The Tumor Suppressor Candidate p33ING1 Mediates Repair of UV-Damaged DNA

K-John Cheung Jr., David Mitchell, Paul Lin, and Gang Li

Abstract

The biological functions of the tumor suppressor, ING1, have been studied extensively in the last 5 years since it was cloned. It shares many biological functions with those of p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, and chemosensitivity. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. In this study, we report that p33ING1 (one of ING1 isoforms) is also involved in the modulation of DNA repair. We found that overexpression of p33ING1 enhances repair of UV-damaged DNA and that p33ING1 cooperates with p53 in nucleotide excision repair and that GADD45 may be one of its components.

Introduction

The tumor suppressor gene ING1 has been shown to inhibit cell growth in the G1 phase by transactivating the cell cycle-dependent kinase inhibitor p21Cip1/Waf1 in the presence of p53 (1, 2). Overexpression of ING1 enhances serum starvation-induced cell death (3), and adenovirus-mediated transfer of both ING1 and p53 induces apoptosis in glioma cells (4). ING1 can also sensitize cells to stress agents, such as etoposide and γ-irradiation, in vitro but not in p53-deficient cell lines (5). Furthermore, ING1 appears to play a role in senescence, because senescent cells express higher levels of ING1, and senescence in ING1 can increase the replicative life of the cell (5). Higher expression and rearrangement of ING1 have been reported in neuroblastoma cell lines (1). Decreased expression of ING1 was seen in lymphoid tumor cell lines (6), breast cancer primaries and cell lines (7, 8), and gastric cancers (9). A few missense and silent mutations in ING1 were also detected in head and neck squamous cell carcinomas (10). Findings from these studies strongly support the notion that ING1 is a tumor suppressor gene and plays a significant role in the process of carcinogenesis. Four isoforms of the ING1 gene, encoding Mr 46,751, 31,843, 27,000, and 23,656 proteins, have thus far been found (10–12). Their biological functions are being investigated intensively.

In light of the functional similarities between ING1 and p53 and the recent finding that the expression of the p33ING1 isoform is induced by UV irradiation in a dose-/time-dependent and tissue-specific manner (13), we investigated if p33ING1 plays a role in UV-stress response, such as repair of UV-damaged DNA. In this study, we show that overexpression of p33ING1 in melanoma cells and that this repair capability of p33ING1 requires the participation of p53.

Materials and Methods

Cell Lines and Culture. MMU and HeLa cells were maintained in DMEM supplemented with 10% fetal bovine serum and HCT116—/—cells in McCoy’s 5A medium with 10% fetal bovine serum (Canadian Life Technologies, Inc., Mississauga, Ontario, Canada) at 37°C in a 5% CO2 atmosphere. The p53 mutational status of MMU has been determined previously (14).

UV Irradiation. Medium was removed, and the cells were exposed to UVB (290–320 nm) using a bank of four unfiltered FS40 sunlamps (Westinghouse, Bloomfield, NJ). Medium was replaced, and cells were incubated in a 5% CO2 incubator at 37°C after UVB irradiation.

Western Analysis. Cells were harvested by scraping and solubilized by the triple detergent lysis buffer containing 50 mM Tris–Cl (pH 8.0), 150 mM NaCl, 0.02% sodium dodecyl sulfate, 0.5% NP40, 100 μg/ml phenylmethylsulfonyl fluoride, 1 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml pepstatin A. Concentrations of proteins were determined by the DC Protein Assay (Bio-Rad, Mississauga, Ontario, Canada). Fifty μg/lane of proteins were separated on 10% polyacrylamide/SDS gels and electroblotted onto polyvinylidene difluoride filters. Filters were incubated with primary antisera for 1 h, followed by 3 × washes in PBS for 5 min, and then were incubated with horseradish peroxidase-conjugated secondary antisera for 1 h at room temperature. Signals were detected with SuperSignal enhanced chemiluminescence (Pierce, Rockford, IL). Antibodies used for Western blotting were anti-p33ING1 rabbit polyclonal antibody (PharMingen, Mississauga, Ontario, Canada), anti-p53 DO-1 mouse monoclonal, anti-GADD45 mouse monoclonal, anti-XPA rabbit polyclonal, and anti-β-actin goat monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Secondary IgG (Calbiochem, San Diego, CA), and anti-B-actin goat monoclonal antibody (Santa Cruz Biotechnology).

