Hepatic Hyperplasia in Noncirrhotic Fatty Livers: Is Obesity-related Hepatic Steatosis a Premalignant Condition?

ShiQi Yang, Hui Zhi Lin, Jiawen Hwang, Vadappuram P. Chacko, and Anna Mae Diehl

Departments of Medicine [S. Y., H. Z. L., J. H., A. M. D.] and Radiology [V. P. C.], The Johns Hopkins University, Baltimore, Maryland 21205

ABSTRACT

It is not known whether obesity increases the risk for hepatocellular carcinoma (HCC) simply because it promotes cirrhosis, a general risk factor for HCC, or via some other mechanism that operates independently of cirrhosis. If the latter occurs, then hepatocyte hyperplasia, an early event during the neoplastic process, might begin before liver cirrhosis develops. Genetically obese, leptin-deficient ob/ob mice are models for nonalcoholic fatty liver disease (NAFLD), a type of liver disease that is strongly associated with obesity and type 2 diabetes. Similar to obese, diabetic patients, ob/ob mice have an increased incidence of HCC. However, unlike humans with NAFLD, they rarely, if ever, develop cirrhosis spontaneously. To determine whether the noncirrhotic livers of ob/ob mice with NAFLD exhibit hepatocyte hyperplasia, parameters of proliferation and apoptosis were compared in adult ob/ob mice and their healthy litter mates. Adult ob/ob mice have an increase in liver mass relative to body mass. This hepatomegaly cannot be explained solely by lipid accumulation and is accompanied by significant increases in hepatocyte proliferative activity (as evidenced by increased Erk activation, cell-cycle related gene expression, bromodeoxyuridine incorporation, and hepatic DNA content) with concomitant inhibition of hepatocyte apoptosis (as evidenced by decreased numbers of apoptotic hepatocytes, induction of several anti-apoptotic mechanisms, and decreased activation of procaspase 3). Thus, liver hyperplasia is evident at the earliest stage of NAFLD in ob/ob mice, which supports the concept that obesity-related metabolic abnormalities, rather than cirrhosis, initiate the hepatic neoplastic process during obesity.

INTRODUCTION

Obesity is associated with an increased risk for cancer of the liver and other epithelial organs including the uterus, colon, and pancreas (1–3). The mechanisms responsible for this association are unknown. Cirrhosis is generally considered to be the most important risk factor for HCC,2 because almost all HCCs are diagnosed after cirrhosis has developed, regardless of the original cause of liver damage (4, 5). Obesity is associated with an increased risk of cirrhosis (6, 7), and this may explain why the prevalence of liver cancer is increased in obesity. On the other hand, a growing body of epidemiological evidence from large, population-based studies is beginning to implicate obesity-related hyperinsulinemia and insulin resistance in the pathogenesis of obesity-related malignancies, such as non-Hodgkin’s colon cancer and postmenopausal breast cancer (1–3, 8–10).

During the neoplastic process, epithelial hyperplasia and dysplasia generally precede cancer by many years. For example, systematic analyses of colonic or breast epithelia during the various stages of neoplasia demonstrate the progressive accumulation of defects that increase cellular survival, disrupting normal tissue homeostatic mechanisms that balance apoptosis and proliferation (11). A similar process occurs during virally mediated or toxin-related hepatic carcinogenesis (12, 13). Hence, it is reasonable to suspect that hepatic hyperplasia (i.e., increased hepatocyte proliferation relative to apoptosis) also antedates the appearance of liver cancer during insulin-resistant states, such as obesity. However, to our knowledge, there is no information about whether or not hepatocyte hyperplasia occurs during obesity per se. If it does, then it is important to learn whether this potentially premalignant condition begins before the liver becomes fibrotic, because obesity-related hepatic steatosis (fatty liver) is very common, occurring in at least 20% of American adults (14), whereas, only a small minority of these individuals will ever develop significant hepatic fibrosis or cirrhosis (15).

