Polymorphisms in the Prostate Cancer Susceptibility Gene HPC2/ELAC2 in Multiplex Families and Healthy Controls

Brian K. Suarez, Daniela S. Gerhard, Jennifer Lin, Beth Haberer, Loan Nguyen, Niki K. Kesterson, and William J. Catalona

Departments of Psychiatry [B. K. S., D. S. G., J. L.], and Genetics [B. K. S., D. S. G., L. N., N. K. K.], and Division of Urologic Surgery [B. H., W. J. C.], Washington University, School of Medicine, St. Louis, Missouri 63110

Abstract

Two polymorphisms in the newly cloned prostate cancer susceptibility gene, HPC2/ELAC2, are suspected to be associated with an increased risk of developing the disease. These missense variants result in a serine (S) to leucine (L) substitution at amino acid residue 217 and an alanine (A) to threonine (T) substitution at residue 541. We genotyped these polymorphisms in 257 multiplex prostate cancer sibships and in 355 race-matched healthy unrelated controls. A significant increase in the frequency of the T allele is seen in the prostate cancer subjects compared with controls. There is, however, little evidence for excess clustering of the T allele within the multiplex families known to be segregating this allele, and there is no evidence for linkage of prostate cancer to the HPC2/ELAC2 region of chromosome 17p11.2 in these families. The T allele shows no association with either Gleason score or age-of-onset in segregating families.

Introduction

Recently, Tavtigian et al. (1) announced the positional cloning of the first CaP susceptibility gene (HPC2/ELAC2) to be identified as the result of a whole genome scan of high risk CaP pedigrees. Two-point linkage analysis performed on a subset of the families yielded a heterogeneity lod score of 4.43 at D17S1289. Analysis of recombinants in two Utah kindreds allowed narrowing of the interval to about 1 Mb. Subsequent analysis of the genomic sequence across this region revealed two independent multixen genes, 04CG09 and HPC2/ELAC2. Mutation screening of genomic DNAs from an early age-of-onset multiplex CaP family revealed a frameshift mutation in HPC2/ELAC2 that throws translation out of frame after amino acid 547 and that cosegregated with the CaP phenotype (1). In addition, two missense variants, a serine (S) to leucine (L) substitution at amino acid 217 and an alanine (A) to threonine (T) substitution at amino acid 541, were found to be associated with the diagnosis of CaP. Rebbeck et al. (2) confirmed this association in a sample of 359 incident CaP cases and 266 matched controls. The association was attributable to a significant increase of the T allele in the prostate cancer subjects compared with controls.

Materials and Methods

We genotyped these polymorphisms in 257 multiplex CaP sibships and 355 unrelated controls. All of the multiplex sibships were ascertained from patients seen at Washington University School of Medicine by staff urologists, or were referred by other area urologists, or were participating in CaP support groups, or responded to our published solicitations. Two hundred and thirteen of these families were included in our initial genome scan (3), 22 were added to our follow-up linkage study of chromosomes 1 and 16 (4), and 22 are new to this study.

The control subjects were ascertained from a large pool of men who have been followed for many years as part of a long-term CaP study in which men are screened at 6-12 month intervals with PSA blood tests and DRE of the prostate (5). The size of this pool allowed us the luxury of identifying especially healthy men. To be enrolled in the control series, the subjects were required to meet the following four criteria: (a) be at least 65 years old; (b) have never registered a PSA level in excess of 2.5 ng/ml; (c) never have had a DRE suspicious of CaP; and (d) have no known family history of CaP. This last criterion was asayed by inquiring about the subject’s brothers, father, grandfathers, and maternal and paternal uncles. As a consequence of the first criterion, the control subjects were significantly older than the case subjects (71.7 versus 65.5 years; P < 0.0001). All of the subjects in this study were of European ancestry. The protocol of this study was approved by the Human Studies Committee of Washington University, and informed written consent was obtained from all of the participants.

The S217L variation was detected as follows: 37 ng of genomic DNA was amplified in 2 μl of total volume using standard 1.5 mM MgCl2 polymerase buffer and 1.25 μM each of 217HPC2/ELAC2-5′ (CAGCTCACCTTGTGCAGTGT) and 217HPC2/ELAC2-3′ (GCCCCAGGAAAGAGATCGT) primers, and 0.1 unit of Taq polymerase. The DNA was first denatured at 94°C for 2 min and then amplified in 35 cycles of 92°C for 30 s, 63°C for 1 min, and 72°C for 1 min. Each PCR product of 294 bp was digested with 2 units of Taq1 (New England Biolabs, Inc.) at 65°C for 2.5–3 h. One-half of the DNA was electrophoresed at 130 V for 1.5 h on 3% agarose 3:1 (Amresco) to separate the fragments, 294 (L) versus 157 and 137 (S).

The A541T variation was detected by amplification of 37 ng of genomic DNA in 15 μl of final volume using the same conditions as for S 217 L, except that the primers were 541HPC2/ELAC2-5′ (CTCTGCCAAAGCAGACATCA) and 541HPC2/ELAC2-3′ (AGGAAAAGACGCAGC- AAAG), and the annealing temperature was 60°C. Each PCR product of 303 bp was digested with 1 unit of Fnu4HI at 37°C for 3 h. The electrophoretic conditions were the same. All of the alleles had two visible constant bands (the 13-bp product could not be separated from the primers) of 79 and 49 bp. These bands were the positive control for the enzyme function. The 110-bp and 52-bp fragments (the latter comigrated with the 49-bp product) were diagnostic of the A allele, and the 162-bp fragment was diagnostic for the T allele. All of the allele calls were independently verified by two of the authors, D. S. G. and either L. N. or N. K. K. Additionally, 15% of the DNA samples were regenotyped, and no discrepancies were observed.