Northern Analysis. Total RNA was extracted by Trizol reagent, and the concentrations were determined by UV spectrophotometry. Samples were heated to 65°C and run on 1% agarose gels containing formaldehyde and 0.5 μg/ml ethidium bromide. After separation, capillary transfer to nitrocellulose was performed overnight at room temperature, and its efficiency was assessed by UV light. The blot was then baked for 2 h in a vacuum oven at 80°C. Prehybridization was carried out by incubating the blot with a mixture containing 5 × saline-sodium phosphate–EDTA, 5% Denhardt’s reagent, 0.5% SDS, and 100 μg/ml yeast tRNA for 1 h at 65°C. Hybridization was done by incubating the blot with the labeled probe at 65°C for 16–24 h. Filters were washed with 2 × SSC/0.1% SDS once for 15 min at room temperature and three washes 20 min each at 65°C. Blots were visualized on X-ray films after an overnight exposure.

Transfection. Cells were grown to 50–60% confluency. The ratio of 1 μg of DNA:25 μl of Effectene reagent (Qiagen, Mississauga, Ontario, Canada) was used for transfection. Plasmids used for transfection included pC1-p33ING1 and pCI-antisense-p33ING1 (a kind gift from Dr. Karl Riabowol, University of Calgary, Calgary, Alberta, Canada), pE1D1 and pE1B1 (a kind gift from Dr. Samuel Benchimol, Univ. of Toronto, Toronto, Ontario, Canada), and pCMVCat (a kind gift from Dr. Lawrence Grossman, Johns Hopkins University, Baltimore, MD).

Host-Cell Reactivation Assay. The pCMVCat plasmid contains a gene encoding cat, under the transcriptional control of the immediate early promoter of the human cytomegalovirus. The pCMVCat plasmid DNA was irradiated at 40, 80, and 480 mJ/cm² using an UV-cross-linker at 50 μg/ml final concentration and used for transfection. Forty h after transfection, cells were harvested, and the cell pellet was suspended in a 50-μl solution of 0.25 M Tris–Cl (pH 8.0) and 5 mM EDTA. Cell-free extracts of the transfected cells were made by three repeated freeze-thawings (liquid nitrogen to freeze: 37°C to thaw), heated to 65°C for 10 min, and centrifuged at 12,000 × g for 10 min,
and the cleared supernatant was used for the CAT assay. The assay reaction mixture contained 7.5 µl of 5 mM chloramphenicol, 50 µl of cell-free extract, 1 µl of 2.5 mM [3H]Acetyl-CoA, and 16.5 µl of distilled water. The reaction mixture was incubated at 37°C for 90 min. After incubation, 200 µl of ice-cold ethyl acetate was added, and tubes were shaken and centrifuged at 12,000 × g for 5 min. After quick-freezing the aqueous phase in a dry ice/ethanol bath, the organic phase was removed and extracted with 200 µl of distilled water. The organic phase was dried to completion, and radioactivity was determined in a scintillation counter. Determinants were performed in triplicates. Controls included transfection with undamaged plasmid DNA and mock transfection without plasmid DNA.

RIA. Antisera were raised against DNA dissolved in 10% acetone and irradiated with UVB light under conditions that have been shown to produce CPDs exclusively. Heat-denatured sample DNA (2 – 5 µg) was incubated with 5 – 10 µg of poly(dG)poly(dC) or poly(dA)poly(dT) and nick translation with [32P]deoxythymidine 5'-triphosphate (dNTP) in a total volume of 1 ml of 10 mM Tris (pH 7.8), 150 mM NaCl, 1 mM EDTA, and 0.15% gelatin (Sigma Chemical Co., St. Louis, MO). Antiserum was added at a dilution that yielded 30 – 60% binding to labeled ligand, and, after incubation overnight at 4°C, the immune complex was precipitated with goat anti-rabbit immunoglobulin (Calbiochem) and carrier serum from nonimmunized rabbits (USDA/USDA, Agriculture Division, Listowel, TX). After centrifugation, the pellet was dissolved in tissue solubilizer (NCS; Amersham, Piscataway, NJ) and mixed with ScintiSafe (Fisher, Hampton, NH) containing 0.1% glacial acetic acid, and the [32P] was quantified by liquid scintillation spectrometry. Under these conditions, antibody binding to an unlabeled competitor inhibits antibody binding to the radiolabeled ligand. Sample inhibition is extrapolated through a standard (dose-response) curve to determine the number of photoproducts in 106 bases (i.e., CPDs/mM).

Immunoprecipitation. Cells were grown to ~80% confluency in 100-mm tissue culture dishes. Their lysates were harvested and incubated with anti-p33ING1 antibody or a nonspecific control anti-interleukin-12B rabbit polyclonal antibody (Santa Cruz Biotechnology) at 4°C for 1 h and then with protein A-Sepharose at 4°C overnight. The beads were washed three times with solubilization buffer before boiling for 5 min. The precipitates were then resolved by electrophoresis, followed by Western analysis as described above.