To determine whether, and when, hepatic hyperplasia might occur during obesity, we assessed hepatocyte proliferative and apoptotic activities in the livers of genetically obese, ob/ob mice. ob/ob mice have a naturally occurring mutation in the ob gene that prevents the synthesis of leptin, an adipocyte hormone that regulates satiety and energy balance (16, 17). Consequently, these mice become obese at an early age. Similar to many other murine models of obesity, including those that result from diabetes (db) and fatty (fa) loss-of-function mutations in the ob (leptin) receptor, young ob/ob mice develop insulin resistance, hyperinsulinemia, and eventually become hyperglycemic (i.e., type 2 diabetic; Refs. 18–20). An increased incidence of HCC has been demonstrated in old mice that are homozygous for the ob mutation, even when this defect is present in C57BL-6J strains that are generally resistant to malignancy (21). Interestingly, from a very young age, ob/ob C57BL-6J mice have enlarged, fatty livers (22). Although such mice are unusually vulnerable to toxic and ischemic liver injury and have been used as models for the early stages of human NAFLD (23), they do not develop cirrhosis spontaneously (24). Thus, despite the strong association between cirrhosis and HCC in humans, it is unlikely that cirrhosis accounts for the increased prevalence of HCC in ob/ob mice. Hence, these mice are relatively “pure” models of obesity-related hepatic insulin resistance and liver cancer that can be studied at a premalignant stage to determine whether, and when, hepatic hyperplasia develops. Our results demonstrate that, in the absence of any overt, exogenous insult, young adult male ob/ob mice have increased hepatocyte proliferation relative to apoptosis and suggest that this imbalance promotes increased liver mass. Given the general temporal relationship between epithelial hyperplasia and eventual neoplasia, these data support the possibility that cellular survival advantages develop in the liver during insulin-resistant states and contribute to obesity-related hepatic neoplasia.

MATERIALS AND METHODS

Animals. Eight-week-old ob/ob C57BL-6J mice (n = 12) and their lean (heterozygote) litter mates (n = 12) were purchased from Jackson laboratories (Bar Harbor, ME). The mice were maintained in a temperature- and light-controlled animal facility and permitted ad libitum access to water and standard pellet-type chow for 2 weeks. At the end of this period, one mouse was randomly selected from each group, anesthetized with phenobarbital and evaluated by 1H-NMR-spectroscopy to quantify fat accumulation in the liver (25). Subsequently, all of the mice were weighed, given injections of BrdUrd

5016
HEPATIC HYPERPLASIA IN NONCIRRHOTIC FATTY LIVERS

i.p., and killed 2 h later by cervical dislocation. The livers were removed from the carcasses and weighed, and then a small biopsy was obtained from each organ. This tissue was placed in buffered formalin for subsequent evaluation of hepatic histology and nuclear BrdUrd incorporation. The remaining liver tissues were used immediately to isolate either fresh nuclei (*n* = 4 mice/group) or fresh mitochondria (*n* = 4 mice/group). Others (*n* = 4 mice/group) were snap-frozen in liquid nitrogen, stored at ~80°C and processed subsequently to obtain whole liver extracts of RNA, DNA, and protein.

Evaluation of Hepatocyte Proliferative Activity

This was assessed by counting BrdUrd (+) hepatocyte nuclei on coded liver sections that were counterstained with hematoxylin. Two sections from each mouse were evaluated independently by two observers (S. Y., J. H.). In each section, 10 × 400 were examined and the total number of hepatocytes with and without BrdUrd (+) nuclei were recorded. An average proliferative index (number of BrdUrd (+) hepatocytes ÷ total number of hepatocytes) was calculated for each mouse; then the figures from the 12 mice in each group were totaled to obtain the mean (± SE) proliferative index for each group. In addition, freshly isolated liver cell nuclei from four mice/group were stained with propidium iodide, and nuclear ploidy was evaluated by flow cytometry.

Analysis of MAPKs

Members of the MAPK family, Erk-1 and Erk-2, become phosphorylated (i.e., activated) during the prereplicative phase of hepatocyte proliferation. Hence, steady-state levels of phospho-Erk-1 and -Erk-2 are useful measures of hepatocyte proliferative activity. The content of total and phosphorylated Erk-1 and Erk-2 were evaluated in whole liver homogenates from four mice/group using immunoblot analysis with specific antisera from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) as described previously (26).

RNA Analysis of Growth-related Genes

Total hepatic RNA was isolated from the livers of four mice/group using a minor modification (27) of Chomczynski and Sacchi’s method (28). RNase protection analysis of this RNA was performed using reagents from PharnMingen as we have described previously (29). This assay permits the concurrent evaluation of several immediate early genes, such as c-jun, delayed-early genes, such as cyclin-D1, and S-phase-associated genes, such as cyclin A, as well as housekeeping genes, such as GAPDH, in the same RNA sample, facilitating standardization that controls for slight variability in RNA content that might occur among different samples.

DNA Quantitation

Hepatic DNA was extracted and quantitated as described by Blin and Stafford (30). Results are expressed as mg/g liver and also as mg/total liver.

