity binding for Y₄ (22), displaced ¹²⁵I-labeled PYY with low affinity in breast and in breast tumors. In selected cases, ionic manipulations of the incubation solution were performed as an additional way to differentiate between Y₁ and Y₂ (35). In the presence of 5 mM Mn²⁺, the Y₁ could not be detected in the tumors anymore, whereas Y₂ remained present in the adjacent breast.

Fig. 2 shows a high magnification of Y₂-expressing lobules and one duct from normal breast tissue labeled with the Y₂-selective ¹²⁵I-labeled PYY(3–36). Note that not all elements are homogeneously labeled. In normal breast, we have often found few lobules and ducts that were either nonhomogeneously labeled or unlabeled next to a majority of labeled elements.

In situ hybridization for Y₁ and Y₂ mRNAs was performed in cases selected for their high expression of the respective receptor proteins. We could consistently show Y₁ mRNA in the 12 investigated Y₁-type of tumors. Furthermore, it was possible to detect Y₂ mRNA in isolated Y₂-expressing tubules of the normal breast. Fig. 3 illustrates Y₁ mRNA in a breast tumor and Y₂ mRNA in a tubule of the normal breast and compares it with Y₁ and Y₂ receptor autoradiography using Y₁- and Y₂-selective radioligands, respectively.

To search for a potential function of NPY in cancer, we have tested the effect of NPY in the Y₁-expressing SK-N-MC tumor cells. NPY (10⁻⁷ M) for 24 h was able to inhibit tumor cell growth by >40%, whereas the Y₂-selective NPY(3–36) was inactive (Fig. 4). This growth-inhibitory effect was dose-dependent. Moreover, it was particularly pronounced during the first 24 h of NPY treatment (Fig. 4).

DISCUSSION

This study is the first evidence that the neuropeptide NPY may play a role in human cancer. It is remarkable that a great majority, i.e., 85% of the patients with breast cancers, often have an high expression of NPY receptors in their cancers. In all cases, the NPY receptor subtype Y₁ is expressed, whereas Y₂ is only expressed in 24% of the cases, and, when it is expressed, it never represents the predominant subtype of the tumor and is never found alone. In the 24% of the cases with...
A mixed expression of Y₁ and Y₂, a much more focal, topographically restricted distribution can be recognized for Y₁ than for Y₂, emphasizing once more the predominance of Y₁ in tumors. Both ductal and lobular breast cancers, of the in situ and invasive types, as well as all lymph node metastases, can express NPY receptors.

We also give here the first evidence that Y₁ receptors may be of functional relevance in tumor cell proliferation. Indeed, the addition of 10⁻⁷ M NPY for 24 h to cultures of Y₁-expressing human SK-N-MC cells in the growing phase was able to inhibit the growth of these cells by >40%. This NPY effect seems to be a specifically Y₁-mediated process for the following reasons: (a) the SK-N-MC cells express Y₁ receptors selectively (36, 37); and (b) the Y₁-selective NPY (3–36) was unable to induce this antiproliferative effect under the same conditions. We conclude that NPY has antiproliferative properties at Y₁ receptors; the degree of NPY-induced antiproliferation seen in SK-N-MC cells is remarkable, and compares favorably with antiproliferative effects reported for other peptide hormones such as somatostatin (38), which has an established role in clinical oncology.

Among the numerous cloned NPY receptors, the Y₁, Y₂, Y₄, and Y₅ currently represent the only fully defined subtypes (22). There are several arguments showing that the subtypes detected in the tumors of the present study correspond to Y₁ and Y₂. Pharmacological evidence for Y₁ expression in tumors are: (a) specific binding of ¹²⁵I-labeled PYY that is fully displaced in the high affinity range by the Y₁-selective [Leu³¹, Pro³⁴]⋅NPY but not by PYY (3–36), PYY (13–36), or PP, compounds known to have high affinity for Y₂ or Y₃ (22, 28); (b) selective binding of ¹²⁵I-labeled [Leu³¹, Pro³⁴]⋅PPY in the same tissues (30); (c) subtype-selective ionic dependence, i.e., the inability to detect Y₁ in the presence of Mn²⁺, although Y₂ is identified under these conditions (35); and (d) Y₂ mRNA detected by in situ hybridization in the tumor tissues. Furthermore, with those techniques, we could confirm in humans the data from previous reports in animals showing Y₁ expression in vessels (39, 40).

Evidence for Y₂ expression in normal breast include: (a) specific binding of ¹²⁵I-labeled PYY displaced by nonamolecular concentrations of the Y₂-selective PYY (3–36) or PYY (13–36), whereas PP and [Leu³¹, Pro³⁴]⋅NPY were not active; (b) selective labeling of the breast tissues by ¹²⁵I-labeled PYY (3–36); (c) Mn²⁺-dependence characteristic for Y₂; and (d) Y₂ mRNA detected in single ducts, albeit in low amounts.

Another novel observation is that the ducts and lobules of the non-neoplastic breast tissue, representing the tissue from which breast tumors originate, also express NPY receptors. Although all investigated breast tissues express NPY receptors, it is remarkable, however, that in all tested cases, the subtype Y₂, rather than Y₁, is consistently and predominantly detected in both lobules and ducts; the subtype Y₁ is only found in a minority of cases and only concomitantly with Y₂. Y₁ was never identified as the unique subtype present in a normal breast tissue.