Results

UV Induces p33ING1 Expression in a Dose- and Time-dependent Manner. We first examined whether p33ING1 would respond to UV in a human melanoma cell line, MMRU, which contains wild-type p53 (14). We found that there was a clear induction of p33ING1 protein with increasing UV doses (Fig. 1, A and B). To test the possibility that the induction was attributable to transcriptional regulation, we examined the mRNA levels at various time points after UV irradiation. We found that UV-induced p33ING1 was indeed a result of transcriptional control (Fig. 1C). These results indicate that p33ING1 was induced in a dose- and time-dependent manner after UV irradiation.

p33ING1 Enhances the Repair of UV-Damaged DNA. To study if p33ING1 mediates DNA repair, we used the host-cell-reactivation assay where a UV-damaged plasmid containing the CAT reporter gene (pCMVECt) was cotransfected with either vector, p33ING1, or antisense p33ING1 expression vector into MMRU cells. The activity of the reporter gene was used as an indicator of the extent of repair. Our data demonstrated that cells overexpressing the p33ING1 construct had 2 – 4-fold increase in the rate of repair of the UV-damaged plasmid compared with the vector and antisense controls (Fig. 2A). This enhancement in repair was maintained in conditions even when se-
UV-induction of p33^{ING1} appear different from that for p53. The upstream regulator of the p33^{ING1} gene has not yet been identified. Nevertheless, UV-induction of p33^{ING1} seems to be a common phenomenon in epidermal cells because we have shown recently (13) that p33^{ING1} is up-regulated at the transcriptional level in normal human keratinocytes and a keratinocyte cell line, HaCaT.

For the first time, we demonstrate that overexpression of p33^{ING1} enhances nucleotide excision repair of both UV-damaged genomic DNA and exogenous plasmid DNA (Fig. 2), further supporting the notion that p33^{ING1} is a tumor suppressor. Nucleotide excision repair is a crucial stress-response mechanism to maintain the genomic stability. UV radiation damages DNA primarily in the forms of CPDs and photoproducts (6–4). These photoproducts are repaired by nucleotide excision repair, which involves a complex series of proteins that orchestrate the identification and removal of damaged DNA, addition of nucleotides, and, finally, religation of the DNA strand (21). If UV-induced DNA photoproducts are not promptly removed, they will in turn lead to mutation and skin carcinogenesis; e.g., xeroderma pigmentosum patients who have defects in nucleotide excision repair suffer a 1000-fold increase in skin cancer incidence (22).

Wild-type p53 binds to and modulates XBP and XPD (23), two components of the TFIH transcription unit that possesses helicase, ATPase, and kinase activity (24). However, our results demonstrate that p33^{ING1} does not transcriptionally regulate or physically bind to XPA and XBP (Fig. 4). The physical association between p33^{ING1} and GADD45 (Fig. 4) suggests that p33^{ING1} may be a crucial component in the GADD45-mediated nucleotide excision repair pathway. The fact that GADD45 is up-regulated by p53 and that p33^{ING1} requires the participation of functional p53 in DNA repair (Fig. 3) further supports the close association of p33^{ING1} and GADD45. Increasing

ING1 Binds to GADD45. To study the pathways involved in p33^{ING1}-mediated DNA repair, we examined if p33^{ING1} is the upstream regulator of GADD45, XPA, and XBP, all of which have been shown to have significant involvement in DNA repair (17). We found that there was no change in expression in any of the aforementioned proteins in MMRU cells overexpressing p33^{ING1} (Fig. 4A), indicating that p33^{ING1} is not the upstream regulator of them. To test the possibility that ING1 may physically associate with GADD45, XPA, and XBP, we performed immunoprecipitation and found that there was a weak physical association, as indicated by the intensity of the signal, between ING1 and GADD45 (Fig. 4B). No binding was observed between ING1 and XPA/XBP (Fig. 4B).

Discussion

We have shown previously (18, 19) that the tumor suppressor p53 plays an essential role in cellular stress response to UV irradiation, such as enhancement of DNA repair and promotion of apoptosis. However, the exact molecular mechanisms of p53 enhancement in the repair of UV-damaged DNA are unclear. Recent findings that the tumor suppressor candidate ING1 shares similar biological functions with p53 (2, 4) and that the two proteins physically bind to each other (2) led us to hypothesize that ING1 may also participate in cellular stress response to UV irradiation. In this study, we show that p33^{ING1} is induced at both mRNA and protein levels in a melanoma cell line, MMRU, after UV irradiation (Fig. 1). Although the p53 protein is also accumulated after UV irradiation (Fig. 3), it is believed that p53 accumulation is attributable to prolonged half-life of the protein rather than transcriptional activation (20). Therefore, the mechanisms for
References

The Tumor Suppressor Candidate p33ING1 Mediates Repair of UV-Damaged DNA

Cancer Res 2001;61:4974-4977.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/13/4974

Cited articles
This article cites 26 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/13/4974.full#ref-list-1

Citing articles
This article has been cited by 14 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/61/13/4974.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.