Evaluation of Apoptosis

The optimal technique for assessing apoptosis in the liver remains hotly contested. Standard approaches, including TUNEL staining and evaluation of DNA fragmentation by agarose gel electrophoresis, have been criticized because these assays may also become positive in necrotic hepatocytes (31). Detection of apoptotic hepatocytes on H&E-stained tissue sections have been criticized because these assays may also become positive in necrotic hepatocytes (31). Detection of apoptotic hepatocytes on H&E-stained tissue sections has been criticized because these assays may also become positive in necrotic hepatocytes (31). Detection of apoptotic hepatocytes on H&E-stained tissue sections has been criticized because these assays may also become positive in necrotic hepatocytes (31). Detection of apoptotic hepatocytes on H&E-stained tissue sections has been criticized because these assays may also become positive in necrotic hepatocytes (31).

Caspase 3 Activation

Whole liver homogenates from four mice/group were evaluated for evidence of caspase 3 activation. Equal amounts (40 μg/lane) of liver protein from ob/ob and lean mice were separated by SDS-PAGE, transferred to nylon membranes and probed for total caspase 3 and its cleavage products using antisera from PharMingen (San Diego, CA). The cleavage of procaspase 3 to caspase 3 activates the enzyme during hepatocyte apoptosis. Moreover, caspase 3 is the major effector of apoptosis in hepatocytes. Thus, the ratio of caspase 3 cleavage products (i.e., active caspase 3)/procaspase 3 is a good measure of hepatocyte apoptotic activity (32).

Hepatomegaly in Obese, ob/ob Mice

ob/ob mice have hepato-megaly. Because ob/ob mice weigh about twice as much as their lean litter mates, it is not unexpected that their livers are larger than those of lean controls. However, normalization of liver weight by body weight demonstrates that the mass of ob/ob livers is greater than predicted solely on the basis of generalized obesity (Table 1). Given that ob/ob mice have fatty livers (Fig. 1a), it is conceivable that the tremendous accumulation of lipid within individual hepatocytes increases the liver/body weight ratio. However, analysis of the liver and entire body of a typical ob/ob mouse by 1H-NMR spectroscopy demonstrates that there is actually less accumulation of fat in the liver (about 15% of the total 1H signal) than there is in the rest of the body (in which fat accounts for almost 60% of the 1H signal); therefore, this explanation seems unlikely (Fig. 1b). In ob/ob mice of this age, there is not a clear histological evidence for the hepatic accumulation of inflammatory cells or fibrous tissue (Fig. 1a). Hence, a comparison of the total DNA content of fatty and normal livers should provide information about hepatocyte number and should help to determine whether increases in hepatocyte number contribute to ob/ob hepato-megaly. Consistent with evidence that ob/ob hepatocytes contain more fat than normal hepatocytes, the hepatic DNA content normalized per gram of liver wet weight is about 50% lower than normal. However, ob/ob livers weigh almost four times more than normal. Hence, the total DNA content of an ob/ob liver is, on average, significantly greater than that of an age- and gender-matched lean litter mate (Table 1), which suggests that increases in hepatocyte number contribute to the increased liver mass of fatty livers.

Increased Hepatocyte Proliferative Activity in ob/ob Fatty Livers

In adults, liver mass is maintained at a relatively constant value because the rates of hepatocyte proliferation and apoptosis are similar (39, 40). Moreover, unlike cells in other epithelial tissues, hepatocytes “turn over” infrequently in uninjured livers, as evidenced by observations that at any given moment, very few hepatocytes incorporate [3H]thymidine or BrdUrd into nuclear DNA (33). When the normal balance between proliferation and apoptosis is disturbed to

<table>
<thead>
<tr>
<th>Mice</th>
<th>Body (g)</th>
<th>Liver (g)</th>
<th>Liver/body (%)</th>
<th>mg/g liver</th>
<th>mg/total liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>25 ± 5</td>
<td>1.1 ± 0.2</td>
<td>4.3 ± 0.5</td>
<td>8.5 ± 0.3</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>ob/ob</td>
<td>55 ± 6</td>
<td>3.8 ± 0.7</td>
<td>6.8 ± 1.2</td>
<td>4.4 ± 0.6</td>
<td>16.5 ± 1</td>
</tr>
</tbody>
</table>
favor a net increase in proliferative activity, liver size increases. This can occur either as a result of factors that work predominately by increasing hepatocyte proliferation or as a consequence of factors that work predominately by decreasing hepatocyte apoptosis. The largest increases in liver mass occur when hepatocyte proliferation and apoptosis are regulated differentially (i.e., when proliferation is stimulated while apoptosis is inhibited). Although tissue neoplasia typically involves increased proliferative activity, it is not clear that the latter process contributes to the hepatomegaly of ob/ob livers. Indeed, the possibility that basal rates of hepatocyte proliferation might be decreased in ob/ob livers merits consideration because it was recently reported that liver regeneration is inhibited after partial hepatectomy in obese, diabetic, fa/fa rats with fatty livers (41).