Results and Discussion

Table 1 reports the joint genotype distribution for the two HPC2/ELAC2 variants in 355 unrelated controls and 257 CaP cases. The genotypic distribution for the cases was obtained by sampling at random a single brother from each of 257 multiplex sibships and repeating the process 1000 times. The mean from these 1000 random samples is reported in Table 1. Similar to the findings of Rebbeck et al. (3), we observe complete linkage disequilibrium between the T
The joint genotype distribution in the cases was obtained by sampling at random one brother from each sibship. The reported number for each genotype (rounded to the nearest integer) is the mean based on 1000 realizations of the sampling procedure. Genotypic proportions are given in parentheses.

<table>
<thead>
<tr>
<th>Allele</th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>120 (0.467)</td>
<td>190 (0.535)</td>
</tr>
<tr>
<td>SL</td>
<td>93 (0.362)</td>
<td>21 (0.082)</td>
</tr>
<tr>
<td>LL</td>
<td>19 (0.074)</td>
<td>4 (0.016)</td>
</tr>
</tbody>
</table>

Allele frequency:

<table>
<thead>
<tr>
<th>Allele</th>
<th>LL</th>
<th>SL</th>
<th>SS</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.3113</td>
<td>0.3113</td>
<td>0.3113</td>
<td>0.3113</td>
</tr>
<tr>
<td>L</td>
<td>0.2761</td>
<td>0.2761</td>
<td>0.2761</td>
<td>0.2761</td>
</tr>
</tbody>
</table>

Table 2 reports these expectations for our sample of 33 ASPs and 7 affected trios. The proportion of affected trios expected to be AT,AT was:

\[
\frac{1 + pq}{3p^2 + 4pq + q^2}
\]

Similarly, among our affected trios, only two configurations were observed: AT,AT,AA trios and AT,AA,AA trios. The proportion of affected trios expected to be AT,ATAA was:

\[
\frac{\sqrt{2}lp + \sqrt{2}q}{p + \sqrt{2}q}
\]

It is of interest that none of the three published whole genome scans of CaP families (3, 8, 9) yield any compelling multipoint evidence of a susceptibility locus on chromosome 17p, although a weak two-point signal was reported by Gibbs et al. (9). We have reanalyzed our families for linkage (10, 11) by subdividing them into two groups depending on the presence/absence of the T allele. Chromosome 17p genotypes are available on 35 of our 40 T-positive sibships and on 200 of the 217 T-negative sibships. As can be seen in Fig. 1, the multipoint NPL Z-scores for neither subgroup give any evidence of increased allele sharing in the vicinity of HPC2/ELAC2.

The frequency of deleterious mutations in HPC2/ELAC2 is unknown. The 1641 insG insertion reported by Tavtigian et al. (1) causes a frameshift in a region of the protein that displays a high degree of amino-acid-sequence conservation among multicellular eukaryotes. In their recent review, Ostrander and Stanford (12) suggested that germ-line changes in HPC2/ELAC2 are unlikely to be a common cause of CaP because an examination of 45 additional unrelated CaP cases, all with an age-of-onset of 35–55 years, failed to reveal any with a frameshift mutation. Of course it is possible that variation in noncoding regions could alter the transcription of the HPC2/ELAC2 gene. If such elements are identified and if they are in linkage disequilibrium with the T allele, then the association reported here and in the study of Rebeck et al. (2) must be considered secondary and noncausal.

It is also possible that the significant case-control difference that we observed was attributable to having selected an unusually healthy control group of healthy CaP cases and 355 healthy unrelated controls.
sample. Not only did all of our control men have serial PSA measurements that had never exceeded 2.5 ng/ml and consistently negative DRE findings, but none had a first- or second-degree relative with CaP. The frequency of the T allele in our controls (0.021) is lower than that reported by Rebbeck et al. (2) for their white controls (0.032), albeit the difference is nonsignificant ($X^2 = 1.41; P = 0.24$).

Finally, to determine whether the T allele affects either Gleason score or age-of-onset, we drew at random 40 unrelated A/T heterozygotes (one from each family) and compared them with an unrelated random sample of A/A homozygotes drawn from the remaining 217 families. These measurements were unavailable for one of the A/T subjects and four of the A/A subjects, thereby reducing the sample size slightly. No differences were seen for either mean Gleason score ($P = 0.94$) or mean age-of-onset ($P = 0.30$).

In summary, we found a significant increase in the frequency of the T allele in CaP cases drawn from multiplex sibships compared with exceptionally healthy race-matched controls. Analysis of these families, however, failed to reveal any excess clustering of the T allele as would be expected if this amino acid substitution substantially increased susceptibility. Furthermore, linkage analysis of families segregating the T allele does not suggest that this polymorphism is linked to CaP in this sample.

References
Polymorphisms in the Prostate Cancer Susceptibility Gene HPC2/ELAC2 in Multiplex Families and Healthy Controls

Brian K. Suarez, Daniela S. Gerhard, Jennifer Lin, et al.

Cancer Res 2001;61:4982-4984.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/13/4982

Cited articles
This article cites 12 articles, 1 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/13/4982.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
/content/61/13/4982.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.