The observation that neoplastic human breast tissue can express a different NPY receptor subtype than non-neoplastic breast tissue strongly suggests an alteration of the NPY receptor subtype expression during the process of neoplastic transformation of the breast. The normal condition appears to be a predominant Y₂ expression by the non-neoplastic breast. However, in addition, Y₁ may be present in some of the histologically inconspicuous breast tissues; it is yet unknown whether this Y₁ expression is found preferentially in breast tissues surrounding a growing tumor and whether it may reflect an early sign of neoplastic transformation. In the frankly neoplastic tissue of both lobular and ductal cancers, the NPY receptor found predominantly in all cases is the Y₁ type, although Y₂ may be present concomitantly in some of the cases in a focal distribution. Therefore, neoplastic transformation of breast tissue may induce a switch of expression from receptor subtype Y₂ to Y₁. This switch in receptor expression possibly may be related to the increasing dedifferentiation of the tissue. Indeed, it was reported recently that, in rat pheochromocytoma PC12 cells, the NGF-differentiated cells were expressing Y₂ preferentially, whereas the undifferentiated PC12 cells contained Y₁ (41). This differentiation-specific expression of subtypes may be a general characteristic of NPY receptors.

The present study points toward a potential functional role of Y₁ receptors in cancer, because NPY can inhibit the growth of the Y₁-expressing SK-N-MC cells in culture; the high density and high incidence of Y₁ in breast cancers suggest that these neoplasms may represent an important target for NPY-related drugs. First, long-term treatment with Y₁-selective analogues (23, 24) may be used to inhibit tumor proliferation. Second, one may think of targeting breast tumors and metastases with radiolabeled Y₁ analogues for diagnostic in vivo scintigraphic tumor detection or for receptor-mediated radiotherapeutic treatment of these tumors, in analogy to in vivo targeting of other peptide receptors (1, 10, 11). One may argue that the Y₁ receptors present in approximately one-half of the normal breast could interfere in vivo with the tumor-Y₁ targeting; however, the labeling of a low number of Y₁ ducts and lobules disseminated within the whole breast is likely to be negligible compared with the focal labeling of the whole tumor mass. Moreover, for radiotherapy, it may not necessarily be a disadvantage to target the Y₁-expressing breast tissue, in the event that the Y₁ expression in this tissue turns out to reflect an early stage of neoplastic transformation. Y₁ targeting of breast tumors may be superior to somatostatin, VIP, or gastrin-releasing peptide receptor targeting, as these three receptors are either expressed in lower incidence and/or heterogeneously in breast tumors (somatostatin receptors; Ref. 42), or concomitantly in the normal and tumoral breast tissue (VIP and gastrin-releasing peptide receptors; Refs. 43 and 44). NPY should therefore be added to the list of small regulatory peptides relevant to cancer, and to breast cancer in particular. It may be attractive to combine Y₁ radioligands with radiolabeled VIP, gastrin-releasing peptide, and somatostatin analogues, as all four peptide families can have their receptors overexpressed in breast cancers (42–44). Such a cocktail of four peptide radioligands, given concomitantly, may substantially increase the diagnostic sensitivity of the scintigraphic procedure as well as the radiotherapeutic efficacy.

REFERENCES

24. Balasubramaniam, A. Neuropeptide Y family of hormones: receptor subtypes and
12. Hökfelt, T., Broberger, C., Xu, Z-Q. D., Sergeyev, V., Ubink, R., and Diez, M.
19. Playford, R. J., and Cox, H. M. Peptide YY and neuropeptide Y: two peptides
18. Michel, M. C., and Rascher, W. Neuropeptide Y—a possible role in hypertension?
17. Wetstein, J. G., Earley, B., and Junien, J. L. Central nervous system pharmacology
16. Colmers, W. F., and Bleakman, D. Effects of neuropeptide Y on the electrical
15. Pedrazzini, T., Seydoux, J., Küntner, P., Aubert, J-F., Grouzmann, E., Beermann, F.,
19. Playford, R. J., and Cox, H. M. Peptide YY and neuropeptide Y: two peptides
18. Michel, M. C., and Rascher, W. Neuropeptide Y—a possible role in hypertension?
17. Wetstein, J. G., Earley, B., and Junien, J. L. Central nervous system pharmacology
16. Colmers, W. F., and Bleakman, D. Effects of neuropeptide Y on the electrical
15. Pedrazzini, T., Seydoux, J., Küntner, P., Aubert, J-F., Grouzmann, E., Beermann, F.,
19. Playford, R. J., and Cox, H. M. Peptide YY and neuropeptide Y: two peptides
18. Michel, M. C., and Rascher, W. Neuropeptide Y—a possible role in hypertension?
17. Wetstein, J. G., Earley, B., and Junien, J. L. Central nervous system pharmacology
16. Colmers, W. F., and Bleakman, D. Effects of neuropeptide Y on the electrical
15. Pedrazzini, T., Seydoux, J., Küntner, P., Aubert, J-F., Grouzmann, E., Beermann, F.,
Y₁-Mediated Effect of Neuropeptide Y in Cancer: Breast Carcinomas as Targets


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/11/4636

Cited articles
This article cites 41 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/11/4636.full.html#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at:
/content/61/11/4636.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.