To compare the basal proliferative activities of normal and ob/ob livers, several approaches were used. First, we looked for evidence of activation of the MAPK cascade in the two groups. The content of phosphorylated MAPK isoforms (p42 Erk-1 and p44 Erk-2) is more than 4-fold greater in fatty, ob/ob livers than in normal livers despite similar content of total Erk-1 and Erk-2 in the two groups (Fig. 2). MAPK activation typically occurs within minutes after hepatocytes are exposed to growth factors (33). Another early event that heralds the reentry of hepatocytes into proliferative phases of the cell cycle is the accumulation of mRNAs that encode immediate-early genes, such as c-jun (42, 43). RNase protection analysis of liver RNA from normal and fatty livers demonstrates that c-jun mRNAs are increased in fatty livers (Fig. 3). Moreover, transcripts for cyclin D1 and cyclin A, genes that are up-regulated at the time of transition from G1 into S-phase (44, 45), are also increased in fatty livers (Fig. 3). The induction of cell cycle-associated genes in fatty livers suggests that hepatocyte DNA synthesis might be increased in ob/ob mice. To evaluate that possibility more directly, liver nuclei were isolated, stained with propidium iodide, and evaluated for DNA content by flow cytometry (46). An increased proportion of nuclei with hyperdiploid DNA content were demonstrated in fatty livers (Fig. 4; Table 2). Consistent with these results, BrdUrd incorporation into hepatocyte nuclei is increased in tissue sections prepared from fatty livers (Table 2).

Induction of Antia apoptotic Defenses in Murine Fatty Livers. Although hepatocyte proliferative activity is increased slightly in ob/ob livers, this will not increase liver mass if the rate of hepatocyte apoptosis increases proportionally (39, 40). During sublethal exposure to various noxious agents, hepatocyte apoptosis increases and liver mass is preserved by an associated increase in hepatocyte proliferative activity (33). Because the accumulation of fat within hepatocytes (hepatic steatosis) occurs in the early stages of liver disease that occurs during obesity (47), it is conceivable that the increased proliferative activity of ob/ob hepatocytes is merely an adaptive response to increased hepatocyte apoptosis. To evaluate this possibility, we counted the numbers of apoptotic hepatocytes in H&E-stained liver sections from four ob/ob mice and an equal number of their lean litter mates. To our surprise, we were unable to demonstrate an increased accumulation of apoptotic hepatocytes in ob/ob livers. In fact, an inspection of 10 ×200 microscope fields/liver section demonstrated an average of three to four apoptotic foci/section in control mice but
fewer than two apoptotic foci/section in ob/ob livers, which suggests that ob/ob livers might actually have fewer apoptotic hepatocytes than do normal livers. However, because the basal rate of hepaticocyte apoptosis in adults is very low, it is difficult to detect a further reduction in the already-low number of apoptotic hepatocytes simply by inspecting tissue sections. In addition, the accumulation of fat in ob/ob hepatocytes might have obscured a small, but significant, increase in apoptotic cells. To overcome these technical obstacles, alternative measures of apoptotic activity were evaluated.

The cleavage of procaspase 3 activates this enzyme, which functions as the predominant terminal effector of hepaticocyte apoptosis (48). Thus, the ratio of procaspase 3 cleavage products (i.e., activated caspase 3) to total caspase 3 content provides a measure of apoptotic activity (32). To compare the degree of caspase 3 activation in ob/ob and normal livers, equal amounts of whole liver protein from fatty and lean livers were separated by SDS-PAGE and exposed to commercially available antisera that recognize both procaspase 3 and its cleavage products. Consistent with the histological evidence for decreased apoptosis in ob/ob livers, the immunoblot assays demonstrated a significantly reduced ratio of activated:total caspase 3 in livers from ob/ob mice compared with livers from their lean litter mates (Fig. 5a). To validate this approach, a separate group of lean C57BL-6 mice were given injections i.p. of a small dose (10 μg/mouse) of bacterial LPS, which is known to cause a slight increase in hepatocyte apoptosis (49). Whole liver homogenates were analyzed for procaspase 3 and its cleavage products by immunoblot (Fig. 5b). As expected, LPS treatment increases the ratio of activated caspase 3:total caspase 3 in normal mice, which confirms that this assay is a useful measure of hepaticocyte apoptosis.

Taken together, the results suggest that basal rates of hepaticocyte apoptosis are actually decreased in young adult ob/ob mice. If this suspicion is correct, then one or more of the cellular mechanisms that inhibit apoptosis should be induced in ob/ob livers. The transcription factor, NFκB plays a critical role in hepaticocyte antia apoptotic defense (50). A comparison of NFκB-DNA binding activity in the ob/ob mice with fatty livers with that of age- and gender-matched normal mice of the same strain demonstrates increased NFκB-DNA binding activity in nuclear extracts from fatty livers (Fig. 6). The production of superoxide anion (O$_{2}^{-}$) by mitochondria increases even before the induction of NFκB early during the course of apoptosis (51), and it has been shown that apoptosis is inhibited in cells that are transfected

Table 2 Proliferative parameters

<table>
<thead>
<tr>
<th>Liver histology</th>
<th>Flow cytometry of liver nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>BrdUrd (+) hepatocyte nuclei</td>
</tr>
<tr>
<td>Lean</td>
<td>G${0}$-G${1}$</td>
</tr>
<tr>
<td>ob/ob</td>
<td>2.3 ± 0.3</td>
</tr>
<tr>
<td>ob/ob</td>
<td>3.4 ± 0.3</td>
</tr>
</tbody>
</table>

Fig. 4. Cell cycle distribution of liver nuclei for lean and ob/ob mice. Nuclei were isolated from livers, stained with propidium iodide, and analyzed by flow cytometry. The distribution of nuclei with various DNA contents are shown for one representative lean and one typical ob/ob mouse. DNA content of 40 = 2n (G$_{0}$), 80 = 4n (G$_{2}$-M), 160 = 8n (octaploid). The cumulative flow cytometry results from four lean (a) and four ob/ob (b) mice are summarized in Table 2.
with mitochondrial MnSOD, the enzyme that detoxifies O$_2^-$ (36, 52).

To clarify events that might protect ob/ob hepatocytes from apoptosis, mitochondrial MnSOD activity was compared in ob/ob mice and their lean litter mates (38). Hepatic mitochondrial MnSOD activity is greater in ob/ob mice (Fig. 7). Activation of mitochondrial MnSOD is predicted to decrease oxidative stress (36), and, hence, this finding is difficult to reconcile with the EMSA data that demonstrate induction of NFkB, a redox-sensitive transcription factor (53), in ob/ob liver nuclei. However, overexpression of certain antiapoptotic members of the Bcl-2 family of mitochondrial membrane proteins, such as Bfl-1 or Bcl-xL, can inhibit apoptosis after cytochrome c release and NFkB activation (35, 54–56). Fatty livers from ob/ob mice have accumulated an increased level of bfl-1 and bcl-xL transcripts (Fig. 8). Thus, several antiapoptotic factors, including NFkB, MnSOD, bfl-1, and bcl-xL, have been induced in ob/ob livers, providing potential explanation(s) for the reduced activation of caspase 3 and decreased accumulation of apoptotic hepatocytes in ob/ob mice. Although the absolute magnitude of the difference between ob/ob and lean livers for any one of these antiapoptotic responses is relatively small, the combination of inhibited apoptosis plus slight increases in hepatocyte proliferation cause hepatic epithelial hyperplasia and contribute to the increased mass of ob/ob livers.

DISCUSSION

To our knowledge, these studies are the first to demonstrate an association between obesity and hepatocyte hyperplasia. Because the work was done with genetically obese mice that were housed in a tightly monitored animal facility, it is unlikely that the findings can be explained by occult exposure to environmental toxins or hepatotoxins.
phic viruses. Moreover, the observed increases in hepatocyte proliferation and decreases in hepatocyte apoptosis occurred in the absence of overt hepatic inflammation or fibrosis and did not require exposure to tumor promoting drugs. In this regard, the fatty livers of young, adult ob/ob mice resemble the livers of myc- or TGFα-transgenic mice and myc/TGFα-double transgenic mice, in which increased liver mass is induced experimentally by the overexpression of a known proto-oncogene and/or hepatocyte growth factor (57, 58). Similar to these transgenic mice (58, 59), aged ob/ob mice also have an increased incidence of HCC (21, 60, 61), although the tumor incidence rate appears to be much greater in the former. Nevertheless, given the acknowledged association between obesity and cancer in several organs, including the liver (1, 8, 9), evidence for obesity-related increases in hepatocyte proliferative activity relative to apoptosis have direct clinical relevance.

Although the mechanisms for the association between obesity and liver cancer are unknown, cellular survival advantages that occur during insulin resistance may contribute to hepatocarcinogenesis because obesity-related insulin resistance correlates with an increased risk for cancers in other organs, such as the breast and colon (2, 3). In general, most cases of HCC are diagnosed in patients who have had cirrhosis for many years (4, 5). However, it is not clear whether the neoplastic process begins during cirrhosis or starts at earlier stages of liver disease. If HCC begins during cirrhosis, then it is reasonable to determine whether the process of hepatocyte neoplasia begins during the early stages of obesity-related fatty liver disease, when there is insulin resistance but not cirrhosis.

The present results demonstrate clearly that hepatocyte hyperplasia occurs at the fatty liver stage of NAFLD. However, as will be discussed subsequently, whether or not insulin resistance has any direct role in this process remains uncertain. The fatty hepatocytes of ob/ob mice exhibit many similarities to liver cells that have been transformed experimentally with the ras or proto-oncogenes. For example, both fatty livers and ras transformation result in MAPK activation, NFκB induction, and the up-regulation of antiapoptotic bcl-2-related genes (67), that are transcriptional targets for NFκB (68). Others have demonstrated that NFκB is a downstream target of the MAPK cascade (69) and have shown that NFκB induction required for ras- or ras-neoplastic transformation of rat liver epithelial cells (67), which suggests that the induction of NFκB and MAPK might contribute to the hepatocyte hyperplasia and hepatomegaly that occur in obesity-related fatty livers. However, if so, then it is paradoxical that hepatic NFκB induction occurs in insulin-resistant ob/ob mice, because there is compelling evidence that insulin itself activates NFκB through a Raf-1-mediated pathway in other mammalian cells (70). Indeed, the ability of insulin to induce NFκB is required for the antiapoptotic actions of the hormone in several cell culture models (71).

Hence, it is conceivable that, rather than insulin resistance per se, one of the other hormonal, immunological, and metabolic abnormalities in obese, ob/ob mice might mediate hepatocyte hyperplasia. Given the association between type-2 diabetes, obesity, and malignancy in humans (8,9) and experimental animals (21,60,61), the role of hyperinsulinemia (as opposed to insulin resistance) in the neoplastic process certainly merits investigation. In light of the recent demonstration that reactive oxygen species are required for hepatocarcinogenesis in c-myc/TGFα transgenic mice (72), the possibility that obesity-related increases in hepatic oxidative stress contribute to hepatic hyperplasia should also be considered. Hepatic mitochondrial production of reactive oxygen species is increased significantly in ob/ob mice (38). Thus, the possibility that oxidant stress might be one of the mechanisms driving hepatic hyperplasia in these animals is a particularly intriguing hypothesis. Although the mechanisms driving increased reactive oxygen species release from ob/ob liver mitochondria are unknown, leptin deficiency and secondary changes in cytokine production (29,73,74) might be involved. If the latter is true, then additional work is necessary before data from our studies with leptin-deficient ob/ob mice can be extrapolated to obese humans with fatty livers, because hyperleptinemia (rather than leptin deficiency) is the rule in human obesity (75).

Despite leaving many questions unanswered, our work is important because it demonstrates that some of the mechanisms that promote HCC in NAFLD, one of the most common types of liver disease, become operative “spontaneously,” i.e., without an obvious require-
ment for comorbidity factors, such as viral infection or hepatotoxic exposure. Moreover, this hyperproliferative response begins long before cirrhosis occurs. Indeed, given evidence that ob/ob mice are resistant to cirrhosis (24), but eventually develop HCC (21), our observations raise the intriguing possibility that obesity-related fatty liver, itself, is a premalignant condition. If this possibility is confirmed by others, then our recent findings extend other data (7, 47, 76) that indicate NAFLD is not always a benign process.

REFERENCES

Hepatic Hyperplasia in Noncirrhotic Fatty Livers: Is Obesity-related Hepatic Steatosis a Premalignant Condition?

ShiQi Yang, Hui Zhi Lin, Jiawen Hwang, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/61/13/5016

Cited articles This article cites 70 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/61/13/5016.full#ref-list-1

Citing articles This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/61/13/5016.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/61/13/5016.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.